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According to von Neumann, the global Hamiltonian of the whole universe must be Hermitian in order to keep
the eigenvalues real and to construct a self-consistent quantum theory. In addition to the open system approach
by introducing environmental degrees of freedom to a small system, a global Hermitian Hamiltonian can also be
generated through the dilation from a small Hilbert space. For example, a local non-Hermitian PT -symmetric
system can be simulated with a global Hermitian one by the Naimark dilation. Recently, by introducing local
measurements and investigating the correlation functions of outcomes, the internal nonlocality in such dilated
Hermitian systems has been revealed, but only for a special case with a twofold structure. In this paper, we
extend such a discussion to the generalized case when the twofold structure breaks. The internal nonlocality
is discussed with different correlation pictures and the corresponding correlation bounds. Our results provide a
device-independent test of the reliability of the simulation in the global Hermiticity.
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I. INTRODUCTION

By introducing the environment of infinite free space to
an open system, an effective non-Hermitian Hamiltonian can
be obtained from a global Hermitian Hamiltonian after elim-
inating the environmental degrees of freedom [1]. Typically,
complex eigenvalues of resonant states are produced due to
the coupling between the local subsystem and the macro-
scopic environment. However, parity-time (PT ) symmetry
assumes that the local subsystem can be non-Hermitian but
in a parameter regime of real eigenvalues [2]. The symmetry
under the combination of time-reversal and parity operations,
or more generally an antilinear operation combined with lin-
ear operations, can be generalized to the pseudo-Hermiticity
[3–6] and anti-PT symmetry [7,8], with either real or con-
jugate pairs of complex eigenvalues. Many theoretical and
experimental applications of PT -symmetric systems have
been found [9–14] and recently extended to the field of dy-
namics and topology [15].

Similar to the Feshbach formalism dealing with an effec-
tive description [1], PT -symmetric systems can be viewed
as effective models in the sense of open systems. In 2008,
Günther and Samsonov showed that a class of unbroken
two-dimensional PT -symmetric Hamiltonians can always be
dilated to some four-dimensional Hermitian ones [16]. In
fact, by using the dilation techniques, one can simulate any
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finite dimensional unbroken PT -symmetric systems in di-
lated Hermitian systems [17–20]. By evolving states under the
dilated Hermitian Hamiltonians, it is always possible to sim-
ulate the evolution of unbroken PT -symmetric Hamiltonians
in subspaces. On the other hand, for broken PT -symmetric
systems, their evolutions can also be simulated by utilizing
time-dependent Hermitian Hamiltonians [21].

In the simulation of PT -symmetric systems, the dilated
Hermitian Hamiltonians play an important role, which gov-
erns a composite system. By projecting the dilated Hamiltoni-
ans to some subsystems, the effect of PT -symmetric Hamil-
tonians can be realized [18]. Owing to the non-Hermiticity
of PT -symmetric systems, the dilated Hamiltonians usually
bring nonlocal correlations between the subsystems. Recently,
by proposing different correlation pictures, the internal non-
locality of these dilated Hamiltonians was discussed [22].
By evaluating the correlations with local measurements in
three different pictures, the resulting different expectations
of the Bell operator revealed the distinction of the internal
nonlocality. Such a result provides the figure of merit to test
the reliability of the simulation, as well as to verify a PT -
symmetric (sub)system.

However, the known discussions mainly focus on Günther
and Samsonov’s special example, depending highly on the
special form of the dilated Hamiltonian. In general, such a
twofold structure may not exist in a generic dilated Hermitian
Hamiltonian. Then how can one have an effective way to
verify a more general PT -symmetric Hamiltonian when the
twofold structure breaks? Furthermore, similar to the device-
independent test of the state nonlocality [23], can we also
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have a detection-loophole-free test of the reliability of the
simulation in the global Hermiticity?

In this paper, we propose a generalization of the scenario
in Ref. [22]. The correlation pictures are extended in different
ways, obtaining the expectations of the Bell operator and
their bounds. It is shown that the correlation behaviors are
more complex and have alternative features in the general
case. A direct reflection of this is for the generic Bell op-
erator expectations. In contrast to the results in Ref. [22],
the Bell operator expectations often have some energy shifts
in the general case. Moreover, the deviation bounds should
be tackled carefully, instead of a simple order relation. This
also leads to the conception of a genuine local Hermitian
picture in the general case. Interestingly, the energy shifts and
the deviation bounds can also help to distinguish the global
Hermitian Hamiltonians.

The remainder of this paper is organized as follows. In
Sec. II we introduce the preliminaries for the related notions of
PT -symmetric systems, the concept of dilation, and the pre-
viously known results on the extraction of internal nonlocality
[22]. In Sec. III we propose different correlation pictures
for general Hermitian dilations. The expectations of the Bell
operator and their bounds are obtained. Section IV concerns
the problem of how to distinguish a dilated Hermitian Hamil-
tonian. In Sec. V we discuss our findings. Finally, we conclude
our results in Sec. VI.

II. PRELIMINARIES

A. The concept of dilation

By dilating a time-independent PT -symmetric Hamilto-
nian H , we mean that one can find some Hermitian operator

Ĥ = [H1 H2

H†
2 H4

] and an invertible Hermitian operator τ such
that for any vector ψ ,[

iψ ′
i(τψ )′

]
=

[
H1 H2

H†
2 H4

][
ψ

τψ

]
=

[
Hψ

τHψ

]
. (1)

Ĥ is called a dilated Hermitian Hamiltonian or a Hermitian
dilation of H .

Note that for the first component, iψ ′ = Hψ. According to
the Schödinger equation,

ψ (t ) = e−itHψ (0),

an effective PT -symmetric system is realized.
For an unbroken PT -symmetric Hamiltonian H , one can

prove that such an operator τ always exists and satisfies the
following condition:

H†(I + τ 2) = (I + τ 2)H. (2)

With τ , one can construct different Ĥ satisfying Eq. (1),
among which a typical one is

Ĥ = I2 ⊗ H1 + iσy ⊗ H2, (3)

H1 = (Hτ−1 + τH )(τ−1 + τ )−1, (4)

H2 = (H − τHτ−1)(τ−1 + τ )−1. (5)

Compared with the general case in Eq. (1), the dilated Hamil-
tonian Ĥ in Eq. (3) depends only on H1 and H2. Such a neat

and symmetric form (twofold structure) has some interesting
properties. For example, one can prove that the Ĥ in Eq. (3)
has the same eigenvalues as H . For more details of the dilation
problem see Refs. [16,18,19].

B. Two-dimensional example

Let us start with the two-dimensional PT -symmetric
Hamiltonian [16,24],

H = E0I2 + s

[
i sin α 1

1 −i sin α

]
. (6)

The eigenvalues of H are λ± = E0 ± s cos α. Moreover, there
exists an exceptional point when sin α = ±1 (α = ±π

2 ), in
which case the Hamiltonian cannot be diagonalized. When
α �= ±π

2 , the Hamiltonian H has real eigenvalues and can be
diagonalized. Hence, PT symmetry is unbroken. In particular,
when sin α = 0, i.e., α = 0 or π , the Hamiltonian is also Her-
mitian. In the following, we do not consider the case of broken
PT symmetry, since time-independent dilation applies only to
the case of unbroken PT symmetry. We do not consider the
Hermitian case since it is trivial.

For the PT -symmetric Hamiltonian in Eq. (6), a possible
way to have the Hermitian dilation Ĥ is [16,18]

Ĥ = I2 ⊗ H1 + iσy ⊗ H2, (7)

where

H1 = E0I2 + ω0

2
cos ασx, (8)

H2 = i
ω0

2
sin ασz, (9)

ω0 = 2s cos α, (10)

and

τ = 1

cos α

[
1 −i sin α

i sin α 1

]
. (11)

It can be verified that the above example is a special case of
Eqs. (3)–(5). Moreover, Ĥ has the same eigenvalues as H ,
with multiplicities of two. According to Eq. (3) or Eq. (7), the
dilated Hermitian Hamiltonian Ĥ is inseparable. That is, Ĥ
cannot be written as a tensor product of two local operators.
As a consequence, such a global Hamiltonian Ĥ can bring
nonlocal correlations to the subsystems, which leads to the
discussion of nonlocality [22].

C. The internal nonlocality in simulating
PT -symmetric systems

A profound approach to discussing the nonlocality is the
CHSH (Clauser, Horne, Shimony, and Holt) scenario [25,26].
In this scenario, there are two observers, Alice and Bob,
sharing an entangled state, on which they can perform local
measurements. What they want to see is whether the en-
tanglement can bring some nontrivial correlations between
the subsystems. Suppose that Alice can make local measure-
ments A1 and A2, whose outcome is denoted by a. Due to
the randomness of the local measurement, the outcome a
can take different values, e.g., a ∈ {+1,−1}. Similarly, Bob
can perform two measurements B1 and B2 with his outcome
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b ∈ {+1,−1}. A natural way to see the correlations between
the outcomes is to investigate the expectation value of the
product ab. For instance, 〈AiBj〉 = ∑

ab abP(ab|i j) represents
the expectation value of ab for given measurements AiBj ,
where P(ab|i j) is the joint probability distribution. In partic-
ular, one can calculate the expectation of the following Bell
operator:

S = B0A0 + B0A1 + B1A0 − B1A1.

In the classical setting, one is not concerned with the quantum
realization but only a classical (local) description of what
Alice and Bob can do. Under this assumption, the probabil-
ity of Alice and Bob’s outcomes does not depend on each
other. Thus the joint probability distribution admits a product
decomposition of Alice and Bob’s marginal probability dis-
tributions p(ab|i j) = ∫

p(a|i, ν)p(b| j, ν)q(ν) dν, where ν is
some hidden variable with q(ν) its distribution. In this case,
derivations show that |〈S〉| � 2. However, in the quantum
setting, Ai and Bj correspond to different operators, and the
expectation value is 〈S〉 = Tr(Sρ), where ρ is the density
operator of the entangled state. Now the bound of |〈S〉| is 2

√
2.

The discrepancy between the two bounds shows the difference
between the classical (local) and nonlocal correlations, having
a far-reaching influence both theoretically and experimentally.
For more details of the standard CHSH inequality, see [25].

In the following, we briefly review a CHSH-like discus-
sion on the nonlocal correlations introduced by the dilated
Hermitian Hamiltonian of Eq. (7). Since now the correlations
come from the global Hamiltonian rather than an entangled
state, we call it internal nonlocality to distinguish it from the
standard CHSH scenario. Similar to the CHSH’s quantum and
classical settings giving different Bell operator expectations
and bounds, one can also propose different pictures to discuss
the internal nonlocality [22].

1. The simulation picture

Suppose Alice and Bob share the dilated Hermitian Hamil-
tonian Ĥ in Eq. (7). Similar to the CHSH scenario, they can
make local measurements Ai and Bj . Since now we are dis-
cussing the correlations introduced by the Hamiltonian, Alice
and Bob’s “local measurements” are actually local states. Let
Alice have the local state {|u+〉 = u|0〉 + v|1〉} for A0 and
{|u−〉 = v|0〉 − u|1〉} for A1; while Bob have two local states
{|0〉} and {|1〉} for B0 and B1, respectively. Then the expecta-
tions of BjAi can be calculated as follows:

〈B0A0〉 = Tr(|0〉〈0| ⊗ |u+〉〈u+|)Ĥ, (12)

〈B1A0〉 = Tr(|1〉〈1| ⊗ |u+〉〈u+|)Ĥ, (13)

〈B0A1〉 = Tr(|0〉〈0| ⊗ |u−〉〈u−|)Ĥ , (14)

〈B1A1〉 = Tr(|1〉〈1| ⊗ |u−〉〈u−|)Ĥ . (15)

Now, one can further consider the expectation value of the
Bell operator:

〈B0A0〉 + 〈B0A1〉 + 〈B1A0〉 − 〈B1A1〉
= 2E0 + (uv + uv) ω0 cos α. (16)

For the last deviation term shown in Eq. (16), we have the
following bound:

|(uv + uv)ω0 cos α| � |ω0 cos α| = |2s cos2 α|. (17)

2. The classical picture

The classical picture means that one skips the details of
quantum mechanics but considers only a classical description
of what Alice and Bob do. To give such a classical picture,
several key points must be emphasized. First, the classical
picture should be consistent with the simulation picture. It
requires that Alice has a “PT -symmetric like” subsystem, and
the joint measurements of Alice and Bob reveal the character-
istics in the global Hamiltonian Ĥ . A natural consequence is
to assume that the measurement results from Ai are just λ±,
namely, the eigenvalues of the PT -symmetric Hamiltonian H .
Moreover, note that the dilated Hermitian Hamiltonian Ĥ has
the same eigenvalues as the PT -symmetric Hamiltonian H
but with a multiplicity of two. Hence the results of Bi should
be 1, such that the correlation functions BjAi trivially give the
eigenvalues of Ĥ . Second, the “results” of Alice and Bob are
independent, leading to a classical (nonlocal) correlation. In
fact, since Bob’s results always give 1, apparently the two
observers’ results and the corresponding probability distri-
butions are independent. Thus, we do have a classical local
picture.

To calculate the expectation of the Bell operator, note that
〈BjAi〉 = ∑

ab ab p(ab|i j), where the results a = λ± and b =
1. Like the standard CHSH scenario, one can formally write
p(ab|i j) = ∫

p(a|i, μ)p(b| j, μ)q(μ) dμ, where μ is a hidden
variable with q(μ) its distribution such that

∫
q(μ) dμ =

1. By changing the variable dν = q(μ) dμ and denoting
Ai(ν) = ∑

a ap(a|i, ν), Bj (ν) = ∑
b bp(b| j, ν), one can see

that 〈BjAi〉 = ∫
Bj (ν)Ai(ν) dν, where

∫
1dν = 1. Unlike the

standard CHSH scenario, we use only local states rather than
an entangled state, and hence the measurements Bj and Ai

are completely independent, without an interaction through ν

(or μ). Thus one can assume that Ai(ν) and Bj (ν) are con-
stants independent of ν. Moreover, by definition

∫
Ai(ν) dν =∑

a ap(a|i) and
∫

Bj (ν) dν = ∑
b bp(b| j) = 1, hence we see

that Ai(ν) = ∑
a ap(a|i) and Bj (ν) = 1. Then

〈B0A0〉 + 〈B0A1〉 + 〈B1A0〉 − 〈B1A1〉
=

∫
[B0(ν)(A0 + A1)(ν) + B1(ν)(A0 − A1)(ν)] dν

=
∫

[(A0 + A1)(ν) + (A0 − A1)(ν)] dν

= 2E0 + ω0 (p+ − p−), (18)

where p± = p(λ±|0) are the probabilities corresponding to
the situations when the results of A0 are λ±. Moreover,

|ω0(p+ − p−)| � |ω0| = |2s cos α|. (19)

3. Local Hermitian picture

In this picture, we try to give a description of what Alice
and Bob do by some Hermitian Hamiltonians Ĥl , which is in
a tensor product form of two local Hermitian Hamiltonians.
The key concept in this picture is that it should be consis-
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tent with the simulation. To this end, Ĥl = I ⊗ Hh, where
Hh = λ+|s+〉〈s+| + λ−|s−〉〈s−| and |s±〉 are two orthogonal
states. Apparently, due to the form of Ĥl , the results of Alice’s
local measurements are λ±, which is the same as the simula-
tion picture. Moreover, the form of Ĥ ′ implies that it will not
introduce nonlocal correlations between the subsystems.

By replacing the Hamiltonian Ĥ in Eqs. (12)–(15) with Ĥl ,
the expectation of the Bell operator is

〈B0A0〉 + 〈B1A0〉 + 〈B0A1〉 − 〈B1A1〉
= 2E0 + ω0 (p+ − p−), (20)

where p± = |〈u+|s±〉|2.
There are two motivations to consider the local Hermi-

tian picture. The first one is to show the difference between
a dilated Hermitian Hamiltonian and a global Hamiltonian
which will not bring in nonlocal correlations (thus it cannot
be used for simulation). Such a global Hermitian Hamilto-
nian is necessarily a tensor product of two local Hermitian
Hamiltonians. The second motivation is to consider a concrete
quantum realization of the classical picture. Since the classical
picture is an abstract description of the measurements from the
perspective of nonlocal correlations, through the comparison,
a quantum realization of the classical picture may give us a
deeper understanding on the features of internal nonlocality.
In fact, by comparing Eq. (20) with Eq. (16) and Eq. (18),
all the expectations in the three pictures contain two terms.
The common term 2E0 is the sum of the two eigenvalues
λ+ and λ−, while the other one represents a deviation term.
Apparently, the deviations have a relatively simple order re-
lation on their numerical bounds. The classical and local
Hermitian pictures have the same form of deviation term,
which usually gives a larger bound than the simulation picture.
Such a result can help to distinguish the dilated Hermitian
Hamiltonian [22].

In the above discussions, the special form of the dilated
Hamiltonian Ĥ implicitly plays a key role, especially in the
classical and local Hermitian pictures. It renders a reasonable
way to correlate Alice and Bob’s subsystems, as well as to
establish the connections between the dilated Hamiltonian Ĥ
and the PT -symmetric Hamiltonian H . Based on this, one can
propose the classical and local Hermitian pictures and com-
pare the corresponding Bell operator expectations in different
pictures [22].

III. THE GENERAL CASE

If we are considering the general case, Ĥ may not have
such a special form as Eq. (7). Moreover, the dilated Hermi-
tian Hamiltonian Ĥ may even have eigenvalues different from
H . Then can we discuss the internal nonlocality for a general
Ĥ? In the following, we show that this is possible.

Such a generalization is based on the following obser-
vation: If Ĥ is a Hermitian dilation of a PT -symmetric
Hamiltonian H [i.e., Eq. (1) is valid for Ĥ and τ ], then we
have [

H1 H2

H†
2 H4

][−τψ

ψ

]
=

[−τH⊥ψ

H⊥ψ

]
, (21)

where

H⊥ = −H†
2 τ + H4, (22)

H2 = (H − H1)τ−1, (23)

H4 = (τH − H†
2 )τ−1. (24)

Utilizing Eqs. (1) and (2), one can verify Eqs. (21)–(24)
through direct calculations (see the Appendix Sec. A for
details). In addition, note that there is some freedom to de-
termine the dilated Hamiltonian Ĥ . In fact, Eqs. (23) and
(24) show that a different Hermitian matrix H1 usually yields
different Ĥ . Equation (21) also shows that the eigenvalues of
the Hamiltonian H⊥ are just the eigenvalues of the dilated
Hermitian Hamiltonian Ĥ .

Equations (1) and (21) show the effect of the Hermitian
dilation Ĥ when it is confined to the subsystems. In fact,
Eq. (1) can be written as

Ĥ (|0〉|ψ〉 + |1〉|τψ〉) = |0〉|Hψ〉 + |1〉|τHψ〉.
By postselecting the ancillary system in state |0〉, we have

Ĥ : |0〉|ψ〉 → |0〉|Hψ〉.
Similarly, Eq. (21) can also be written as

Ĥ (−|0〉|τψ〉 + |1〉|ψ〉) = −|0〉|τH⊥ψ〉 + |1〉|H⊥ψ〉.
By postselecting the ancillary system in state |1〉, we have

Ĥ : |1〉|ψ〉 → |1〉|H⊥ψ〉.
Thus, the effect of Ĥ can be represented by two Hamiltonians:
one is the PT -symmetric Hamiltonian H , the other is H⊥.

In particular, it can be verified that if H1 takes the special
form in Eq. (4), then H⊥ = H and the dilated Hermitian
Hamiltonian Ĥ reduce to the special case of Eq. (3). In this
special case, we build up connections between Ĥ and H to
discuss the internal nonlocality. For the general case, both H
and H⊥ will be connected with Ĥ . To be more precise, one
can assume that Alice is either measuring the Hamiltonian H
or H⊥ and the joint measurements of Alice and Bob depict
the characteristics of the global Hamiltonian Ĥ . Similar to the
discussion in Sec. II, it is possible to reconstruct the different
correlation pictures in the general case.

A. The simulation picture

In the following, we discuss the correlation pictures for
general dilated Hamiltonians of the PT -symmetric Hamil-
tonian H in Eq. (6). For the convenience of discussion,
we specify some notations. Let us denote the special di-

lated Hamiltonian in (7) by Ĥ = [H1 H2

H†
2 H4

], where H4 = H1.

Denote a generally dilated Hermitian Hamiltonian by Ĥ ′ =
[ H ′

1 H ′
2

(H ′
2 )† H ′

4
]. When confined to the subspaces, the effect of Ĥ ′

can be depicted by H and (H⊥)′. Denoting Ĥ ′′ = Ĥ ′ − Ĥ , we
then have Ĥ ′′

i = Ĥ ′
i − Ĥi. In particular, we denote

H ′′
1 = Ĥ ′

1 − Ĥ1 =
[

a + c d + ib
d − ib a − c

]
.

In a general simulation picture, what Alice and Bob do is
the same as the special case. They conducts measurements
and calculate the expectation of the Bell operator, which
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is given by Eqs. (12)–(15) with Ĥ replaced by Ĥ ′. Calcula-
tions show that the numerical value of the expectation is (see
the Appendix Secs. B and C for details)

〈B0A0〉 + 〈B0A1〉 + 〈B1A0〉 − 〈B1A1〉
= 2E0 + 2a + ω′′

0 (p′′
+ − p′′

−), (25)

where

ω′′
0 = 2

√
(s cos2 α + d )2 + (b + b sin2 α + 2a sin α)2

cos4 α
+ c2

(26)

is the difference of the two eigenvalues of H ′
4, p′′

± = |〈u+|s′′
±〉|2

and |s′′
±〉 are the eigenstates of H ′

4.
Comparing Eq. (25) with Eq. (16), one can see that now the

expectation of the Bell operator has an energy shift 2a. For the
deviation term, we have

|ω′′
0 (p′′

+ − p′′
−)| � ω′′

0 .

B. The classical picture

The classical picture gives a generic description of what
Alice and Bob do, regardless of the details of realization.
The key to this picture is that Alice and Bob’s results are
independent, only with classical (local) correlations.

To have such a classical picture, we consider the following
scenario. Suppose Alice can make two measurements A0 and
A1. The results of A0 are the eigenvalues of H , and the results
of A1 are the eigenvalues of (H⊥)′. However, Alice knows
only that one of Ai outputs the eigenvalues of H and the other
outputs the the eigenvalues of (H⊥)′. Moreover, we assume
that Alice makes measurements in some black box; that is, she
is unaware of which measurement she has conducted. Briefly
speaking, Alice can only obtain the measurement results but
cannot distinguish between A0 and A1. As for Bob, his results
are always 1. Thus, their results are independent, implying
the correlations are classical (local). Denote the eigenvalues
of (H⊥)′ by λ′

±. The expectation of Bell operator is (see the
Appendix Secs. B and C for details)

〈B0A0〉 + 〈B0A1〉 + 〈B1A0〉 − 〈B1A1〉
= E0 + E ′

0 + 1
2 [ω0(p+ − p−) + ω′

0(p′
+ − p′

−)], (27)

where

E ′
0 = 1

2
(λ′

+ + λ′
−) = E0 + 2(a + b sin α)

cos2 α
(28)

and

ω′
0 = λ′

+ − λ′
−

= 2

√(
s + 2d

cos2 α

)2

cos2 α + 4c2

cos2 α
+ 4(b + a sin α)2

cos4 α
.

(29)

p′
± are the probabilities that the measurement results are λ′

±.
For the deviation term, we have∣∣ 1

2 [ω0(p+ − p−) + ω′
0(p′

+ − p′
−)]

∣∣ � 1
2 (ω′

0 + |ω0|).

C. The local Hermitian and genuine local Hermitian picture

There are different approaches to generalizing the local
Hermitian picture, which we call local Hermitian and genuine
local Hermitian pictures for the general case.

The local Hermitian picture aims at describing what Alice
and Bob do by using local Hermitian Hamiltonians. As was
mentioned, when the ancillary system is postselected in |0〉
or |1〉, the effect of Ĥ can be represented by H and (H ′)⊥,
respectively. Hence to be consistent with the simulation, the
global Hamiltonian in the local Hermitian picture is

Ĥ ′
l = |0〉〈0| ⊗ Hh + |1〉〈1| ⊗ (H⊥)′h, (30)

where Hh and (H⊥)′h are Hermitian Hamiltonians having the
same eigenvalues as H and (H⊥)′, respectively. Due to this,
when the ancillary system is in the state |0〉 or |1〉, the mea-
surement results of Ĥ ′

l are the eigenvalues of Hh or (H⊥)′h,
which is similar to Ĥ ′.

Suppose that Hh = λ+|s+〉〈s+| + λ−|s−〉〈s−| and |s±〉
are two orthogonal states. Similarly, (H⊥)′h = λ′

+|s′
+〉〈s′

+| +
λ′

−|s′
−〉〈s′

−| and |s′
±〉 are two orthogonal states. Replacing Ĥ

with Ĥ ′
l in Eqs. (12)–(15), the expectation of the Bell operator

is (see the Appendix Secs. B and C)

〈B0A0〉 + 〈B1A0〉 + 〈B0A1〉 − 〈B1A1〉 = 2E0 + ω′
0(p′

+ − p′
−),

(31)

where p′
± = |〈u+|s′

±〉|2. Apparently, for the deviation term

|ω′
0(p′

+ − p′
−)| � ω′

0.

In the special case of Ref. [22], the local Hermitian picture
can be viewed as a quantum realization of the classical pic-
ture, yielding the same form of the Bell operator expectation.
However, Eqs. (27) and (31) show that they often differ in the
general case. In particular, the deviation bounds do not have a
simple order relation as that in Ref. [22].

To realize the Bell operator expectation in the classical pic-
ture by utilizing local Hermitian Hamiltonians, we introduce
the genuine local Hermitian picture. The global Hamiltonian
is given by

Ĥ ′
g = 1

2 I ⊗ (Hh + (H⊥)′h). (32)

Replacing Ĥ with Ĥ ′
g in Eqs. (12)–(15), the expectation of

the Bell operator is (see the Appendix Secs. B and C)

〈B0A0〉 + 〈B1A0〉 + 〈B0A1〉 − 〈B1A1〉
= E0 + E ′

0 + 1
2 [ω0(p+ − p−) + ω′

0(p′
+ − p′

−)], (33)

where p± = |〈u+|s±〉|2 and p′
± = |〈u+|s′

±〉|2.
Direct calculations show that the deviation term is smaller

than √(
ω0

2

)2

+
(

ω′
0

2

)2

+ 2
ω0

2

ω′
0

2
cos 2δ, (34)

where δ is some parameter related to the angle of |s±〉 and
|s′

±〉. In particular, when ω0
2 cos 2δ = |ω0

2 | (this is possible
when cos 2δ = 1 or −1), the above bound reduces to 1

2 (|ω0| +
ω′

0), which is the same as the classical picture.
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IV. DISTINGUISHING THE DILATED HAMILTONIAN Ĥ ′

Suppose we have a set of devices that can produce a di-
lated Hermitian Hamiltonian and simulate a PT -symmetric
system. One may wonder whether the device is reliable, or
if it faithfully realizes the simulation design. Apparently, this
question is closely related to whether the dilated Hermitian
Hamiltonian is well prepared.

In particular, it is instructive to distinguish between the
dilated Hermitian Hamiltonian and the local Hermitian. Take
the dilated Hamiltonian Ĥ in Eq. (7) and Ĥl = I ⊗ Hh in
the local Hermitian picture in Sec. II as an example. Suppose
we want to simulate a PT -symmetric system, whose effective
Hamiltonian is H in Eq. (6). One can use the device to produce
a global system whose Hamiltonian is Ĥ to realize such a
simulation in the subsystem. Since a PT -symmetric system
is usually non-Hermitian, the dilated Hermitian Hamiltonian
Ĥ necessarily brings nonlocal correlations to the subsystems.

However, the local Hermitian Hamiltonian Ĥl = I ⊗ Hh

cannot produce such correlations, although it has similar
properties to the dilated Ĥ when local measurements are con-
ducted. Briefly speaking, to see whether the device is reliable,
one needs to distinguish the Hamiltonian it produces from one
that cannot bring nonlocal correlations. Note that Ĥ has the
same eigenvalues as Ĥl . Hence one cannot distinguish them
only by measurements. However, one can calculate the Bell
operator expectations. Indeed, for the special case of Eq. (7),
it is shown that the classical and local Hermitian pictures give
a larger deviation term than the simulation picture. Thus the
expectations in different correlation pictures can help to dis-
tinguish the dilated Hermitian Hamiltonian and have potential
applications [22].

In the general case, one can also discuss how to distinguish
Ĥ ′ from Ĥ ′

l . In fact, once the Bell operator expectations differ
in the simulation and local Hermitian pictures, one can distin-
guish between Ĥ ′ and Ĥ ′

l . Equations (25) and (31) show that
such a difference may come from two parts: one is an energy
shift of 2a, and the other is a different bound of the deviation
term.

However, in the general case, the correlation behaviors of
the global Hamiltonians are more complex, and generally one
may not distinguish Ĥ ′ from Ĥ ′

l . In fact, if we take a = b =
c = 0 and d = s(cos2 α−cos3 α)

cos α−2 , then Eqs. (26) and (29) show
that the simulation picture and the local Hermitian picture give
the same form of the Bell operator expectation and deviation
bound. Thus one cannot distinguish between them. Such a
result is natural in some sense. In fact, Ĥ ′

l in Eq. (30) is not
in a tensor product form. Thus it actually brings nonlocal
correlations between the subsystems, just like the Hermitian
dilation Ĥ . Hence it is not unexpected that the Bell operator
expectations in the two pictures sometimes have the same
ranges.

On the other hand, in most cases, such a distinction is
possible, e.g., when H and (H⊥)′ have the same eigenvalues or
when d = 0. In these two cases, one can distinguish between
Ĥ ′ and Ĥ ′

l , by observing either an energy shift or a smaller
deviation bound in the the Bell operator expectation of the
simulation picture (see the Appendix Sec. D for details). This
result can be viewed as a natural generalization of that in
Ref. [22].

One may also discuss the problem for Ĥ ′ and Ĥ ′
g. When Ĥ ′

and Ĥ ′
g do not have the same eigenvalues, one can distinguish

them by making measurements directly. When Ĥ ′ and Ĥ ′
g

have the same eigenvalues, one can see either an energy shift
in the the Bell operator expectations or a smaller deviation
bound in the simulation picture, which distinguishes the two
types of Hamiltonians.

The above results show that when Ĥ ′ and H , or equiv-
alently (H⊥)′ and H , have the same eigenvalues, the Bell
operator expectations have better properties and can help in
the task of distinguishing Ĥ ′. In fact, since the eigenvalues
of H are also the eigenvalues of Ĥ ′, when Ĥ ′ and H have
different eigenvalues, Alice can obtain more than two out-
comes. Such a situation is quite different from the standard
CHSH scenario. However, when Ĥ ′ and H have the same
eigenvalues, Alice obtains exactly two outcomes. This is sim-
ilar to CHSH’s discussion, which partly explains why the Bell
operator expectations behave better in this case.

V. DISCUSSION

Compared to the the special case revealed in Ref. [22], here
the physical implications behind the general results are dis-
cussed. A significant difference exists in deriving the classical
pictures. To obtain a classical picture for the general case,
one needs an extra assumption that Alice cannot distinguish
between the measurements Ai. Such an assumption is not
needed in the special case [22].

However, in the general case, due to the fact that H and
(H⊥)′ usually have different eigenvalues, there are four out-
comes of measurements, which is quite different from the
usual CHSH scenario. If we calculate the usual expectation
of the Bell operator, that is, if Alice is aware of the details of
her measurements, then she can get an expectation value only
related to H but irrelevant to (H⊥)′ (see the Appendix Sec. C
for details). Intuitively, such a biased value is not suitable for
investigating the properties of the global Hamiltonian Ĥ . For
this reason, the extra assumption is needed and gives a more
reasonable expectation value. Moreover, such an assumption
is implicitly valid for the special Hermitian dilation in Eq. (7),
in which case (H⊥)′ = H . Only with the same measurement
results, Alice cannot distinguish between A0 and A1. Hence
such an assumption is natural, and the classical picture will
reduce to the special one in Sec. II.

In the special case of Eq. (7), the classical and local Her-
mitian pictures have the same expectation of the Bell operator.
However, in the general case, Eqs. (27), (31), and (33) show
that the Bell operator expectation of the classical picture is
different from the local Hermitian picture but the same as the
genuine local Hermitian picture. The reason is that the form
of Ĥ ′

l is not a tensor product. Although we still use the term
the “local Hermitian picture” in comparison with [22], it is
actually nonlocal, which cannot be described by a classical
picture. As mentioned, the form of Ĥ ′

l implies that when the
measurement is A0 (the ancillary system is postselected in
|0〉), the results of Alice’s are the eigenvalues of H . When
the measurement is A1 (the ancillary system is postselected
in |1〉), the results of Alice’s are the eigenvalues of (H⊥)′.
Since H and (H⊥)′ generally have different eigenvalues, Alice
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can directly distinguish between A0 and A1 by simply reading
out the measurement results, contradicting the assumption that
Alice cannot distinguish between the measurements A0 and A1

in the classical picture. Hence the Bell operator expectation
generally differs in the local Hermitian and classical pictures.

To see why the classical and genuine local Hermitian
pictures still have the same expectations, note that if Alice
mistook A1 for A0, then the Hamiltonian should be

Ĥ ′′
l = |0〉〈0| ⊗ (H⊥)′h + |1〉〈1| ⊗ Hh.

Now, since Alice cannot distinguish between Ai, the Hamil-
tonian realizing the Bell operator expectation in the classical
picture should be 1

2 (Ĥ ′
l + Ĥ ′′

l ) = Ĥ ′
g, which is just Eq. (32).

Hence it is natural that the classical and genuine local Hermi-
tian pictures have the same expectations.

VI. CONCLUSION

In this paper, we investigate the internal nonlocality of
generally dilated Hermitian Hamiltonians of PT symmetry. It
is shown that in addition to the PT -symmetric Hamiltonian
H , the effect of a generally dilated Hermitian Hamiltonian
can also be characterized by another Hamiltonian H⊥. Based
on this observation, the internal nonlocality is revealed in the
general case, even when the twofold structure of the dilated
Hamiltonian in Ref. [22] breaks. Different correlation pictures
are proposed, and the Bell operator expectations are obtained.

The results in this paper covers that in Ref. [22], giving a
natural generalization. However, the correlation behaviors are
more complex and have different features in the general case.
From the aspect of construction of correlation pictures, the
generic classical picture utilized an assumption which is not
needed but implicitly valid for the special case. A correlation
picture, the genuine local Hermitian picture, is proposed. The
Bell operators often have some energy shifts and the deviation
bounds are also changed, which do not give a simple order
relation as in Ref. [22]. In particular, the Bell operator ex-
pectation in the local Hermitian picture can coincide with the
simulation picture but differs from the classical picture. It is
shown that when the dilated Hermitian and the PT -symmetric
Hamiltonians have the same eigenvalues, the Bell operator
expectations have good properties and can help in the task of
distinguishing differences. Similar to the device-independent
test of the state nonlocality, our results provide a detection-
loophole-free test of the reliability of the simulation in a
global Hermiticity.
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APPENDIX

A. The properties related to Ĥ and H⊥

We show how Eqs. (21)–(24) are obtained. Note that τ is
invertible, Eqs. (23) and (24) are direct results of Eq. (1). To
show that Eqs. (23) and (24) do give a Hermitian Hamiltonian
Ĥ , we have to show H4 is Hermitian. In fact, H†

4 = H4 is
equivalent to

(τ−1)(H†τ − H2) = (τH − H†
2 )τ−1.

According to Eq. (23), we know H2 = (H − H1)τ−1. Thus, di-
rect calculations show that the above equation is equivalent to

H†(I + τ 2) = (I + τ 2)H,

which is just Eq. (2). Hence we know that H4 is Hermitian
and Ĥ is a dilated Hermitian Hamiltonian.

To see Eq. (22), note that Eq. (21) is equivalent to the
following equations:

−H1τ + H2 = −τH⊥, (A1)

−H†
2 τ + H4 = H⊥, (A2)

in which Eq. (A2) is just Eq. (22). Now to show Eq. (21) is
valid, we need to prove only Eq. (A1). Substituting Eqs. (23)
and (24) into Eq. (A1), we find that Eq. (A1) is also equivalent
to Eq. (2). Thus, Eq. (21) is valid.

It should be noted that Eqs. (3) and (5) can be obtained
from Eqs. (23) and (24) when H1 takes the form in Eq. (4). In
fact, by substituting Eq. (4) into Eq. (23), one can obtain H2

in Eq. (5).
Now to obtain Eq. (3), we need only to show H4 = H1,

which is equivalent to

H1(τ + τ−1)τ = H4(τ + τ−1)τ.

According to Eqs. (23) and (24), the above equation can be
written as

H1(τ + τ−1)τ = [τH − τ−1(H† − H1)]τ−1(τ + τ−1)τ.

Now using Eq. (4) and the fact (τ−1 + τ )τ = τ (τ−1 + τ ), we
see that the above equation reduces to

τ−1H†(τ−1 + τ ) = τHτ−1 + τ−1Hτ−1.

However, direct calculations show that this equation can be
proved by using Eq. (2). Thus we know that H1 = H4, and the
dilated Hamiltonian Ĥ in Eq. (3) is indeed a special case when
H1 takes the special form in Eq. (4). In fact, one can further
prove that H⊥ = H in this special case. To see this, first, we
note that now H1 = H4. Hence it follows from Eq. (22) that
H⊥ = −H†

2 τ + H1. Thus to show H⊥ = H we need only to
prove

−H†
2 τ + H1 = H,

from which we have

(−H†
2 τ + H1)(τ−1 + τ ) = H (τ−1 + τ ).
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According to Eqs. (4) and (23), calculations show that the
above equation is also equivalent to Eq. (2). Thus we know
H = H⊥ in the special case.

To see that the eigenvalues of H⊥ are also the eigenvalues
of Ĥ , let us assume that λ is an eigenvalue of H⊥ and φ is an
eigenvector. Now Eq. (21) implies that

Ĥ

[−τφ

φ

]
=

[−τH⊥φ

H⊥φ

]
= λ

[−τφ

φ

]
,

showing that λ is an eigenvalue of Ĥ . Similarly, one can
show that the eigenvalues of H are also the eigenvalues of
Ĥ . Apparently, if H⊥ = H , then Ĥ has the same eigenvalues
as H , with multiplicities two.

B. Some calculations related to Ĥ ′

In this part, we show how the expectations in different
correlation pictures are obtained. For the convenience of cal-
culations, denote a general Hermitian dilation Hamiltonian by
Ĥ ′ = [ H ′

1 H ′
2

(H ′
2 )† H ′

4
] and the special Hermitian dilation Hamilto-

nian in Eq. (7) by Ĥ = [H1 H2

H†
2 H4

], where H4 = H1. Moreover,

assume that H ′
i = Hi + H ′′

i and

H ′′
1 =

[
a + c d + ib
d − ib a − c

]
.

Now we see the effect of H ′′
1 and note that H ′

1 = H1 + H ′′
1 .

Then according to Eq. (23),

H ′
2 = (H − H ′

1)τ−1

= (H − H1)τ−1 − H ′′
1 τ−1

= H2 − H ′′
1 τ−1. (A3)

According to Eqs. (24) and (A3),

H ′
4 = (τH − H†

2 )τ−1 + τ−1H ′′
1 τ−1

= H4 + τ−1H ′′
1 τ−1

= H1 + τ−1H ′′
1 τ−1. (A4)

Moreover, Eq. (21) shows that

(H⊥)′ = −(H ′
2)†τ + H ′

4

= −H†
2 τ + H4 + τ−1H ′′

1 (τ + τ−1)

= H + τ−1H ′′
1 (τ + τ−1), (A5)

where the last equation holds because H⊥ = −H†
2 τ +

H4 = H .
Direct calculations show that

τ−1H ′′
1 τ−1

=
[

a+c+2b sin α+(a−c) sin2 α

cos2 α

d cos2 α+i(b+b sin2 α+2a sin α)
cos2 α

d cos2 α−i(b+b sin2 α+2a sin α)
cos2 α

a−c+2b sin α+(a+c) sin2 α

cos2 α

]

(A6)

and

τ−1H ′′
1 (τ + τ−1)

=
[ 2(a+c)+2(b+id ) sin α

cos2 α

2d+2i(b+a sin α−c sin α)
cos2 α

2d−2i(b+a sin α+c sin α)
cos2 α

2(a−c)+2(b−id ) sin α

cos2 α

]
. (A7)

If we denote

A1 = 2(a + b sin α)

cos2 α
,

A2 = 2(b + a sin α)

cos2 α
,

C1 = 2c + 2id sin α

cos2 α
+ is sin α,

C2 = 2d − 2ic sin α

cos2 α
+ s,

then

(H⊥)′ = (E0 + A1)I2 +
[

C1 C2 + iA2

C2 − iA2 −C1

]
.

The eigenvalues of (H⊥)′ are

λ′
+ = E0 + A1 +

√
C2

1 + C2
2 + A2

2,

λ′
− = E0 + A1 −

√
C2

1 + C2
2 + A2

2.

Accordingly,

ω′
0 = λ′

+ − λ′
−

= 2

√(
s + 2d

cos2 α

)2

cos2 α + 4c2

cos2 α
+ 4(b + a sin α)2

cos4 α
,

which is just Eq. (29).
Similarly, one can calculate the eigenvalues of H ′

4 using
Eq. (A4). If we denote

A′
1 = a + 2b sin α + a sin2 α

cos2 α
,

A′
2 = b + b sin2 α + 2a sin α

cos2 α
,

C′
1 = c,

C′
2 = s cos2 α + d,

then

H ′
4 = (E0 + A′

1)I2 +
[

C′
1 C′

2 + iA′
2

C′
2 − iA′

2 −C′
1

]
.

Direct calculation shows that the two eigenvalues of H ′
4 are

λ′′
+ = E0 + A′

1 +
√

(C′
1)2 + (C′

2)2 + (A′
2)2,

λ′′
− = E0 + A′

1 −
√

(C′
1)2 + (C′

2)2 + (A′
2)2.

Accordingly,

ω′′
0 = λ′′

+ − λ′′
−

= 2

√
(s cos2 α + d )2 + (b + b sin2 α + 2a sin α)2

cos4 α
+ c2,

which is just Eq. (26).
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C. The calculation of different expectations and bounds
in the general case

With the above results, one can calculate the simulation
bound. Note that a general dilated Hermitian Hamiltonian Ĥ ′
can be written as

Ĥ ′ = |0〉〈0| ⊗ H ′
1 + |1〉〈1| ⊗ H ′

4 + |0〉〈1| ⊗ H ′
2

+ |1〉〈0| ⊗ (H ′
2)†.

Denote H ′
4 = λ′′

+|s′′
+〉〈s′′

+| + λ′′
−|s′′

−〉〈s′′
−|, ω′′

0 = λ′′
+ − λ′′

−. By
substituting Ĥ ′ into Eqs. (12)–(15), direct calculations show
that the simulation bound is

Tr[|0〉〈0| ⊗ H ′
1 + |1〉〈1| ⊗ (|u+〉〈u+| − |u−〉〈u−|)H ′

4]

= TrH ′
1 + 〈u+|H ′

4|u+〉 − 〈u−|H ′
4|u−〉

= 2E0 + 2a + 〈u+|H ′
4|u+〉 − 〈u−|H ′

4|u−〉
= 2E0 + 2a + ω′′

0 (p′′
+ − p′′

−),

which is just Eq. (25). The concrete expression of the Bell
operator expectation is

〈B0A0〉 + 〈B0A1〉 + 〈B1A0〉 − 〈B1A1〉
= 2E0 + 2a + (uv + uv)(ω0 cos α + 2d )

+ uv
2i(b + b sin2 α + 2a sin α)

cos2 α

− uv
2i(b + b sin2 α + 2a sin α)

cos2 α
+ 2c(|u|2 − |v|2).

For the classical picture, the Bell operator expectation is

〈B0A0〉 + 〈B0A1〉 + 〈B1A0〉 − 〈B1A1〉
=

∫
[B0(ν)(A0 + A1)(ν) + B1(ν)(A0 − A1)(ν)] dν

=
∫

[(A0 + A1)(ν) + (A0 − A1)(ν)] dν, (A8)

where the last equation holds because the results of Bi are 1.
Since the results of A0 are the eigenvalues λ±, then the above
equation gives

2E0 + ω0(p+ − p−), (A9)

where p± are the probabilities that Alice’s results are λ±.
However, Alice is unaware of the details of the measurements;
hence she may mistake A1 for A0. Thus the Bell operator
expectation will be calculated by changing A0 and A1 in
Eq. (A8). Since the results of A1 are the eigenvalues of (H⊥)′,
i.e., λ′

±, then the Bell operator expectation will be

2E ′
0 + ω′

0(p′
+ − p′

−),

where E ′
0 = 1

2 (λ′
+ + λ′

−) and p′
± are the probabilities that the

results are λ′
±. Now the best Alice can do is to calculate the

mean value of the above two results,

E0 + E ′
0 + 1

2 [ω0(p+ − p−) + ω′
0(p′

+ − p′
−)],

which is just Eq. (27).
We now calculate the Bell operator expectation in the local

Hermitian picture. Note that Hh = λ+|s+〉〈s+| + λ−|s−〉〈s−|
and (H⊥)′h = λ′

+|s′
+〉〈s′

+| + λ′
−|s′

−〉〈s′
−|. By replacing Ĥ with

Ĥ ′
l = |0〉〈0| ⊗ Hh + |1〉〈1| ⊗ (H⊥)′h in Eqs. (12)–(15), direct

calculations show that

〈B0A0〉 + 〈B1A0〉 + 〈B0A1〉 − 〈B1A1〉
= Tr(|0〉〈0| ⊗ Hh + |1〉〈1|

⊗ (|u+〉〈u+| − |u−〉〈u−|)(H⊥)′h)

= 2E0 + ω′
0(p′

+ − p′
−),

where p′
± = |〈u+|s′

±〉|2. This is just the result of Eq. (31).
Similarly, one can calculate the Bell operator expectation

for the genuine local Hermitian picture. Replacing Ĥ with
Ĥ ′

g = 1
2 I ⊗ (Hh + (H⊥)′h) in Eqs. (12)–(15), direct calcula-

tions show that

〈B0A0〉 + 〈B1A0〉 + 〈B0A1〉 − 〈B1A1〉
= 〈u+|Hh|u+〉 + 〈u+|(H⊥)′h|u+〉
= E0 + E ′

0 + 1
2 [ω0(p+ − p−) + ω′

0(p′
+ − p′

−)],

where p± = |〈u+|s±〉|2 and p′
± = |〈u+|s′

±〉|2. This is just the
result of Eq. (33).

We now calculate the bound of Eq. (34) in the genuine
local Hermitian picture. Note that such a bound is obtained by
altering |u±〉 but fixing |s±〉 and |s′

±〉 in Eq. (33). Since we are
considering the two-dimensional case, one can parametrize
the states in a way similar to the Bloch sphere. Assume that
|〈s±|s′

±〉| = cos δ, where δ is a parameter characterizing the
angle between |s±〉 and |s′

±〉. Without loss of generality, one
may assume that |s+〉 = |0〉 and |s−〉 = |1〉. In addition,

|u+〉 =
[

cos α

ei
 sin α

]
,

|s′
+〉 =

[
cos δ

ei
′
sin δ

]
, |s′

−〉 =
[ − sin δ

ei
′
cos δ

]
,

where 
, 
′, and α are real parameters. Then direct calcula-
tions show that

1

2
[ω0(p+ − p−) + ω′

0(p′
+ − p′

−)]

= ω0

2
(cos2 α − sin2 α) + ω′

0

2
[cos2(α + δ) − sin2(α + δ)

+ sin 2α sin 2δ + cos(−
 + 
′) sin 2α sin 2δ]

= cos 2α

(
ω0

2
+ ω′

0

2
cos 2δ

)

+ ω′
0

2
sin 2δ cos(−
 + 
′) sin 2α

�

√(
ω0

2
+ ω′

0

2
cos 2δ

)2

+
[
ω′

0

2
sin 2δ cos(−
 + 
′)

]2

�

√(
ω0

2

)2

+
(

ω′
0

2

)2

+ 2
ω0

2

ω′
0

2
cos 2δ, (A10)
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where the last two inequalities hold due to the Schwartz
inequality and the fact that cos(−
 + 
′)2 � 1. When
ω0
2 cos 2δ = |ω0

2 |, i.e., equivalently cos 2δ = ±1, Eq. (A10)
saturates its largest value.

D. To distinguish the Hamiltonian Ĥ ′

When H and Ĥ ′, or equivalently (H⊥)′ have the same
eigenvalues, one can distinguish Ĥ ′ from Ĥ ′

l by comparing the
Bell operator expectations. First, note that H and (H⊥)′ have
the same eigenvalues iff λ′

+ + λ′
− = λ+ + λ− and λ′

+ − λ′
−

= |λ+ − λ−|:
E ′

0 = E0, ω′
0 = |ω0|.

Thus, according to Eq. (28), we have a = −b sin α. Now, if
a �= 0, then Eq. (25) shows that there is an energy shift 2a
in the simulation picture. However, Eq. (31) shows that such
a shift does not exist in the local Hermitian picture. Thus by
comparing the Bell operator expectations, one can distinguish
Ĥ ′ from Ĥ ′

l . Next we consider the case a = 0. Since a =
−b sin α, we have b = 0 (sin α = 0 is the trivial case that H is
Hermitian, which is not considered). Now ω′

0 = |ω0| implies
that √(

s + 2d

cos2 α

)2

cos2 α + 4c2

cos2 α
= |s cos α|. (A11)

It follows that

c2 = cos2 α

4

[
s2 cos2 α −

(
s + 2d

cos2 α

)2

cos2 α

]
. (A12)

Note that c2 � 0, from Eq. (A12) we have

−ds � d2

cos2 α
.

Now we calculate (ω′
0)2 − (ω′′

0 )2. By substituting Eq. (A12)
into Eqs. (26) and (29), as well as using the fact −ds �
d2/ cos2 α, we have

(ω′
0)2 − (ω′′

0 )2 = 4

[(
s + 2d

cos2 α

)2

cos2 α + 4c2

cos2 α

− (s cos2 α + d )2 − c2

]

= 4s2 cos2 α − 4(s cos2 α + d )2 − s2 cos4 α

+ (s cos2 α + 2d )2

= 4(s2 cos2 α sin2 α − ds cos2 α)

� 4(s2 cos2 α sin2 α + d2)(−ds � d2/ cos2 α)

> 0.

Thus we know ω′
0 = |ω0| > ω′′

0 ; that is, the local Hermitian
picture gives a larger deviation bound than the local Hermitian
picture.

To summarize, when H and (H⊥)′ have the same eigen-
values, one can distinguish Ĥ ′ from Ĥ ′

l by investigating the
Bell operator expectation; there is either an energy shift or a
smaller range of deviation. In particular, the above discussions
generalize the results in Sec. II C, which can be viewed as a
special case when H = (H⊥)′.

Another special case is d = 0. In this case, Eqs. (26) and
(29) show that ω′′

0 � |ω0 cos α| and ω′
0 � |ω0|. By comparing

Eqs. (26), (29), and (31) with Eqs. (17), (18), and (20), one
can see that when d = 0, the simulation, classical, and local
Hermitian bounds are usually larger than the special case.
Moreover, one can still distinguish Ĥ ′ from Ĥ ′

l by utilizing
the Bell operator expectations. In fact, when a �= 0, then there
is a shift in the Bell operator expectation for the simulation
picture. Thus one can immediately distinguish Ĥ ′ from Ĥ ′

l .
When a = 0, by taking d = 0 in Eqs. (26) and (29), we see
that ω′

0 > ω′′
0 ; thus the different bounds of deviation can help

distinguish Ĥ ′.
One can also discuss the problem for Ĥ ′ and Ĥ ′

g. Note
that when they have different eigenvalues, one can distinguish
between them with measurements. Hence we need to consider
only the situation Ĥ ′ and Ĥ ′

g that have the same eigenvalues
as H . Now without loss of generality, one can rewrite the
Hamiltonian Ĥ ′ in Eq. (32) as Ĥ ′

g = I ⊗ Hh, where Hh has
the same eigenvalues as H . In this case, the Bell operator
expectation of Ĥ ′

g is given by Eq. (20), and the deviation bound
is |ω0|. Equations (20) and (25) show that when a �= 0, one can
distinguish Ĥ ′ from Ĥ ′

g by the energy shift 2a. Hence we need
to consider only the case a = 0. However, the fact that Ĥ ′ and
H [or equivalently (H⊥)′ and H] have the same eigenvalues
also implies that E0 = E ′

0 and |ω0| = ω′
0. As shown in the

above discussion of distinguishing between Ĥ ′ and Ĥ ′
l , we

know that |ω0| = ω′
0 > ω′′

0 in this case. Thus, by comparing
the different deviation bounds, one can distinguish Ĥ ′ from
Ĥ ′

g.
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