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Classical dynamics of a two-species condensate driven by a quantum field
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We present a stability analysis of an interacting two-species Bose-Einstein condensate driven by a quantized
field in the semiclassical limit. Transitions from Rabi to Josephson dynamics are identified depending on both
the interatomic interaction to field-condensate coupling ratio and the ratio between the total excitation number
and the condensate size. The quantized field is found to produce asymmetric dynamics for symmetric initial
conditions for both Rabi and Josephson oscillations.
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I. INTRODUCTION

Recently, a classical bifurcation at the transition from Rabi
to Josephson dynamics has been observed experimentally in a
rubidium spinor Bose-Einstein condensate (BEC) driven by an
electromagnetic field through a two-photon coupling process
[1]. A simplified model to access the collective dynamics of a
similar full quantum system is that consisting of Nq interacting
qubits driven by a quantum field through a one-photon process
and given by the Hamiltonian

Ĥ = δĴz + ηN−1
q Ĵ 2

z + λN−1/2
q (â + â†)Ĵx, (1)

where the detuning δ is the difference between the BEC
ground-state hyperfine transition frequency ω and the quan-
tized field frequency ωf , δ = ω − ωf . The orbital angular
momentum representation, with the population difference and
coherences given by Ĵz, Ĵx , and Ĵy , respectively, has been
chosen to describe the ensemble of dipole-dipole interacting
qubits, while the field is described by the creation (annihi-
lation) operator â (â†). The field-ensemble coupling and the
intraensemble coupling are given by the constants λ and η,
respectively.

A standing conjecture states that entanglement in nonlin-
ear bipartite systems can be associated with a fixed-point
bifurcation in the classical dynamics [2], thus providing a
link between classical and quantum regimes. Entanglement
is a fundamental quantum phenomenon [3] and resource [4].
Interactions are essential to generate quantum correlations;
e.g., the Lipkin-Meshkov-Glick (LMG) model, originally
proposed in nuclear physics [5], produces maximal pairwise
entanglement of qubits at a quantum phase transition of its
ground state and may describe the Josephson effect in a
two-mode BEC [6].

The Hamiltonian in Eq. (1), hereby called LMG-Dicke
(LMGD), can be obtained from the Gross-Pitaevskii equation
describing a two-species BEC interacting with a quantum
field by following a derivation similar to that found in
Ref. [7]. Experimental realizations providing an assorted
range of tunable parameters for the LMGD model may
include a two-hyperfine-structure–defined-mode BEC coupled
to a quantum cavity field mode through a one-microwave-
photon process, e.g., trapped hyperfine ground states of
a sodium BEC inside a microwave cavity [8]. Arrays of
interacting superconducting qubits coupled to the quan-

tum field mode of a coplanar waveguide resonator may
be considered with the limitation that ensemble sizes are
small [9].

The ground-state phase transition of the LMGD model has
been studied in the thermodynamic limit Nq → ∞ within the
rotating wave approximation (RWA) [7] and in the quantum
regime, using coherent states for both the field and ensemble,
without the RWA [10]. These results show the existence of a
finite-size first-order quantum phase transition and a second-
order superradiant phase transition. In the quantum regime, we
have shown [11] that maximal shared bipartite concurrence
of the ensemble may be obtained for weak coupling, as the
LMGD Hamiltonian in the limit λ → 0 becomes the LMG
model.

Here we present a steady-state analysis of the equations
of motion for the system in the large-ensemble-size limit to
explore its collective dynamics. First, the relation between
the quantum and classical field drives is discussed, comparing
the Rabi and Josephson oscillations that appear in both cases.
Then we find that the symmetry of Josephson dynamics is
broken by the quantum field. Finally, an actual pitchfork
bifurcation point is found in the regime where the intraensem-
ble interaction is larger than the field-ensemble coupling,
η � λ; maximal entanglement is found in this regime for
the quantum analysis [11]. Our results may provide a deeper
understanding of the collective dynamics of interacting qubits
and another example in favor of the aforementioned con-
jecture relating classical and quantum regimes for nonlinear
systems.

II. MODEL

Starting from the LMGD Hamiltonian defined in Eq. (1),
by considering a large ensemble Nq � 1, it is possible to
approximate the expectation values using the thermodynamic
limit where the system is considered to be in a separable state
composed of a coherent field |√neıφ〉 and coherent atomic state
|θ,ϕ〉, i.e., 〈â†â〉 = n, 〈â±〉 = √

ne∓ıφ , 〈Ĵz〉 ≈ (Nq/2) cos θ ,
〈Ĵ±〉 ≈ (Nq/2) sin θe±ıϕ , and 〈N̂〉 = N ≈ n − (Nq/2) cos θ .
By defining a fractional population difference z = cos θ , an
excitation ratio parameter k = 2N/Nq , and a total phase
variable 	 = φ + ϕ, the effective Hamiltonian in this mean-
field approximation, under the RWA in units of h̄Nqλ/2, is
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given by the expression

H =
(


 + �z

2

)
z + [2(1 − z2)(k − z)]1/2 cos 	, (2)

where the dimensionless coupling ratio � = η/λ, detuning

 = δ/λ, and the shorthand notation for the mean value of an
operator O ≡ 〈Ô〉 has been used.

The mean-field Hamiltonian in Eq. (2) describes a nonrigid
nonlinear pendulum and is equivalent to the case of a BEC in
an asymmetric double well via a phase π shift and a restriction
given by k − z = 1/2 [cf. Eq. (5) in Ref. [12]]. Under these
restrictions, plus the symmetry of the double well 
 = 0,
the model describes a Bose-Josephson junction supporting
coherent oscillations, i.e., Rabi dynamics for macroscopic
self-trapping modes and Josephson dynamics below and above
a critical tunneling strength given by �c = 1 [12]. Due to the
phase shift with respect to the Bose-Josephson junction, the
so-called plasma and π oscillations [13], already observed
experimentally for bosonic BECs [1,14], will exchange places
in the studied system; i.e., plasma and π oscillations will
be located at 	 = π and 0, respectively. Notice that under
resonant quantum driving, δ = ω − ωf = 0 leading to 
 = 0,
all deviations from the symmetric classical driven system are
due to the quantized field; the term (k − z)1/2 in Eq. (2)
depends on the parameter k, i.e., the ratio between the
conserved total number of field and atomic excitations in the
system and the size of the condensate.

III. FIXED POINTS

The fixed points of the model Eq. (2) are found from the
mean-field version of the quantum equations of motion, up to
an Nq/2 scale factor,

d

dt
z = [2(1 − z2)(k − z)]1/2λ sin 	,

(3)
d

dt
	 = δ + κz − λ√

2

1 + 2kz − 3z2

[(1 − z2)(k − z)]1/2
cos 	.

The fixed points coincide with the critical points as ż ≡
∂H/∂	 and 	̇ ≡ ∂H/∂z. Stationary states are found for the
phase variable values 	 = 0,π and the excitation parameter
value

k = 3z2 − 1

2z
+ (1 − z2)|(
 + �z)|

4z2

×{|
 + �z| ± [(
 + �z)2 − 4z]1/2}. (4)

Notice that, in order to obtain a real excitation ratio k, the
allowed fractional population difference is bounded to the
range z ∈ [−1,z−] ∪ [z+,1], where z± = [2 − 
� ± 2(1 −

�)1/2]/�2 sets the condition 
 � 1/�. Requiring popu-
lation inversion Jz = Nq/2, that is, z = 1, leads to k = 1, i.e.,
N = Nq/2, which means there should be no excitations on the
field n = 0 without restriction on the couplings ratio �. In a
similar way for Jz = −Nq/2, in this case z = −1, k = −1,
N = −Nq/2, and n = 0. Notice that z± = 0 requires � or
k → ∞.

Figure 1 shows the fixed points, denoted as F	 with 	 =
0,π , defined by the parameter set {
,�,z,k}, for excitation
parameters k = 0.5 and 10, i.e., the total excitation number

FIG. 1. (Color online) Fixed points F	, with 	 = 0,π , defined by
the parameter set given by the dimensionless detuning, couplings ra-
tio, fractional population difference, and excitation ratio, {
,�,z,k},
respectively, for excitation ratio parameters k = 0.1 (light blue) and
k = 10 (dark red).

smaller than the number of qubits and vice versa, respectively.
Figure 2 shows the plane defined by the resonant case 
 = 0
from Fig. 1. The different alphabetical markers in Fig. 2
pinpoint regions with different dynamics. The markers A and
B are located in a region where there are only two fixed points
per parameter set and these fulfill zF0 = zFπ

. The next set
of markers belongs to a region where two different sets of
fixed points are identified: one for a low excitation ratio where
there is one fixed point for plasma and π oscillations each

FIG. 2. Fractional population difference z as a function of the
coupling ratio � for two excitation ratios k = 0.1 (gray lines) and
k = 10 (black lines) for fixed points F0 (solid lines) and Fπ (dotted
lines). Rabi oscillations occur around the fixed points marked from A
to C, Josephson oscillations around fixed points D and F, and plasma
oscillations around fixed points marked G and H. The dashed branch
for the latter excitation ratio k = 10 shows the fixed points acting as a
separatrix of the two localized oscillations in the Josephson regime; in
particular the fixed point E acts as a separatrix of oscillations around
fixed points D and F.
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zF0 
= zFπ
and another for a large excitation ratio where there

is only one fixed point for 	 = π and three for 	 = 0, i.e.,
a transition from Rabi to Josephson dynamics occurs for π

oscillations.

IV. RESONANT QUANTUM DRIVING EXAMPLES � = 0

Figure 3 shows an example where Rabi dynamics dominate,
i.e., � < 1. The coupling ratio � = 0 is chosen to explore
the behavior of the system when the interqubit coupling is
negligible. The addition of the quantized field breaks the

FIG. 3. (Color online) On resonance 
 = 0, the (a) fractional
population difference z as a function of the excitation ratio k for a
given coupling ratio � = 0. Alphabetical markers show fixed points
for excitation ratios k = 0.1 (A) and k = 10 (B). Trajectories for π

oscillations around the fixed points (b) A and (c) B for initial condi-
tions including a survey of the initial fractional population difference
and an initial phase 	(0) = 0; highlighted trajectories sharing the
same tone correspond to symmetric initial conditions z(0) = 0.9 (gray
dotted line), z(0) = 0.5 (black solid line), z(0) = −0.5 (black dotted
line), and z = −0.9 (gray solid line). Mean value for the Hamiltonian
showing the critical points defined by (d) A and (e) B.

symmetry in the trajectories of the equivalent classical field
driven case [15]. Rabi oscillations localize around the fixed
point A in the southern hemisphere of the Bloch sphere defined
by {	(t),z(t)}; a sample of trajectories with initial conditions
on 	(t = 0) = 0 are shown in Fig. 3(b) where two particular
initial conditions z = −0.5 and −0.9 are highlighted; a few
of the trajectories show an unbounded phase. For a larger
excitation ratio [fixed point B in Fig. 3(a)] Rabi oscillations
for symmetric initial conditions are still asymmetric, as shown

FIG. 4. (Color online) On resonance 
 = 0, the (a) fractional
population difference z as a function of the excitation ratio k for
a given coupling ratio � = 6. Alphabetical markers show fixed
points for excitation ratios k = 0.1 (C and G) and k = 10 (D–F
and H). Trajectories for π oscillations around the fixed points
(b) C (for low excitation ratio) and (c) D and F (for large excitation
ratio) for initial conditions including a survey of the initial fractional
population difference and an initial phase 	(0) = 0; highlighted
trajectories sharing the same color correspond to symmetric initial
conditions z(0) = 0.9 (gray dotted line), z(0) = 0.5 (black solid line),
z(0) = −0.5 (black dotted line), and z = −0.9 (gray solid line). Mean
value for the Hamiltonian showing the critical points defined by
(d) C and G, (e) D, E, F, and H.
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by the highlighted trajectories as dashed and solid lines in
Fig. 3(b); it is only in the limit of large excitation ratio k → ∞
that symmetric dynamics for symmetric initial conditions are
recovered. Notice that unbounded phase modes disappear.
Figures 3(d) and 3(e) show the mean value of the mean-field
Hamiltonian Eq. (2), where it is possible to see that zF0 = zFπ

for both cases of excitation ratios.
On resonance 
 = 0 for any given value of the coupling

ratio � the allowed fractional population difference is in the
range z ∈ [−1,0) ∪ [4/�2,1]; i.e., all of the stationary states
are self-trapped states z 
= 0 unless � → ∞. For the minimum
self-trapped positive fractional population difference z+ =
4/�2, the excitation ratio is given by k(z+) = (16 + �4)/8�2.
Furthermore, setting ∂k/∂z = 0 delivers the cubic, with one
real root,

�2z3
c − 3z2

c − 1 = 0, (5)

which yields the set of critical parameters {kc±(�,zc),zc}
delimiting the Josephson dynamics region where there are
localized oscillations around two fixed points with positive and
negative fractional populations. Figure 4(a) shows a graph of
the fractional population difference z as a function of the exci-
tation parameter k for an on-resonance coupling ratio � = 6,
where the critical parameters {kc,zc} are shown. For a low-
excitation parameter k = 0.1, coherent oscillations localize in
the southern hemisphere around the fixed point C [Fig. 4(b)];
most of these Rabi oscillations are unbounded in phase
[see Fig. 4(c)]. Plasma oscillations localize around the fixed
point G, which is the minimum of the mean energy Eq. (2)
[see Fig. 4(d)]. For a larger excitation parameter k = 10, an
extra branch of fixed points appears and Josephson dynamics
showing two self-trapped oscillation modes around fixed
points D and F occur [Fig. 4(a)]. A sampler of the trajectories
for initial conditions along 	(t = 0) = 0 [Fig. 4(c)] shows that
the fixed point E is the separatrix of the two sets of self-trapped
oscillations. Figure 4(e) shows the mean energy for the system
and how the fixed points correspond to local maxima D and
F, minima H, and saddle E points. The localization of the
self-trapped modes is asymmetric; symmetric dynamics for

FIG. 5. On resonance 
 = 0, the fractional population difference
z (solid line) as a function of the excitation ratio k for a very large
coupling ratio � = 5000. A bifurcation point appears at the critical
excitation ratio kc+ ≈ �2/2 = 1.25 × 107. The separatrix for the
Josephson regime is shown as a dashed line.

symmetric initial conditions can be recovered only in the limit
� → ∞.

Figure 5 shows that for large coupling ratios � � 1, i.e.,
η � λ, it is possible to locate a pitchfork bifurcation point
kc+ ≈ �2/2. This condition η � λ relates to the phase-space
region where maximal shared bipartite concurrence in the qubit
ensemble may be obtained in the quantum treatment of this
model [11]. The difference comes from the large excitation
parameter ratio arising in this semiclassical analysis, kc+ � 1,
i.e., Nq � n as zc ≈ 3/�2 � 1.

V. DISCUSSION

In the examples given in the preceding, we have shown
how the ratio between the total number of excitations of the
system and the condensate size k = 2N/Nq limits the region of
phase space accessible to both Rabi and Josephson oscillations.
Only in the limit when the total number of field and atomic
excitations in the system is infinitely larger than the size of
the condensate, N � Nq/2 leading to k → ∞, is the whole
phase space available for the oscillations. As the value of k

diminishes, i.e., the number of field and atomic excitations
lessens, the available region of phase space is reduced, leading
to more trajectories unbounded in phase for Rabi oscillations.
The excitation ratio parameter k may be highly tunable as
it relates to the population of the atomic species and the
number of photons in the quantized driving field, both of
them highly controllable in contemporaneous experimental
realizations.

More interesting is the asymmetric bifurcation of the
nonlinear dynamics, with the displacement of the separatrix
from the typical value of z = 0, for values close to and above
the critical coupling ratio �c = 1. A symmetric pitchfork
bifurcation is recovered for an infinitely large coupling ratio
� = η/λ → ∞; i.e., the LMGD Hamiltonian Eq. (1) becomes
simply a LMG model λ → 0. Hence the breaking of this par-
ticular nonlinear symmetry comes as a result of the quantized
field driving. The behavior of the asymmetric bifurcation may
be proved by varying the interatomic interaction η with respect
to the atomic-field coupling λ with the condition that η > λ

and the extra restrictions provided above to see Josephson
dynamics.

Notice that both the interatomic interaction and the atomic-
field coupling are highly tunable parameters in current experi-
mental realizations. Furthermore, in this particular scheme the
weak coupling between a hyperfine transition and a quantized
microwave field within the RWA is desirable to explore large
values of �.

VI. CONCLUSION

We have presented a stability analysis of the classical
dynamics of a large ensemble of interacting qubits driven
by a quantized field. There exists a transition from Rabi to
Josephson oscillations as in the classical field driven system.
The quantized field produces localized asymmetric dynamics
for symmetric initial conditions while the classical field pro-
duces symmetric dynamics for symmetric initial conditions.
For low coupling ratios, depending on the excitation ratio,
Rabi oscillations localize in the southern hemisphere of the
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corresponding Bloch sphere for low excitation ratios and
smoothly transit to cover both hemispheres for large excitation
ratios; completely identical coherent oscillations for symmet-
ric initial conditions are recovered only for infinitely large
excitation ratios. For large coupling ratios, there exists a critical
excitation ratio that defines two different sets of dynamics:
Below this critical excitation ratio, localized coherent oscilla-
tions, most of them showing an unbounded phase, appear in
the southern hemisphere of the Bloch sphere; above the critical
excitation ratio, two localized, or self-trapped, oscillation
modes characteristic of Josephson dynamics appear with
asymmetric dynamics for symmetric initial conditions and a

separatrix with a non-null fractional population difference. A
pitchfork bifurcation, somehow similar to the classical field
driven case, is found for large coupling and excitation ratios;
in these cases the separatrix corresponds to ensemble states
with a negligible fractional population, which are closer to
their classical field driven equivalent.
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