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By embedding a PT -symmetric (pseudo-Hermitian) system into a large Hermitian one, we disclose the
relations between PT -symmetric quantum theory and weak measurement theory. We show that the weak
measurement can give rise to the inner product structure of PT -symmetric systems, with the preselected
state and its postselected state resident in the dilated conventional system. Typically in quantum information
theory, by projecting out the irrelevant degrees and projecting onto the subspace, even local broken
PT -symmetric Hamiltonian systems can be effectively simulated by this weak measurement paradigm.
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Introduction.—Generalizing the conventional Hermitian
quantum mechanics, Bender and his colleagues established
the parity-time (PT ) symmetric quantummechanics in 1998
[1]. With the additional degree of freedom from a noncon-
servativeHamiltonian, aswell as the existence of exceptional
points between unbroken and broken PT symmetries,
opticalPT -symmetric devices have been demonstrated with
many useful applications [2–7]. Although calling for more
caution on physical interpretations, especially on the con-
sistency problem of local PT -symmetric operation and the
no-signaling principle [8],PT -symmetric quantummechan-
ics has been stimulating our understanding on many inter-
esting problems such as spectral equivalence [9], quantum
brachistochrone [10] and the Riemann hypothesis [11].
Compared with the Dirac inner product in conventional

quantum mechanics, PT -symmetric quantum theory can
be well manifested by the η-inner product [12,13]. In the
broken PT -symmetry case, the η-inner product of a state
with itself can be negative, which makes the broken PT -
symmetric quantum system a complete departure from
conventional quantum mechanics. While in the unbroken
PT -symmetry case, the η-inner product presents a com-
pletely analogous physical interpretation to the Dirac inner
product, giving rise to many similar properties between
PT -symmetric and conventional quantum mechanics.
Recent works also show that the η-inner product is tightly
related to the properties of superposition and coherence in
conventional quantum mechanics [14].
Despite the original motivation to build a new framework

of quantum theory, researchers are aware of the importance
of simulating PT -symmetric systems with conventional
quantum mechanics. It will help explore the properties and

physical meaning of PT -symmetric quantum systems. On
this issue, one should answer the question in what sense a
quantum system can be viewed as PT symmetric. One
approach, initialized by Günther and Samsonov, is to
embed unbroken PT -symmetric Hamiltonians into higher
dimensional Hermitian Hamiltonians [15–17]. By dilating
the system to a large Hermitian one and projecting out the
ancillary system, this paradigm successfully simulates the
evolution of unbroken PT -symmetric Hamiltonians. Such
a way, inspired by Naimark dilation and typical ideas in
quantum simulation, endows direct physical meaning of
PT -symmetric quantum systems in the sense of open
systems. However, the simulation of brokenPT -symmetric
systems is still in suspense, due to its essential distinctions
with conventional quantum systems.
In this Letter, we illustrate the simulation for brokenPT -

symmetric systems based on weak measurement [18]. For a
system weakly coupled to the apparatus, the pointer state
will be shifted by the weak value when a weak measure-
ment is performed. The weak value, tightly related to the
nonclassical features of quantum mechanics, such as the
Hardy’s paradox [19], three box paradox [20], and Leggett-
Garg inequalities [21], can take values beyond the expected
values of an observable, and even be a complex number.
The weak measurement theory has provided new ways to
measure geometric phases [22–25] and non-Hermitian
systems [26,27], as well as to amplify signals as a sensitive
estimation of small evolution parameters [28–30]. Our aim
is to propose a concrete scenario in which the quantum
system can be viewed as PT symmetric by utilizing the
weak measurement. Our result reveals the connections
between PT symmetry and the weak measurement theory,
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providing the important missing point for the simulation
problem of broken PT -symmetric quantum systems.
Generalized embedding of PT -symmetric systems.—

Consider n-dimensional discrete quantum systems, on
which operators are denoted by calligraphy letters P, T ,
H, while their matrices by capital letters P, T, H. A linear
operator P is said to be a parity operator if P2 ¼ I, where I
denotes the n × n identity matrix. An antilinear operator T
is said to be a time reversal operator if TT̄ ¼ I and
PT ¼ TP̄, where T̄ (P̄) stands for the complex conjugation
of T (P). A Hamiltonian H (H) is said to be PT (PT)
symmetric if HPT ¼ PTH̄ [31]. H is called unbroken PT
symmetric if it is diagonalizable and all of its eigenvalues
are real. Otherwise, H is called broken PT symmetric.
In quantum mechanics, a Hamiltonian H gives rise to a

unitary evolution of the system. Let ϕ1 and ϕ2 be two
states. One can introduce a Hermitian operator η to define
the η-inner product by hϕ1jϕ2iη ¼ hϕ1jηjϕ2i. With respect
to the η-inner product,H presents a unitary evolution if and
only if H†η ¼ ηH [12,13,32–34], where H† denotes the
conjugation and transpose of H. Here, η is said to be
the metric operator of H. Moreover, for a generic PT -
symmetric operator H and its metric operator η, there
always exists some matrix Ψ0 such that Ψ0−1HΨ0 ¼ J and
Ψ0†ηΨ0 ¼ S, where

J¼ diag½Jn1ðλ1; λ̄1Þ;…;Jnpðλp; λ̄pÞ;Jnpþ1
ðλpþ1Þ;…;JrðλrÞ�;

ð1Þ

Jnkðλk; λ̄kÞ ¼ ðJnk ðλkÞ
0

0
Jnk ðλ̄kÞ

Þ, JnjðλjÞ are the Jordan blocks,

λ1;…; λp are complex numbers, and λpþ1;…; λr are real
numbers,

S ¼ diagðS2n1 ;…; S2np ; ϵnpþ1
Snpþ1

;…; ϵnrSnrÞ; ð2Þ
ni denote the orders of Jordan blocks in Eq. (1), i.e.,

Sk ¼

0
B@

1

⋰
1

1
CA

k×k

and ϵi ¼ �1 is uniquely determined by η [16,35]. For
convenience, we only consider the situations in which
ϵi ¼ 1. In this case, S is a permutation matrix and S2 ¼ I.
Note that S can be equal to I if and only if H is unbroken
PT symmetric [16]. Henceforth we always assume S ¼ I
in the unbroken case. The following theorem gives an
important property of PT -symmetric Hamiltonians.
Theorem 1.—Let H be an n × n PT -symmetric matrix

and η be the metric matrix of H. Let J and S be matrices in
Eqs. (1) and (2). Then, there exist n × n invertible matrices
Ψ, Ξ, Σ, and a 2n × 2n Hermitian matrix H̃ such that for
Ψ̃ ¼ ðΨΞÞ and Φ̃ ¼ ðΨΣÞ, the following equations hold,

Φ̃†Ψ̃ ¼ S; Φ̃†H̃ Ψ̃ ¼ SJ: ð3Þ

Proof.—As was discussed, there exist a matrix Ψ0

such that Ψ0−1HΨ0 ¼ J and Ψ0†ηΨ0 ¼ S [16,35]. Since
Ψ0†Ψ0 > 0, there always exists a positive number c such
that c2Ψ0†Ψ0 > I. Set Ψ ¼ cΨ0. Since Ψ†Ψ > I ≥ S,
Ψ†Ψ − S is invertible.
Let Ξ be an n × n invertible matrix. Taking Σ ¼

ðΞ−1Þ†ðS −Ψ†ΨÞ, η ¼ ðΨ−1Þ†SΨ−1, H1 ¼ ηH, H2 ¼
ðΨ†Þ−1ðΞÞ† and H4 ¼ −H†

2ΨΞ−1 − ðΣ†Þ−1Ψ†H2, one can
directly verify that

H̃ ¼
�
H1 H2

H†
2 H4

�

is Hermitian and Eq. (3) holds. ▪
Theorem 1 actually gives out the inner product structure

of H in a subspace. Note that the matrix Ψ in Theorem 1
can be written as Ψ ¼ ðjψ1i;…; jψniÞ, where the column
vectors fjψ iig form a linear basis of Cn. Similarly, Ξ ¼
ðjξ1i;…; jξniÞ and Σ ¼ ðjσ1i;…; jσniÞ. Correspondingly
we have Ψ̃ ¼ ðjψ̃1i;…; jψ̃niÞ and Φ̃ ¼ ðjϕ̃1i;…; jϕ̃niÞ,
where jψ̃ ii ¼ ðjψ iijξiiÞ and jϕ̃ii ¼ ðjψ iijσiiÞ. Moreover, Φ̃S ¼
ðjμ̃1i;…; jμ̃niÞ ¼ ðjϕ̃sð1Þi;…; jϕ̃sðnÞiÞ, where S is the per-
mutation matrix in Theorem 1, and s is the permutation
induced by S. Similarly, we can writeΨS ¼ ðjμ1i;…; jμniÞ,
where jμii ¼ jψ sðiÞi. From the definition of jμ̃ii, we

have hμ̃ijψ̃ ji ¼ ðSΦ̃†Ψ̃Þij and hμ̃ijH̃jψ̃ ji ¼ ðSΦ̃†H̃ Ψ̃Þij.
According to Eq. (3), we have

hμ̃ijψ̃ ji ¼ δi;j; hμ̃ijH̃jψ̃ ji ¼ Ji;j; ð4Þ

where Ji;j is the ði; jÞth entry of J.
On the other hand, note that the metric matrix η of H is

ðΨ†Þ−1SΨ−1. Thus we have the following relations between
the Dirac and η-inner products:

hμ̃ijψ̃ ji ¼ hμijψ jiη; ð5Þ

hμ̃ijH̃jψ̃ ji ¼ hμijHjψ jiη; ð6Þ

where hμijHjψ jiη ¼ hμijηHjψ ji. The results show that
there exist two different bases with the same projections
onto the subspace of the PT -symmetric system, with
respect to the η-inner product. When confined to the
subspace, the Hermitian Hamiltonian H̃ in large space
has the same effect as a PT -symmetric Hamiltonian H, in
the sense of this η-inner product.
Simulation of PT -symmetric Hamiltonian systems.—To

infer a quantum system is PT symmetric, it is sufficient to
identify the Hamiltonian and its inner product structure. In
the weak measurement formalism, one starts by preselect-
ing an initial state jφii. The target system is coupled to the
measurement apparatus, which is in a pointer state jPi.
Usually, jPi ¼ ð2πΔ2Þ−1

4 expð−Q2=4Δ2Þ, a Gaussian state
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with Δ its standard deviation. Let A be an observable
of the system and M be that of the apparatus, conjugate
to Q [18]. The interaction Hamiltonian between the
system and apparatus is Hint ¼ fðtÞA ⊗ M, with
interaction strength g ¼ R

fðtÞdt. The state evolves as
jφii ⊗ jPi → e−igA⊗Mjφii ⊗ jPi. Now if the system
satisfies the weak condition that g=Δ is sufficiently
small, then for a postselected state jφfi that hφfjφii ≠ 0,
one has hφfje−igA⊗MjφiijPi ≈ hφfjφiie−ighAiwMjPi ¼
hφfjφiið2πΔ2Þ−1

4 exp½−ðQ − ghAiwÞ2=4Δ2�, where hAiw ¼
ðhφfjAjφii=hφfjφiiÞ is called the weak value. That is, the
state is shifted by ghAiw. Thus the weak value hAiw can be
read out experimentally, as a generalization of the eigen-
values in Von Neumann measurement [36].
From Eq. (4), we have λi ¼ Ji;i ¼ hμ̃ijH̃jψ̃ ii ¼

ðhμ̃ijH̃jψ̃ ii=hμ̃ijψ̃ iiÞ. Therefore, the eigenvalues of H can
be obtained via a weak measurement, by preselecting the
vector jψ̃ ii and postselecting the vector jμ̃ii. This obser-
vation implies that one can use weak measurement to
simulate the measurements on a PT -symmetric system.
In conventional quantum mechanics, the expectation

value of a Hermitian Hamiltonian H0 ¼
P

i λijuiihuij with
respect to a state jψ0i ¼

P
i dijuii is given by the inner

product hψ0jH0jψ0i. For a PT -symmetric Hamiltonian
system with the metric matrix η, the expectation value of a
Hamiltonian H with respect to a state jui ¼ P

i aijψ ii is
instead given by hujHjuiη. Given two vectors jvi ¼P

i bijμii and jwi ¼ P
i cijψ ii of the PT -symmetric sys-

tem. Let jṽi ¼ P
i bijμ̃ii (unnormalized for convenience)

and jw̃i ¼ P
i cijψ̃ ii be two vectors in the extended system.

It follows from Eq. (6) that hvjHjwiη ¼ hṽjH̃jw̃i. Assume
that jui satisfies the condition hujuiη ¼ �1. Now take two
states jũ1i ¼

P
i asðiÞjμ̃ii and jũ2i ¼

P
i aijψ̃ ii, whose

projections to the PT -symmetric subspace are both jui.
Then we have

hujHjuiη
hujuiη

¼ hũ1jH̃jũ2i
hũ1jũ2i

: ð7Þ

Therefore, confined to the PT -symmetric subspace, a weak
measurement can completely describe the expectations
of H.
In conventional quantummechanics, when an eigenvalue

is detected, the measured state collapses to the correspond-
ing eigenstate. However, the problem in a PT -symmetric
system is subtle. According to Eq. (5), hψ ijψ iiη ≠ 0 only if
i ¼ sðiÞ. This observation makes it reasonable to assume
that for any vector jui ¼ P

i aijψ ii satisfying hujuiη ≠ 0, if
ai ≠ 0, then asðiÞ ≠ 0. That is, if hujuiη ≠ 0, its vector
components of jψ ii and jψ sðiÞi take zero or nonzero values
simultaneously, while the eigenvalues associated with ψ i
and ψ sðiÞ are either equal or complex conjugations. In this
case, one can generalize the detection of an eigenvalue of λi

in conventional quantum mechanics to the following. For
jui ¼ P

i aijψ ii, if the value of

aiasðiÞλi þ āiasðiÞλ̄i
aiasðiÞ þ āiasðiÞ

is detected [37], the state jui will collapse to

aijψ ii þ asðiÞjψ sðiÞi
jaiasðiÞ þ asðiÞāij12

:

Apparently, when i ¼ sðiÞ, the state jui will collapse to
jψ ii, similar to the case of conventional quantum mechan-
ics. Note that i ¼ sðiÞ only if the system is unbroken PT
symmetric, for which it is analogous to conventional
quantum mechanics and such an analogy in state collapse
is not unexpected.
By pre- and postselecting the states, we see that the

weak measurements can successfully simulate an arbitrary
η-inner product. Furthermore, when confined to the sub-
space, the measurement results actually extract the same
information as a PT -symmetric Hamiltonian system. Such
information helps us eventually infer that the subsystem is
PT symmetric.
Discussions and conclusion.—We further discuss the

mechanism and physical implications related to the weak
measurement paradigm, by comparing it with the embed-
ding paradigm [15,16]. The essence of the embedding
paradigm is to realize the evolution of a PT -symmetric
Hamiltonian, by evolving the state under the Hermitian
Hamiltonian in the large space and then projecting it to the
subspace. The key to this paradigm can be mathematically
described as follows [16]: For a given n × n unbroken PT -
symmetric HamiltonianH, find a 2n × 2nHermitian matrix
H̃, n × n invertible matrices Ψ, Ξ so that Ψ̃†Ψ̃ ¼ I and the
following equations,

e−itH̃Ψ̃ ¼ Ψ̃e−itJ; e−itHΨ ¼ Ψe−itJ ð8Þ

hold, where Ψ̃ ¼ ðΨΞÞ. The equations are actually equivalent
to the following conditions [38]:

Ψ̃†Ψ̃ ¼ I; H̃ Ψ̃ ¼ Ψ̃J; HΨ ¼ ΨJ: ð9Þ

Equation (8) ensures that the unitary evolution ŨðtÞ gives
the evolution UðtÞ of a PT -symmetric Hamiltonian H in a
subspace. In this sense, the embedding paradigm gives a
natural way of simulation. Nevertheless, in the broken PT -
symmetric case, the solutions do not exist [16]. In fact,
Eq. (3) is mathematically a generalization of Eq. (9) [39].
Like the case of the embedding paradigm, it is natural to
further require that Φ̃†e−itH̃Ψ̃ ¼ Se−itJ, so that e−itH̃ gives
the same effect as e−itH in the subspace. However, such a
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requirement cannot be satisfied for broken PT symmetry,
which is obvious from the unboundedness of Se−itJ.
However, consider sufficiently small time t ∈ ½0; ϵ�. We

have jũðtÞi ¼ e−itH̃jũi ≈ ðI − itH̃Þjũi. On the other hand,
juðtÞi ¼ e−itHjui ≈ ðI − itHÞjui. Now Eqs. (5) and (6)
ensure that when confined to the subspace, jũðtÞi is
equivalent to juðtÞi in the sense of η-inner product [40].
This observation implies that PT -symmetric quantum
systems can be well approximated in a sufficiently small
time evolution, by choosing two different sets of bases
fjϕ̃iig and fjψ̃ iig with the same components in the sub-
space, which can be realized by weak measurement. Here
instead of the small time interval, the weak condition that
g=Δ is sufficiently small ensures the approximation. The
weak measurement paradigm can be viewed as a generali-
zation of the embeddingparadigm, due to the fact that Eq. (9)
is a special case of Eq. (3) in the PT -symmetric unbroken
case. Hence, the Hamiltonian H̃ in the embedding paradigm
can also be utilized in the weak measurement approach,
although the embedding paradigm itself does not work.
Comparing our approach with that in Ref. [26], where one
obtains the expected value of a Hamiltonian in the Dirac
inner product by using the polar decomposition, our method
lays emphasis on the properties of a PT -symmetric
Hamiltonian with respect to the η-inner product.
In summary, we have proposed a weak measurement

paradigm to investigate the behaviors of broken PT -
symmetric Hamiltonian systems. By embedding the PT -
symmetric system into a large Hermitian system and
utilizing weak measurements, we have shown how a PT -
symmetric Hamiltonian can be simulated. Our paradigm
may shine new light on the study ofPT -symmetric quantum
mechanics and its physical implications and applications.
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