Physica Scripta

PAPER » OPEN ACCESS You may also like

- Richardson’s Solutions in the Real— and

Quantum harmonic oscillators with nonlinear Complex-Eneray Specirum

R M Id Betan

eﬁeCtlve masses In the Weak denSIty - The effect of closed channels on the
electron impact excitation of Mg*, Cd” ions

approximation Yuering L

- Pure Gaussian states from guantum

To cite this article: Jen-Hsu Chang et al 2022 Phys. Scr. 97 025205 harmonic oscillator chains with a sinale
local dissipative process
Shan Ma, Matthew J Woolley, lan R

Petersen et al.

View the article online for updates and enhancements.

This content was downloaded from IP address 59.125.252.103 on 20/01/2022 at 12:08


https://doi.org/10.1088/1402-4896/ac4a92
https://iopscience.iop.org/article/10.1088/1742-6596/839/1/012003
https://iopscience.iop.org/article/10.1088/1742-6596/839/1/012003
https://iopscience.iop.org/article/10.1088/1361-6455/aab1a7
https://iopscience.iop.org/article/10.1088/1361-6455/aab1a7
https://iopscience.iop.org/article/10.1088/1361-6455/aab1a7
https://iopscience.iop.org/article/10.1088/1361-6455/aab1a7
https://iopscience.iop.org/article/10.1088/1361-6455/aab1a7
https://iopscience.iop.org/article/10.1088/1361-6455/aab1a7
https://iopscience.iop.org/article/10.1088/1361-6455/aab1a7
https://iopscience.iop.org/article/10.1088/1751-8121/aa5fbe
https://iopscience.iop.org/article/10.1088/1751-8121/aa5fbe
https://iopscience.iop.org/article/10.1088/1751-8121/aa5fbe

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
22 September 2021

REVISED
5 January 2022

ACCEPTED FOR PUBLICATION
12 January 2022

PUBLISHED
20 January 2022

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Phys. Scr. 97 (2022) 025205 https://doi.org/10.1088,/1402-4896 /ac4a92

Physica Scripta

PAPER

Quantum harmonic oscillators with nonlinear effective masses in the
weak density approximation

Jen-Hsu Chang', Chun-Yan Lin>’ and Ray-Kuang Lee™*>

1

Graduate School of National Defense, National Defense University, Taoyuan city 335, Taiwan
National Synchrotron Radiation Research Center, Hsinchu 30016, Taiwan

Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

2
3
4
E-mail: rklee@ee.nthu.edu.tw

Keywords: quantum, harmonic, oscillators, nonlinear, effective

Abstract

We study the eigen-energy and eigen-function of a quantum particle acquiring the probability
density-dependent effective mass (DDEM) in harmonic oscillators. Instead of discrete eigen-energies,
continuous energy spectra are revealed due to the introduction of a nonlinear effective mass.
Analytically, we map this problem into an infinite discrete dynamical system and obtain the stationary
solutions in the weak density approximation, along with the proof on the monotonicity in the
perturbed eigen-energies. Numerical results not only give agreement to the asymptotic solutions
stemmed from the expansion of Hermite-Gaussian functions, but also unveil a family of peakon-like
solutions without linear counterparts. As nonlinear Schrodinger wave equation has served as an
important model equation in various sub-fields in physics, our proposed generalized quantum
harmonic oscillator opens an unexplored area for quantum particles with nonlinear effective masses.

1. Introduction

Quantum harmonic oscillator is the most important model system in quantum mechanics, which remarkably
exhibits an exact, analytical solution with discrete (quantized) eigen-energies compared to the predictions of
classical counterparts [1]. Instead with a given mass, 1y, when particles (electrons or holes) move inside a
periodic potential or interact with other identical particles, their motions differ from those in a vacuum,
resulting in an effective mass [2]. With an effective mass, denoted as m", the corresponding Schrodinger equation
for a quantum particle in a one-dimensional harmonic oscillator, characterized by the spring constant k, has the
form:

—n* 0? k

., 0 _ )
in 8t\I/(x, t) = 2 axz\lf + 2x v, (1)
Here U(x, t) is the probability amplitude function projected in the spatial coordinate. In particular, with a
nonuniform composition in potential or particle distributions, a position-dependent effective mass (PDEM)
Schrodinger equation has gained much interest for its applications from semiconductors to quantum fluids
[3-7]. Recently, a PDEM Schrodinger equation exhibiting a similar position-dependence for both the potential
and mass was exactly solved [8]. Moreover, by taking the one-site mass in the Haldane model realized in the
optical lattices, one can have similar nonlinear masses, depending on the local intensity, in the nonlinear coupled
waveguide arrays for the studies on the optical isolation with nonlinear topological photonics [9].

On the other hand, it is noteworthy that equation (1) is lack of Galilean invariance, but the position-
dependent effective mass Hamiltonian is by no means unique [3]. Although it is worth to construct a consistent
model equation to Galilean invariance with probability density dependent effective mass, with the
correspondence between Schrodinger equation and the paraxial wave equation, similar concept of position-
dependent effects is also studied in the dispersion management optical fiber link [ 10]. Moreover, in addition to
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position-dependence, chromatic dispersion may also have intensity-dependent dispersion (IDD) in the optical
domains [11, 12]. IDD, or in general the nonlinear corrections to the chromatic dispersion as a function of the
wave intensity, has arisen in a variety of wave phenomena, such as shallow water waves [ 13, 14], acoustic waves in
micro-inhomogeneous media [15], ultrafast coherent pulses in quantum well waveguide structures [16], the
saturation of atomic-level population [17], electromagnetically-induced transparency in a chain-A
configuration [18], or nonlocal nonlinearity mediated by dipole-dipole interactions [19]. Inspired by IDD, in
this work, we consider a quantum particle acquiring an probability density-dependent effective mass (DDEM),
i.e., m*(|¥|*), in a harmonic potential described by the following generalized Schrédinger equation:

., 0 =P 5 0% k ,

z/iat\ll(x, 1) = 2. (1 4+ by )axZ\If + 2x . )

Here, the DDEM is approximated in the weak density condition by assuming b|¥|* < 1. Then, we have

[* (PP = [me(1 — b PP = [me] '(1 + b |P]?), with the parameter b denoting the contribution
from the nonlinear effective mass term. As one can see, when the nonlinear effective mass term is zero, i.e., b = 0,
equation (2) is reduced to the well-known scenario for a quantum particle in a parabolic potential. Besides,
optical waves IDD in the Gradient-index (GRIN) lenses [20] also share the same model equation described in
equation (2) when we consider wave propagation along the z-coordinate (by replacing t by z), along with a
confined transverse dimension denoted by x.

When k = 0, even though an approximated solution with a non-physical peak value 10'* was illustrated in
Ref. [11]for b < 0, itis proved rigorously that localized solitons exist only for b > 0 in Ref. [12]. However, with
the supported harmonic potential, the scenarios can be totally different. In terms of solitons, the interplay
between nonlinearity and harmonic potential has been studied for along time [21]. Nevertheless, such localized
solutions supported only with a nonlinear effective mass is never studied. Moreover, in the weak density
approximation, equation (2) also shares the same mathematical form to the Salerno model in the continuum
limit, which can be derived as a quantum modified discrete nonlinear Schrodinger equation, giving the time
evolution of the field amplitude on the lattice [22—24]. Without considering any nonlinear potential but only
with the nonlinear effective mass differs our results from the known ones.

However, when b = 0, instead of the discrete energies, continuous energy spectra are revealed due to the
introduction of a nonlinear effective mass. Analytical solutions for the corresponding eigen-energy and eigen-
function are derived by expanding the solutions in the weak density, i.e., b|¥|>. Numerical solutions obtained by
directly solving equation (2) give good agreement to the analytical ones obtained from the expansion of
Hermite-Gaussian functions. Moreover, we unveil a family of peakon-like solutions supported by DDEM,
which has no counterpart in the linear limit. Our perturbed solutions and numerical results for this generalized
quantum harmonic oscillator with nonlinear effective masses opens an unexplored area for quantum particles.

The paper is organized as follows: in Session II, we introduce the quantum harmonic oscillator into this
generalized Schrodinger equation with nonlinear effective mass and reduce equation (2) into an infinite
dynamical system. Then, by expanding b|¥|* and with the help of the eigen-solutions of quantum harmonic
oscillator, we study the corresponding eigen-energy with the introduction of DDEM, as a function of the
parameter b. The monotonicity of the perturbed eigen-energy is also proved. In section 3, explicitly, we derive
the analytical solutions of eigen-energies and the corresponding wavefunctions for the ground and second-oder
excited states in the asymptotical limit. The comparison between analytical solutions and numerical results is
illustrated in section 4, demonstrating good agreement on the solutions with a smooth profile, stemmed from
the expansion of Hermite-Gaussian wavefunctions. A new family of peakon-like solutions with a discontinuity
in its first-order derivative is also unveiled, which has no linear counterparts. Finally, we summarize this work
with some perspectives in Conclusion.

2. Quantum harmonic oscillator with DDEM

Withoutloss of generality, in the following, we set 7 = 1, k > 0, mg = 1 for the simplicity in tackling equation (2).
Here, by lookin for the stationary solutions W(x, f) = 1(x)e” iE't we consider a family of differential equations
parametrized by a continuous DDEM parameter b = 0 of the form

92
Ox?
where E is the corresponding eigen-energy, x denotes a real variable for the coordinate, and ¢(x) is a square
integrable function. This stationary Schrodinger wave equation can be seen as a generalized quantum harmonic
oscillator. In addition to the stationary states considered here, this generalized nonlinear Schrooedinger

equation is expected to provide an interesting platform, with non-stationary states, for further studies on the
infinite dynamical system.

B+ 0+ By gxzw 0, 3)
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When b = 0, equation (3) becomes the well-known equation for the quantum harmonic oscillator, which
supports eigen-function of the n-th order excited state in the position representation reads [25]:

$,(x) = k'8, e K 2H, (1 /), )

where p, = (2"'n!/7)~ /2 and H,,(x) is the n-th order Hermite polynomial. The corresponding eigen-values are

equalto E, = Jkn + %), forany n € N. Weare interested in finding pairs (1,,, E,,), fulfilling equation (3) for
asetb=0.

2.1. Expanding the eigen-energies and eigen-functions with b|¥|*
To investigate equation (2) with b = 0 (but keeping k = 1 first), we look for the solutions based on the expansion
of the solution on the eigen-function ¢,,(x). That s,

o0
U(x, 1) = Y Ba(t) b, (). ©)
n=0
By plugging this expansion into equation (2), one has

>, dB,(t)
1
P

d2 o)
6,00) + ZB(t) 80 L2 BoB, (t)¢p(x>¢<x)[b23<t>

p=0,q=0

42, ) l

—§x22 Bu(1)6, (),

n=0
>, dB,(t)

fb()*ZEB(t)QS(x)
n=0 dt

o0

S Ean(r)Bpa)Eq(t)qsn(x)%(x)¢q<x)+9x2
n=0,p=0,q=0 2

Y. Bu®B (0B (D)9, (%), (x) 4, (x) = 0. (6)
p'\X) P

n=0,p=0,g=0

Here, B, means the complex conjugate of B,,. Then, by multiplying equation (6) with ¢,,(x) and using the
orthonormal property of ¢,,,(x), we obtain

S 1 - .dB,,,(t)
b Z _Ean,n,p,q + _m,m,p,q Bn(t)Bp(t)Bq(t) +i———= — EuBn(t) =0, 7
n=0,p=0,4=0 2 dt

where V,,,, »ooand W,,, .., - are defined as:

Vinpig = | G 8,(x)6,(x) 8, () dbx,
Winpg = [ X20,,()6,() 6, (x) 8, (x) dx.

As one can see from equation (7), we reduce the original partial differential equation into the infinite discrete
dynamical system [26]. With the help of the recursive relation of Hermite polynomial H,,,(x), for example see
Ref. [25],i.e., x*H,(x) = m(m — 1)H,,_»(x) + (m + 1/2)H,,,(x) + 1/4H,,,.»(x), one can arrive at

Jm@m — 1) v

Wm,n,p,q = > m—2,mp,q T (m+1/2) Vm,n,p,q
N(m 4+ 1)(m + 2)
+ Vm+2,n,p,q- (8)
2
Now, we look for the stationary solution in the form:
U(x, 5 E) = e £ " By, (%), 9)
n=0

with B, € R. Then, for a given energy value E, one yields

o]

1
b Z (7En Vm,n,p,q + _‘/Vn,m,p)q)BanBq
n=0,p=0,g=0 2
+(E - E)B,, = 0. (10)

From now on, for simplicity, we assume k = 1. With the help of equation (10), next, we consider the
perturbation on the energy deviated from the eigen-energy E,, with the corresponding Hermite-Gaussian eigen-
mode ¢,,(x).




10P Publishing

Phys. Scr. 97 (2022) 025205 J-H Chang et al

Similar to the methodology used in dealing with the nonlinear mean field in the Gross—Pitaevskii equation
(GPE) [27, 28], we substitute ¢ (x; E) = JP(E) ¢(x)with||¢(x)|| = 1into equation (3), where

P(E) = Y7 _ y Bufrom(9), and arrive at a nonlinear eigen-energy equation:

E $() + %[1 + b P(E) ()] () — %x% ~o. (11)

Once again, in equation (11), we can see that if P(E) — 0, then the resulting eigen-energy E — E,, = n + %
By substituting ¢(x), obtained from equation (10), into equation (11), one can have the relation between E and
P(E)near E, = n + % In general, the perturbation approach illustrated above works for all the values of n.
However, only when # is even, a neat formula can be conducted by taking the advantage of symmetric
wavefunctions in 1(x). For even numbers, 2n, the resulting eigen-energy E due to the introduction of the DDEM
parameter b can be approximated as

1 1
E~ EZn - b P(E)I:E‘A/Zn,Zn,Zn,Zn - (2” + E)‘/Zn,2n,2n,2n:|)

=Ey, — bP(E);, B J: °; x2e " Hy, (x)*dx

1 © .2 4
_ (Zn + E) f_ooe *H,, (x) dx]. (12)
To compute the integrals shown in equation (12), one can utilize the Feldheim identity for the Hermite
polynomials [25]:
min(m,n) "\ (1
Hu@H0 = Y Huew 202017 (1): (13)

v=0

and the Titchmarsh’s integral formula [29]:
7 €75 Hy () Hy () Hyp(x) dlx
— w—lzm+"+P—1/2F(n +p+ % - m)

xF(m+p+%—n)F(m+n+%—p), (14)

wheren+ p > m, m + p > nand m + n > p; otherwise, the integral is zero. From equations (13) and (14), a
direct calculation can yield

I e o () Hy ()

1 min(2m,2n)
= —mtan-1/2§Y V!(Zm)(Zn)
T =0 14 14

xTm+v+1/2 —mIim+n+1/2 - v) (15)

2.2.Monotonicity in the perturbed eigen-energy
Given b > 0 (b < 0), to ensure solutions with linear limit ¢ (x; E) =~ /P(E) ¢,(x) to exist only if
EZ>E,=n+ % (EE,=n+ %), we prove that the two integrals inside the square brackets in equation (12)
is monotonig, i.e.,

%ff:c xze*szzn(x)‘ldx — (2n + %) fj; e*xZHzn(x)‘ldx

<0; (16)

or equivalently
Wananaman — (41 + 1) Vap2n,2n,00 < 0. (17)

for n > 0. In Appendix, the proof on the monotonicity for equation (16) and equation (17) is given in details.

By using the upper and lower solution method developed in the variational calculus [27], we can further
prove the existence of a positive solution (node-less state) through the corresponding Lagrangian for
equation (2), i.e.,
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S E kx? 1
zW@n—fwK—;+~%Jmu+mwﬂ+5my}m
o | kx? 2 Lo
=/ It BIPL+ I fd — B Q@) (18)
=Z(E) — E Q(E), (19)

where Z (E) = fj:o [(];x—bz)lnu + b |[YP| + %Ilbxl2 ] dx. Here, we also introduce the probability factor Q for this
quantum harmonic oscillator with DDEM, by defining

_bimmu+mw|a. (20)

As the original generalized Schrédinger equation given in equation (2) preserves the U(1) symmetry, i.e.,

1 — exp[if] v, the conserved density for this model equation can be derived from Noether theorem [30]. Itis
marked that the local conservation law is also valid, i.e., O, [% In(1 + b|¥P)] + ] = Owith

J= %(\P*axllf — U9, U*). Itis noted that equation (20) is only applicable when b = 0. When |b| < 1, this
probability factor Q can be approximated as

1szme%m Q1)
k1 —00

which is reduced to the standard definition of probability for quantum wavefunctions. For b — 0, the
corresponding Lagrangian density given in equation (18), as well as the conserved density given in equation (20),
both go to [¢]*.

These two terms, Z(E) and Q(E), shown in equation (19), correspond to the Lagrangian of our generalized
harmonic oscillator and the conserved quantity, respectively. As the DDEM parameter b — 0, the Lagrangian
shown in equation (19) can be reduced to

0 1
(B wr o+ o+ i)

which is the Lagrangian for the linear equation, i.e., — %wxx + Ex2w = E 1. By following the same concept in

tackling weak non-linearity [31], the perturbation based on the expansion of the Hermite-Gaussian functions to
deal with the DDEM ensures that when E — E,,, one has Q(E) — 0.

3. Eigen-energies and eigen-functions obtained from perturbation

3.1. The ground state

Now with the analytical formula give in equation (12), we explicitly give the perturbed eigen-energy E and eigen-
function 1% (x) for the ground state in our generalized quantum harmonic oscillator with a given DDEM parameter
b. For the ground state, we can assume that By > B,,,n=1,2,3, --- . Then, from equation (10), one has

2 EiEO

By ~ T 1 ) (22)
b(—gwo,o,o,o + EVO,O,O,O)
and
B ng(_%‘/VZn,O,O,O + Eo V21,00,0)
m = >
’ (E — Ean)
(E - Eo)(*%wzn,o,o,o + Ep Vzn,o,o,o)
= BO > (23)

1 1
(E - EZn) ( —>Woo,00 + EVO,O,O,O)
where I, 1, Vi p.gp and W, ., - have the values:

1

Wi = N
0,0,0,0 N
1
VI),O,O,O:ﬁ)
D"
Van000 = ¥(2n - D!,
o w22 ()
—1 n+1
Wan000 = ¥(2n — D!@2n — 1),
o 2215 (2m)
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>

N | =

for n > 1. Therefore, from equations (22) and (23), explicitly we have, noting that Ey = %, E,=n+

B¢ ~ 85_”(5 — %) (24)
(=D)"Cn + 2)@2n — DI
B,, ~ bB} 4 8 (25)

0 >
T2 Q) (E - 2n — )
D00 — DN
%leOa( D™ @n — D , as n— oo. (26)

8 NT2H T (2n)!
With the coefficients above, the perturbed solution of 1§ (x) can be conducted immediately as
Vo) ~ Bogy(x) + Bagy(x) + Bagyy(x) + .

We notice that wg(x) — ¢p(x)as E — Ey = % Again, with the orthonormality of ¢,,,(x), in the asymptotical
limit, n — oo, the probability factor Q defined in equation (20) becomes:

QUE) = 5 [ 1 + bl oL,

~ [ bR dx = B + B} + B} + -

~ 8var (E - l)[l + l(E - l)zi @n): ] (27)

3b 2 9 2) = (n122my?

Itis noted that the identity 2n — 1)!!= (22':,)'! is applied. Therefore, we see that Q(E) — 0as E — Ey = % As

one can see from equation (27), the probability factor Q(E) is linearly proportional, in the leading order, to the
eigen-energy E, but with the coefficient inversely proportional to the DDEM parameter b.

3.2. The second order excited state
In addition to the ground state with 2 = 0, in general, all the perturbed eigen-energy EZ, and eigen-function
77212,1 (x) can be written explicitly. Here, we illustrate the solutions for the second order excited state, E and 1,[13 (%),
byassuming B, > B,,,,n =0, 2,3, --- . Again, with equations (8) and (10), one can directly obtain:

E—-E,

Bi ~ — - = , (28)
b[%vo,z,z,z — (Z — E) Va0 — %W,z,z,z]
and
bB;(_%WZn,Z,Z,Z + ExVau020)
By, = ) (29)
(E - EZn)
with
—1)"32n — D)8 — 601> + 94n — 1
Vano2 = S C )!{(8n ot o )- (30)
lﬂ.22n+10(2n)!
As aresult, we we have
25627
B ~ =" (E — E»), 31
2 3276 ( 2) (31)
and
B2 ~ b2BS(2m)!(16n* — 112n° + 32n% 4 476n + 23)2
2n ™~ 24116 (41)2(E — Ey,)? >
14,6
~ b?BS (2n)in as 1 — oo. (32)

2
24"+107T(11!)2 >

Then, the perturbation of 1% (x) can be constructed by collecting the coefficients above, i.e.,
¢’; (x) &= By, (x) + By, (x) + Besope(x) + ---.Itisnoted that here, the expansion starts from n = 2 as B, = 0.
Again, we have ¢Z (x) = ¢,(x)asE — E, = % Moreover, thee resulting probability factor Q(E) in the
asymptotical limit, # — oo has the form:
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3
o 2.5
[
i 2| | b=+2
9 E :'
& Ag
z (4
=
]
=
[
Rogsp Ee

0 0.5, 1 1.5
Eigen-energy, E

ds

Figure 1. The probability factor Q(E) defined in equation (20) for the ground state in quantum harmonic oscillator with DDEM, as a
function of eigen-energy E. Here, the DDEM parameter bis setas -1 and +2, depicted in Blue- and Red-colors, respectively. The
ground state energy in the linear limit, b = 0, is marked as E, = 0.5. Analytical solutions based on the perturbation theory given in
equation (27) are also depicted in the dashed-curves, which illustrate good agreement to the numerical solutions near E,. Moreover,
three different regions for the supported eigen-functions are identified for those with a smooth profile stemmed from the expansion of
Hermite-Gaussian wavefunctions (in Blue- and Green-colored backgrounds for b > 0 and b < 0, respectively); and with a peakon-
like profile having a singularity in its first-order derivative (in Yellow-color background).

Q) = 3 [ Inl1 + blukco Plds,

~ [ WYRGOdx = BY + B} + B + -~

51242 -
435p 2
2 % 5122( 5)2 < (2n)n®
x |14+ =2————=|E- = = . 33
[ 4352 2 n;(n!zzm)z 33)

Here, again, we see that Q(E) — 0as E — E, = g

In addition to the ground and second order excited states, for all the even number of #, the perturbed eigen-
energy EY, and eigen-function 1%, (x), as well as the corresponding probability factor Q(E?,), can be derived
explicitly, with the help of equations (10), (12) and (20), respectively. As for the odd number of 1, equations (10)
and (11) provide the required conditions to have the eigen-energy and eigen-function with the introduction of
the DDEM parameter b.

4. Numerical results by direct simulations

4.1. The ground state

In order to verify the validity of our analytical solutions obtained by the expansion, we also perform the
numerical calculations for equation (3) directly without applying any approximation. Here, the eigen-values/
eigen-functions are generated by substituting the eigen-function iteratively until a convergent eigen-value is
reached. Moreover, the linear stability method is applied for the found eigen-function. All the found eigen-
functions are stable due to the harmonic potential. To maintain some level of formal rigor and mathematical
correctness, we shall talk about finding solutions of differential equations [32]. To find the solutions of the eigen-
value problem with the nonlinear term, we connect with a quantum harmonic oscillator by solving equation (3)
with Fourier spectral method. Using the matrix elements, we diagonalize the matrix numerically and perform
the iteration to ensure that the truncated Fourier basis makes the eigen-value convergent. For low energy states,
already the smallest basis of 512 elements gives more than sufficient accuracy.

In figure 1, we show the corresponding lowest eigen-mode of the generalized quantum harmonic oscillator
described in equation (3), in the plot of probability factor versus eigen-energy Q-E. Starting from Ey = 0.5, i.e.,
the eigen-energy of ground state in the standard quantum harmonic oscillator with b = 0; however, the eigen-
energy is not a discrete value, but a continuous function due to the introduction of DDEM, i.e., b = 0. Here, the
initial guess solution has a single-hump profile, i.e., a Gaussian function stemmed from the zero-th order H,,(x).
With a positive value of b, such as b = 1 and b = 2, shown in Blue- and Red-colored curves in figure 1, the
corresponding probability factor Q(E) presents an almost linear function of the eigen-energy E. Now, all the
eigen-energy E are larger than that of E,. Compared to the analytical formula of Q (E?) obtained in

7
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Figure 2. The wavefunction for (a)—(c) the ground state 1/;3 (x) and (d)—(f) the second order excited state d}lz’ (x) of the quantum
harmonic oscillator with DDEM b = £1 and b = £2, shown in Blue- and Red-colored curves, respectively, i.e., corresponding to the
markers (E4, E, Ec) and (Ep, Eg, Erand Eg) labelled in figures 1 and 3, respectively. The analytical results based on the perturbation
theory are depicted in the dashed-curves, for 1% (x) and Y5 (x), accordingly. Here, the selected eigen-energies E are chosen to represent
the typical profile of wavefunctions in three different regions: (a), (d) a smooth profile with b > 0; (b), (f) a smooth profile with b < 0,
and (¢), () a peakon-like solution with b < 0.

equation (27), the dashed-curves give agreement to the numerical ones, not only on the slope of Q-E curves but
also on the inversely proportional dependence on b.

Moreover, the corresponding wavefunction 1% (x) is depicted in figure 2(a), which shares a similar Gaussian
profile with that in the linear case b = 0. For example, at the marked eigen-energy E4 = 0.75, the eigen-functions
¥} (x) have similar Gaussian shapes both for b = 1 and b = 2. But the resulting amplitude, as well as the width, is
smaller with alarger value in the DDEM parameter, such as b = 2. The analytical solutions obtained by
perturbed theory, depicted in dashed-curves in figure 2(a), also reflect this similarity.

However, when b is negative, there are two distinct regions in this Q-E curve, illustrated in the Green- and
Yellow-colored backgrounds in figure 1. For the Green-colored region, the corresponding eigen-energy is
smaller than E, = 0.5, but remains positive, i.e., 0 < E¢ < E,. The probability factor Q(EY) is also linearly
proportional to the eigen-energy E, as predicted by our analytical formula in equation (27). But, now the slope of
Q-E curve changes its sign, as the b < 0. The resulting wavefunction 1/} (x), as shown in figure 2(b) for the
marked eigen-energy Eg = 0.25, still has a smooth profile. However, the corresponding width of wavefunction
shrinks when E — 0. As aresult, a singularity emerges at E; = 0 for the ground state, in which no well-defined
localized wavefunction can be supported. The singularity comes from the divergence of Q(E) near 1 + b|y)|* = 0.
Moreover, as one can see, our theoretical formula also breaks down when E approaches this singularity.

Unexpectedly, single-hump solutions can be supported even when E < Ej = 0, as shown in the Yellow-
colored region. As shown in figure 2(c) for the marked eigen-energy Ec = — 0.25, instead of a smooth profile
stemmed from the Gauss wavefunction, the resulting wavefunction of this family of peakon-like solutions has a
discontinuity in its first-order derivative, similar to the peakon solution in the form of exp(—|x]). Such peakon-
like solutions are also already found in the IDD setting for optical waves, even without the introduction of
harmonic oscillators [11, 12]. As our perturbation theory starts from the eigen-basis of Hermite-Gaussian
functions, it is not applicable to this family of peak-like solutions.
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Figure 3. The probability factor versus eigen-energy curve, Q-E, for the excited states in a quantum harmonic oscillator with DDEM.
Here, the DDEM parameter b is set as 1. The solution family with the same number of humps in the eigen-functions % (x) are
depicted in the same colors, with the labelled starting eigen-energies E,,, for n = 0, 1, 2, 3, 4. Analytical solutions based on the
perturbation theory given in equation (33) are also depicted in the Black dashed-curves, which illustrate good agreement to the
numerical solutions near E, = 2.5.

4.2. The excited states

In addition to the ground state, the founded second order excited states, both numerically and analytically, are
also depicted in figure 2(d)—(f). Again, we also have three different regions in charactering the wavefunction
profiles. Smooth profiles with the DDEM b > 0 and b < 0 are shown in (d) and (e) for the marked eigen-energies
Ep=2.75> E, =2.5and Egy = 2.25 < E, in figure 3, respectively. As shown in figures 2(d) and (e), the two
solutions, 14 (x) have three humps in their profiles and share the similar profile as the 2nd order Hermite-
Gaussian function. By comparing the solid- and dashed-curves, corresponding to our numerical results and
analytical solutions, respectively, one can see nearly perfect agreement for the solutions around the eigen-energy
E..

Moreover, a discontinuous profile emerges when b < 0and E < E;'', where the singularity happens. Unlike
the Q-E curves for the ground state, there exist two singularities, denoted as E5'' ~ 0.8398 and E5»* = 0. When
the eigen-energy is smaller than the value at the first singularity E5' but larger than the value at the second
singularity E5?, for example Ex. = 0.75, the peakon-like solution illustrated in Blue-color in figure 2(f), has a
profile of exp(—|x]) in two of the humps in the sidebands. It is noted that the profile in the central hump remains
asmooth function. Nevertheless, when the eigen-energy is smaller than the value at the second singularity E5%,
for example E; = — 0.25, the corresponding eigen-function has discontinuities in all the three humps, as
depicted in Red-color in figure 3(f).

In figure 3, we plot all the founded eigen-energies, up to n = 4, by depicting the solution family with the same
number of humps in the eigen-functions 1% (x) in the same colors. One can see clearly that, all the Q-E curves
start from the eigen-energies E,, = n + % of astandard quantum harmonic oscillator, i.e., b = 0. Around these
energy values, E,, our perturbation theory works perfectly, giving the linear dependence of Q(E) on the eigen-
energy, along with the inversely proportional relation to the DDEM parameter b. In particular, as depicted in the
dashed-curves, it can be seen clearly that our analytical solutions given in equation (33) illustrate good
agreement to the numerical solutions near E, = 2.5.

However, when b turns negative and the supported eigen-energy E!, is away from the starting energy value E,,,
one more singularities appear at certain value(s) of E,.. The number of singularity depends on the critical points
of the Hermite polynomial due to the divergence of Q(E) near 1 + b|y)|> = 0. Considering the symmetry of
Hermite polynomial, i.e., H,(x) = &+ H,(—x), as one can see from figure 3, the number of singularities for
Q(E!)and Q(Ezbnﬂ) is the same, i.e., equal ton + 1.

Before Conclusion, we remark the stability of the founded eigen-solutions of our generalized quantum
harmonic oscillator with a probability density-dependent effective mass (DDEM). As confined by the external
harmonic oscillator, all the found eigen-solutions are stable numerically. The validity of our perturbation theory
is limited to the eigen-energy around the known one E,, = 2n + % It is expected that our analytical formula
breaks down when E, approaches E;,. As for the possible bifurcation maps, how to develop an analytical method
to find the solutions for these peakon-like solutions, as well as around the singularities, is a challenge, which goes
beyond the scope of the current work but deserves further studies.
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5. Conclusion

By introduction a probability density-dependent effective mass (DDEM) for a quantum particle in harmonic
oscillators, we propose a generalized Schrodinger equation to embrace the nonlinear effective mass. With the
help of orthonormal property of Hermite-Gaussian functions, we reduce this partial differential equation into
an infinite discrete dynamical system and find the corresponding stationary solution by expanding b|¥|*. The
monotonicity of perturbed solutions is also approved rigorously. The resulting eigen-energy spectra is no longer
discretized, but continuous due to the introduction of a nonlinear effective mass. With the comparison to
numerical results obtained by direct simulations, the validity of our analytical formula in the asymptotic limit, in
terms of the probability factor as a function of the eigen-energy, Q(E), can be easily verified, in particular for the
solutions stemmed from the expansion of Hermite-Gaussian functions. However, the nonlinear effective mass
also introduces a new family of peakon-like solutions with a discontinuity in their first-order derivative, which
definitely deserves further studies.

Itis noted that what we illustrated in this work is based on tackling equation (2), under the weak density
approximation. It is also possible to go beyond the weak density approximation by directly studying
equation (1). However, according to quantum mechanics, the effective mass m™(x) does not commute with the
momentum — i10,. Instead of 1 /[2m™(x)](—i/ 8,)%, the product ( — i1dx)1/[2m™*(x)]( — ih0,) should be taken
into account when the quantum particle is considered. It has been well studied with the nonlinear Schrédinger
wave equation, or the Gross—Pitaevskii equation in general, where the nonlinear terms come from Kerr-effect,
or the mean-field interaction. With the eigen-energy and eigen-function illustrated in this work, our proposed
generalized quantum harmonic oscillator opens an unexplored area for quantum particles with nonlinear
effective masses. A number of promising applications and directions for further exploration may be identified
when particles accessing nonlinear correction to their effective mass. Similar models related to our proposed
generalized quantum harmonic oscillators, but in more complicated settings involve off-resonant self-induced
transparency (SIT) solitons [33, 34] spatially-periodic refractivity doped with two-level systems (TLS) [35, 36],
electromagnetically-induced transparency (EIT) via resonant dipole-dipole interactions [37, 38], and the
continuum limit of the Salerno model [22-24].
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Appendix

Here, we give the details to prove the inequality shown in equations (16) and (17).
First of all, from equation (8), one can see that

WZn,Zn,Zn,Zn - (4n + 1)‘/2n,2n,2n,2n

J2n2n — 1) Jen + 1)@2n + 2)

= f%nflbglnln - (271 + 1/2) ‘/Zn,Zn,Zn,Zn + > ‘/2n+2,2n,2n,2m

< nVZr172,2n,2n,2n - (271 + 1/2) VZn,Zn,Zn,Zn + (f’l + 1)V2n+2,2n,2n,2m

1
= n(VZn72,2n,2n,2n - VvZn,Zn,Zn,Zn) + n(‘/2n+2,2n,2n,2n - VZn,Zn,Zn,Zn) + (VZn+2,2n,2n,2n - EVZn,Zn,Zn,Zn)- (Al)
Then, with the formula
1
h+ =

rh+ Ly =" 3 |nm =
2 h

_ "
%h!ﬁ, (A2)

10



IOP Publishing Phys. Scr. 97 (2022) 025205 J-H Chang et al

one can have

1 2 v — l 2n — v — l ’
V2n,2n,2n,2n = EZ 2 21> (A3)

and

2

1200, - N - Y an—wen—v-1

VZ(nfl),2n,2n,2n = F Z 2 2 1\2 .
T =0 v n — v (ZH—V—E)

As the inequality @n —v)@n

@n-v@n-—v-1
(2n —v— %) X 5
1 2n— D) l 2n — v — —
Vat—1),2m,2n,0n < Z 21>
V2 v

< lishold, we can know that

2n—v
1 2n—y—12
:V2n,2n,2n,2n* \/— Z 21> (A4)
v=2n-—1 1% 2n — v
aswell as
1) _ 1)?
v 1 iy_l 2n — v — — 2 (Zn V+2)
Ao = pr el 2 2\ 1en—vrnen—vt2)
v 2n — v
[ 2 1\2
) 2 V_l 2n—y—l ) (271—1/—1-5)
<— Z 2 2
N2 | o v m— 2v—1Q2n—v+ 1)2n —v+2)
1)\2
12n _l m — _ -
+E 14 2] n 14 5 ) (AS)
v=3 v 2n — v
(2n7u+§)2

Moreover, as the inequality an < lisalsohold, we can have

—v+1)2n—v+2)

2 1\2
i[y%) 2n—1/—% 2 (2n_y+5)

! » m— 2v—1Q2n—v+ 1)Q2n —v+2)

s tn = )Y '2[2n(4n — ’(4n =37 4n@n — D’(4n = 37,
222! | 2n + 1 m— 1 ’
B 12
_ "
< 732 % [(4n — 1)2(4n — 3)2 + 32n — 1)*(4n — 3)2],
n)!
B 12
4n — 5N
= 73/2 % (448n* — 9921% + 796n% — 276n + 36). (A6)
n):
Then, with the fact that
2 1 1)’ TR
S|V 3 Mm—v= 2 e Gn = DN T so6mt — 896n° + 47207 — 96n + 9], (A7)
=0\ v m— v 2°"(2m)!

from equations (A6) and (A7), one can reach at the following inequality:

2 1 Y 211—1/—1—12 2 1 1)
R N 2 _ _ - =
Z[V 2) 2n — v 5 ( z) < Z[V 2) 2n —v >, s

! ” m— 2v—1Q2n—v+ 1)@2n —v+2)

when n > 1. Consequently, combining equations (A5) and (A8), we have

1 1Y
1 ——ll2n—-—v—- —
VZ(n+1),2n,2n,2n < EVZn,Zn,Zn,Zn Z[V ) 2 . (A9)
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With the results obtained in equations (A1), (A4) and (A9), the inequality shown in equation (17) can be
reached

‘/vZn,Zn,Zn,Zn - (477 + 1)VZn 2n,2n,2n

> 1 1 :
n
—n V- — y—— 2n — v — —
< Z 2 2

N2, v 2“ T y=3 v 2n — v

1 2
Z”“ 2”””5. (A10)
2 v 2n — v

Itis noted that the last two terms shown in equation (A10) is negative when n > 2.
This completes the proof.
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