Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw* (Dated: Spring, 2021)

Syllabus:

Date	Topic	To Know	To Think
week 6	Two-mode Squeezed states	□ EPR pair	☐ Quantum Discord
(4/27, 4/29),		☐ Cat states	☐ Entanglement
(5/4, 5/7)		\square non-Gaussian states	☐ Steering
			☐ Bell's inequality
week 7	Optical devices	☐ Beam splitter	☐ linear optics
(5/11, 5/14)		☐ Mach-Zehnder interferometer	
week 8	Interferometry	\square Young's Interferometry, $g^{(1)}$	☐ Quantum Phase Estimation
(5/11, 5/14,		\square HBT-Interferometry, $g^{(2)}$	☐ Quantum Fisher Information
(4/27, 4/29)			

• Assignment

Deadline: 4:00PM, Tuesday, May 4th

1. Try to unveil the difference between squeezed coherent states $|\xi, \alpha\rangle$ and coherent squeezed states $|\alpha, \xi\rangle$ by expanding these states in the number state basis. Here, show that

squeezed coherent states:
$$|\xi, \alpha\rangle = \hat{S}(\xi) \hat{D}(\alpha)|0\rangle = \hat{S}\xi \sum_{n=0}^{\infty} C_n|n\rangle$$
 (1)

coherent squeezed states:
$$|\alpha, \xi\rangle = \hat{D}(\alpha) \, \hat{S}(\xi) |0\rangle = \hat{D}(\alpha) \, \sum_{m=0}^{\infty} C_{2m} |2m\rangle = \sum_{m=0}^{\infty} C_{2m} |2m\rangle,$$
 (2)

here

$$C_n = \exp\left[\frac{-1}{2}|\gamma|^2 \left|\frac{1}{2}\gamma^2 e^{-i\theta} \tanh(r)\right| \left[n! \cosh(r)\right]^{-1/2} \left[\frac{1}{2}e^{i\theta} \tanh(r)\right]^{n/2} H_n(\gamma[e^{i\theta} \sinh(2r)]^{-1/2}),$$
(3)

$$C_m = exp\left[\frac{-1}{2}|\alpha|^2 - \frac{1}{2}\alpha^{*2}e^{i\theta}\tanh(r)\right]\left[n!\cosh(r)\right]^{-1/2}\left[\frac{1}{2}e^{i\theta}\tanh(r)\right]^{n/2}H_n(\gamma[e^{i\theta}\sinh(2r)]^{-1/2}),\tag{4}$$

with the squeezing parameter $\xi = r e^{i\theta}$ and $\gamma = \alpha \cosh(r) + \alpha^* e^{i\theta} \sinh(r)$.

Ref. J. J. Gong, and P. K. Aravind, "Expansion coefficients of a squeezed coherent state in the number state basis," American Journal of Physics 58, 1003 (1990).

• Take-home Messages:

- 1. Correlation (Coherence) functions
- 2. First-order Correlation: Young's Interferometry
- 3. Second-order Correlation: Hanbury Brown and Twiss (HBT) Interferometry
- 4. Photon Bunching and Anti-bunching

• From Scratch!!

• With the analogy to the *classical* correlation function, we have the first-order quantum correlation function by normalizing it to one:

$$g^{(1)}(x_1, x_2) = \frac{G^{(1)}(x_1, x_2)}{[G^{(1)}(x_1, x_1)G^{(1)}(x_2, x_2)]^{1/2}},$$
(5)

where $G^{(1)}(x_1, x_2) = \text{Tr}\{\hat{\rho}\hat{E}^{(-)}(x_1) \cdot \hat{E}^{(+)}(x_2)\}$. Again, as the classical one, we have the degree of coherence, if

• The classical second-order coherence function is defined as

$$\gamma^{(2)}(\tau) = \frac{\langle I(t)I(t+\tau)\rangle}{\langle I(t)\rangle^2} = \frac{\langle E^*(t)E^*(t+\tau)E(t+\tau)E(t)\rangle}{\langle E^*(t)E(t)\rangle^2}.$$
 (6)

 \bullet We define the normalized second-order quantum correlation function,

$$g^{(2)}(x_1, x_2) = \frac{G^{(2)}(x_1, x_2)}{[G^{(1)}(x_1, x_1)G^{(1)}(x_2, x_2)]},$$
(7)

where $g^{(2)}(x_1, x_2)$, is the joint probability of detecting one photon at (r_1, t_1) and (r_2, t_2) . At a fixed position, $g^{(2)}$ depends only on the time difference,

$$g^{(2)}(\tau) = \frac{\langle \hat{E}^{(-)}(t)\hat{E}^{(-)}(t+\tau)\hat{E}^{(+)}(t+\tau)\hat{E}^{(+)}(t)\rangle}{\langle \hat{E}^{(-)}(t)\hat{E}^{(-)}(t)\rangle\langle \hat{E}^{(-)}(t+\tau)\hat{E}^{(-)}(t+\tau)\rangle}.$$
(8)

^{*}Electronic address: rklee@ee.nthu.edu.tw