Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee^1

Syllabus:

Date	Topic	To Know	To Think
weeks 9-10	Full Quantum model	☐ Jaynes-Cummings	☐ Vacuum Rabi oscillation
(5/18, 5/21, 5/25,		☐ Dicke model	□ Collective interaction
5/28)		□ Cavity-QED	□ Circuit-QED
week 11-12	Open systems	☐ Weisskopf-Wigner approximation	☐ dissipation-fluctuation theorem
(6/1, 6/4, 6/8,		☐ Born-Markovian approximation	□ non-Markovian
6/11)		☐ Master equation	
		☐ Lindblad equation	
week 13-14	Selected Applications of QO	☐ Quantum Sensor	☐ Gravitational Wave Detectors
(6/15, 6/18)		☐ Test of Quantum Mechanics	□ Quantum Zeno effect
		☐ Quantum Communication	□ Quantum Key Distribution
		□ Quantum Computing	□ Quantum Photonic Circuit

• Take-home Messages:

- 1. Dissipation-Fluctuation theorem
- 2. Input-output formulation of optical cavity
- 3. Cavity-QED
- $4.\ \,$ Mollow's triplet in the fluorescence spectrum
- 5. Master equation
- 6. Born-Markovian approximation

• Assignment

Deadline: 4:00PM, Tuesday, June 15th

• (1) Below the threshold, the Hamiltonian for an Optical Parametric Oscillator (OPO) is

$$\hat{H}_S = \hbar \omega_0 \hat{a}^{\dagger} \hat{a} + \frac{i\hbar}{2} (\epsilon \hat{a}^{\dagger 2} - \epsilon^* \hat{a}^2). \tag{1}$$

Show that the Fourier components for the output field is

$$\hat{a}_{O}(\omega) = \frac{1}{([\frac{\gamma}{2} - i(\omega - \omega_{0})]^{2} - |\epsilon|^{2}} \{ [(\frac{\gamma}{2})^{2} + (\omega - \omega_{0})^{2} + |\epsilon|^{2}] \hat{a}_{I}(\omega) + \epsilon \gamma \hat{a}_{I}^{\dagger}(-\omega) \},$$
(2)

If we define the output quadrature phase operator:

$$\begin{split} \hat{X}_1^O(\omega) &= \hat{a}_O(\omega) + \hat{a}_O^\dagger(-\omega), \\ \hat{X}_2^O(-\omega) &= -i[\hat{a}_O(\omega) - \hat{a}_O^\dagger(-\omega)]. \end{split}$$

show that the two output spectra are

$$S_1^O(\omega) \propto 1 + \langle \hat{X}_1^O(\omega), \hat{X}_1^O(\omega') \rangle = 1 + \frac{2\gamma |\epsilon|}{(\frac{\gamma}{2} - |\epsilon|)^2 + (\omega - \omega_0)^2} \,\delta(\omega + \omega'), \tag{3}$$

$$S_2^O(\omega) \propto 1 + \langle \hat{X}_2^O(\omega), \hat{X}_2^O(\omega') \rangle = 1 - \frac{2\gamma |\epsilon|}{(\frac{\gamma}{2} + |\epsilon|)^2 + (\omega - \omega_0)^2} \delta(\omega + \omega'), \tag{4}$$

where the correlation function is defined as

$$\langle U, V \rangle \equiv \langle UV \rangle - \langle U \rangle \langle V \rangle.$$

Then, a squeezing occurs in the X_2 quadrature, for $S_2^O(\omega) < 1$.

^{*}Electronic address: rklee@ee.nthu.edu.tw