Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw* (Dated: Spring, 2021)

Syllabus:

Date	Topic	To Know	To Think
week 8	Photon-Atom Interactions	☐ Einstein's AB coefficients	□ Rabi-frequency
(5/11, 5/14)		□ Classical model	☐ Wavefunction Revival
		☐ Semi-Classical	
weeks 9-10	Full Quantum model	☐ Jaynes-Cummings	☐ Vacuum Rabi oscillation
(5/18, 5/21, 5/25,		☐ Dicke model	\square Collective interaction
5/28)		□ Cavity-QED	□ Circuit-QED
week 11-12	Open systems	☐ Weisskopf-Wigner approxima-	\square dissipation-fluctuation theorem
(6/1, 6/4, 6/8,		tion	□ non-Markovian
6/11)		☐ Born-Markovian approxima-	
		tion	
		☐ Master equation	
		☐ Lindblad equation	

• Assignment

Deadline: 4:00PM, Tuesday, May 18th

(1) Interaction Hamiltonian: for the dipolar interaction Hamiltonian,

$$\hat{H}_0 = \frac{1}{2}\hbar\omega\hat{\sigma}_z + \hbar\nu(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}) \tag{1}$$

$$\hat{H}_1 = \hbar g(\hat{\sigma}_+ \hat{a} + \hat{a}^\dagger \hat{\sigma}_-), \tag{2}$$

show that the corresponding interaction picture Hamiltonian is

$$\hat{H}_I(t) = \exp(i\hat{H}_0 t/\hbar) \hat{H}_1(t) \exp(-i\hat{H}_0 t/\hbar) \tag{3}$$

$$= \hbar q [\hat{\sigma}_{+} \hat{a} e^{i(\omega - \nu)t} + \hat{a}^{\dagger} \hat{\sigma}_{-} e^{-i(\omega - \nu)t}], \tag{4}$$

under the rotating-wave approximation.

(2) Vacuum Rabi oscillation: the Hamiltonian for a two-level atom interaction with a single quantized fields can be modeled by the Jaynes-Cummings Hamiltonian:

$$\hat{H} = \frac{1}{2}\hbar\omega\hat{\sigma}_z + \hbar\nu(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}) + \hbar g(\hat{\sigma}_+\hat{a} + \hat{a}^{\dagger}\hat{\sigma}_-),\tag{5}$$

where $\Delta \equiv \omega - \nu$. Show that for the initially excited state, $c_{e,n}(0) = c_n(0)$ and $c_{g,n+1}(0) = 0$, the solutions for are

$$c_{g,n}(t) = c_n(0)\left[\cos(\frac{\Omega_n t}{2}) - \frac{i\Delta}{\Omega_n}\sin(\frac{\Omega_n t}{2})\right]e^{i\Delta t/2},\tag{6}$$

$$c_{e,n+1}(t) = -c_n(0) \frac{2ig\sqrt{n+1}}{\Omega_n} \sin(\frac{\Omega_n t}{2}) e^{i\Delta t/2},$$
 (7)

where the Rabi frequency is $\Omega_n^2 = \Delta^2 + 4g^2(n+1)$. Show that the population inversion of a two-level atom is,

$$W(t) = \sum_{n} |c_{e,n}(t)|^2 - |c_{g,n}(t)|^2 = \sum_{n=0}^{\infty} |c_n(0)|^2 \left[\frac{\Delta^2}{\Omega_n^2} + \frac{4g^2(n+1)}{\Omega_n^2} \cos(\Omega_n t) \right].$$
(8)

(3) Dressed states: consider the Jaynes-Cummings Hamiltonian,

$$\hat{H} = \frac{1}{2}\hbar\omega_0\hat{\sigma}_z + \hbar\omega\hat{a}^{\dagger}\hat{a} + \hbar g(\hat{a}\hat{\sigma}_+ + \hat{a}^{\dagger}\hat{\sigma}_-),\tag{9}$$

with the product states $|e\rangle|n\rangle$, $|g\rangle|n+1\rangle$, etc., referred to as the *bare states*, the interaction term in \hat{H} causes only transitions of the type,

$$|e\rangle|n\rangle \leftrightarrow |g\rangle|n+1\rangle, |e\rangle|n-1\rangle \leftrightarrow |g\rangle|n\rangle,$$
(10)

1. In therms of $|e\rangle|n\rangle$ and $|g\rangle|n+1\rangle$, we can define

$$|\psi_{1n}\rangle = |e\rangle|n\rangle \tag{11}$$

$$|\psi_{2n}\rangle = |g\rangle|n+1\rangle$$
 (12)

write down the matrix representation of $\hat{H}^{(n)}$ for these bases, i.e., $H_{ij}^{(n)} = \langle \psi_{in} | \hat{H}^{(n)} | \psi_{jn} \rangle$.

- 2. Find the eigen-energy of $\hat{H}^{(n)}$.
- 3. Construct the *dressed state*, the associated eigen-state of $\hat{H}^{(n)}$, i.e.

$$|n,+\rangle = c_1|\psi_{1n}\rangle + c_2|\psi_{2n}\rangle, \tag{13}$$

$$|n,-\rangle = c_3|\psi_{1n}\rangle + c_4|\psi_{2n}\rangle, \tag{14}$$

find the coefficients c_i , i = 1, 2, 3, 4.

• Take-home Messages:

- 1. Lorentz model
- 2. Rabi oscillation
- 3. Jaynes-Cummings Hamiltonian
- 4. Interaction Picture
- 5. Vacuum Rabi oscillation
- 6. Spontaneous emission due to the vacuum fields

^{*}Electronic address: rklee@ee.nthu.edu.tw