Quantum Optics, IPT5340

Time: T7T8F7F8 (15:30-17:20, Tuesday, and 16:00-17:20, Friday), at Room 208, Delta Hall

Ray-Kuang Lee¹

¹Room 911, Delta Hall, National Tsing Hua University, Hsinchu, Taiwan. Tel: +886-3-5742439; E-mail: rklee@ee.nthu.edu.tw* (Dated: Spring, 2021)

Syllabus:

Date	Topic	To Know	To Think
week 1	Quantum SHO	\square Fock states, $ n\rangle$	□ single-photon detection
(3/2, 3/9)		\square creation operator, \hat{a}^{\dagger}	□ Wave-Particle Duality
			□ photon-number resolving
		□ Vacuum state	☐ Shot Noise Limit
(3/12, 3/16, 3/19)		☐ Quantum Fluctuations	☐ Casimir Force
		-	

• Assignment

Deadline: 4:00PM, Friday, March 19th

- Simulate Electromagnetically Induced Transparency (EIT) by coupled Simple Harmonic Oscillators: referring to the paper by C. L. Garrido Alzar et al., "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37 (2002).
 - 1.(a) Plot the frequency dependence of the absorption of the probe energy by particle 1, i.e., detuning v.s. probe absorption power.
 - 1.(b) Show the transparency window.
 - 1.(c) Instead of the symmetric profile int probe absorption power spectrum, show the condition to have asymmetric spectrum, i.e., Fano spectrum.

- 2. Quantum Simple Harmonic Oscillation: $\hat{H} = \hbar\omega(\hat{a}^{\dagger}\,\hat{a} + \frac{1}{2}),$
- 2.(a) For the ground state eigenfunction, i.e., $\hat{a}|n=0\rangle=0$, find the corresponding wave function in the x- and p-spaces, respectively. That is to find $\Phi(x)$ and $\tilde{\Psi}(p)$, respectively,

$$\Phi(x) \equiv \langle x|0\rangle, \tag{1}$$

$$\tilde{\Psi}(p) \equiv \langle p|0\rangle. \tag{2}$$

2.(b) Show by direct integration that

$$\langle n|\hat{p}|n\rangle = 0,\tag{3}$$

$$\langle n|\Delta\hat{p}^2|n\rangle = \hbar m\omega - m^2\omega^2\langle n|\hat{x}^2|n\rangle. \tag{4}$$

2.(c) Use the operator method to calculate the expectation values $\langle \hat{p}^2 \rangle$ and $\langle \hat{x}^2 \rangle$ in the energy eigenstate $|n\rangle$. Hence prove the quantum analog of the *virital theorem*:

$$\langle V \rangle = \langle T \rangle = \langle H \rangle / 2,$$
 (5)

the equal partition of the total energy H, divided into the kinetic and potential energies, T and V, respectively.

• Take-home Messages:

- 1. Class Materials: http://mx.nthu.edu.tw/~rklee
- 2. Discussion Channel: Quantum Optics, Lecture@NTHU, Slack, quantumoptics-zgq1695.slack.com
- 3. "According to quantum mechanics, the vacuum is not empty, but teeming with virtual particles that constantly wink in and out of existence."
- 4. Vacuum state $|0\rangle$
- 5. eigen-energy of SHO: $E = \hbar\omega(n + \frac{1}{2}), \qquad n = 0, 1, 2, 3, \dots$
- 6. Creation operator \hat{a}^{\dagger}
- 7. Annihilation \hat{a}
- 8. The Force of Empty Space, https://physics.aps.org/story/v2/st28

- From Scratch !!
- Quantum SHO:

$$\hat{H} = \frac{1}{2} \frac{\hat{p}^2}{m} + \frac{1}{2} k \,\hat{x}^2,\tag{6}$$

where the \hat{x} and \hat{p} are non-commute operators, *i.e.*,

$$[\hat{x}, \hat{p}] = i\hbar. \tag{7}$$

 \bullet The Hermite-Gaussian solutions associated with Hermite polynomials H_n

$$\psi(\xi) = H_n(\xi) \exp[-\xi^2/2], \qquad \epsilon = 2n+1, \qquad n = 0, 1, 2, 3...$$
 (8)

 \bullet For the corresponding eigen-energy:

$$E = \frac{\hbar\omega}{2} \epsilon = \hbar\omega(n + \frac{1}{2}), \qquad n = 0, 1, 2, 3, \dots$$
 (9)

• Quantum SHO:

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}). \tag{10}$$

• Free particle expansion: $\hat{H} = \frac{\hat{p}^2}{2m}$, with the unitary operator

$$\hat{U} = \exp(-\frac{i}{\hbar} \frac{\hat{p}^2}{2m} t). \tag{11}$$

^{*}Electronic address: rklee@ee.nthu.edu.tw