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I. LANGEVIN NOISE

Heisenberg-Langevin equation is a directly correspondence to classical description of stochastic system. In many
cases, Heisenberg-Langevin equation is nonlinear, and in general it is extremely difficult to deal with the Heisenberg-
Langevin equation. Another method is to develop a Schrödinger or interaction picture analysis, in this way we want
to use a linear deterministic differential equation for the reduced system density operator. Naturally, as the quantum
system is open, there is statistical as well as quantum uncertainty and a true wave function description is no longer
possible.

II. MASTER EQUATION

We consider a system S interacting with a reservoir R via the interaction Hamiltonian V̂ . The combined density
operator is denoted by ρ̂(t). Assume that at an initial time t = 0, the two systems are uncorrelated,

ρ̂(t = 0) = ρ̂S(0)⊗ ρ̂R(0). (1)

In the interaction picture, the dynamics of ρ̂(t) is

d
dt
ρ̂(t) =

1

i~
[ĤI(t), ρ̂(t)]. (2)

Since the number of degrees of freedom of the reservoir is very large, it is impossible to keep track of its quantum
evolution. We can only focus on the system with a reduced density operator, by tracing over the reservoir degrees of
freedom,

d
dt
ρ̂S(t) =

1

i~
TrR([ĤI(t), ρ̂(t)]), (3)

where

d
dt
ρ̂(t) =

1

i~
[ĤI(t), ρ̂(t)]. (4)

Without any approximation, the master equation for the reduced density operator is,

d
dt
ρ̂S(t) = (

1

i~
)2
∫ t

0

dt′TrR([ĤI(t), [ĤI(t
′), ρ̂(t′)]]) +

1

i~
TrR([ĤI(t), ρ̂(0)]). (5)

Since TrR([ĤI(t), ρ̂(0)]) vanish for all the interaction Hamiltonians of interest in quantum optics, we have the master
equation,

d
dt
ρ̂S(t) = (

1

i~
)2
∫ t

0

dt′TrR([ĤI(t), [ĤI(t
′), ρ̂(t′)]]), (6)
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III. BORN-MARKOV APPROXIMATION

Four key approximations are to be used in the following,

1. Rotating-wave approximation,

2. Born approximation,

ρ̂(t′) = ρ̂S(t′)⊗ ρ̂R(t′),

3. The initial radiation field density operator commutes with the free Hamiltonian and the reservoir is not affected
by the interaction with the system,

ρ̂R(t) = TrS [ρ̂(t)] = ρ̂R(0),

4. Markov approximation,

ρ̂S(t′) ≈ ρ̂S(t),

With the Born-Markov approximation, the master equation becomes

d
dt
ρ̂S(t) = (

1

i~
)2
∫ t

0

dt′TrR([ĤI(t), [ĤI(t
′), ρ̂S(t)⊗ ρ̂R(0)]]). (7)

IV. EXAMPLES

• atom damping by field reservoirs,

• field damping by field reservoirs,

• field damping by atomic reservoirs,

V. ATOM DAMPING BY FIELD RESERVOIRS

Consider a two-level atom damped by a field reservoir in free space, the interaction Hamiltonian is

ĤI =
∑
k

~(gkσ̂−â
†
ke
−i(ω−ωk)t + H. C). (8)

Assume the reservoir density operator is a multimode thermal field,

ρ̂R =
∏
k

∑
n

exp(−~ωkn
kBT

)

1− exp(−~ωkn
kBT

)
|n〉kk〈n|. (9)

The equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂a(t) is,

d
dt
ρ̂a(t) = (

1

i~
)2
∫ t

0

dt′TrR([ĤI(t), [ĤI(t
′), ρ̂a(t)⊗ ρ̂R(0)]]), (10)

= −1

2
Γ{nth[σ̂−σ̂+ρ̂a − σ̂+ρ̂aσ̂−] + (nth + 1)[σ̂+σ̂−ρ̂a − σ̂−ρ̂aσ̂+])}+ H. C, (11)
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VI. FIELD DAMPING BY FIELD RESERVOIRS

Consider a single-mode field in a cavity with a finite leakage rate, and assume the reservoir density operator is a
multimode thermal field,

ρ̂R =
∏
k

∑
n

exp(−~ωkn
kBT

)

1− exp(−~ωkn
kBT

)
|n〉kk〈n|. (12)

The equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt
ρ̂f (t) = (

1

i~
)2
∫ t

0

dt′TrR([ĤI(t), [ĤI(t
′), ρ̂f (t)⊗ ρ̂R(0)]]), (13)

= −
∫ t

t0

dt′
∑
k

g2k{nth[ââ†ρ̂f (t′)− â†ρ̂f (t′)â]e−i(ω−ωk)(t−t′) (14)

+(nth + 1)[â†âρ̂f (t′)− âρ̂f (t′)â†])ei(ω−ωk)(t−t′)}+ H. C. (15)

By replacing
∑
k g

2
k with the integral

∫
dωkD(ωk)g(ωk)2, we have∫ t

t0

dt′
∑
k

g2ke
±i(ω−ωk)(t−t′) =

∫ t

t0

dt′
∫

dωkD(ωk)g(ωk)2e±i(ω−ωk)(t−t′), (16)

≈
∫

dωkD(ωk)g(ωk)2πδ(ω − ωk), (17)

≈ πD(ω)g(ω)2 ≡ 1

2
(
ω

Qe
), (18)

where ω/Qe is the cavity photon decay rate due to leakage (output coupling) via a partially reflecting mirror.
The equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt
ρ̂f (t) = −1

2
(
ω

Qe
){nth[ââ†ρ̂f (t′)− â†ρ̂f (t′)â] + (nth + 1)[â†âρ̂f (t′)− âρ̂f (t′)â†])}, (19)

+H. C. (20)

VII. FIELD DAMPING BY ATOMIC RESERVOIRS

Consider the damping of an optical cavity mode by a two-level atomic beam reservoir. This is the reverse problem
of a laser. The statistics of the atomic reservoir is determined by the Boltzmann distribution,

ρ̂R=atom(t = 0) =

(
ρaa 0
0 ρbb

)
= ρaa|a〉〈a|+ ρbb|b〉〈b|, (21)

where

ρaa =
1

1 + exp(~ω0/kBT )
, and ρaa =

exp(~ω0/kBT )

1 + exp(~ω0/kBT )
. (22)

Assume there is no quantum coherence between the upper and lower states, ρab = ρba = 0.
The interaction Hamiltonian for a single atom is

ĤI = ~g(σ̂−â
† + σ̂+â) = ~g

(
0 â
â† 0

)
. (23)

At t = 0, the atom-field density operator is,

ρ̂(t) = ρ̂f (t)⊗ ρ̂R =

(
ρaaρ̂f (t) 0

0 ρbbρ̂f (t)

)
. (24)
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The terms for the commutator are

[ĤI , [ĤI , ρ̂(t)]] = ~g2
(
ââ†ρaaρ̂f (t)− âρbbρ̂f (t)â† 0

0 â†âρbbρ̂f (t)− â†ρeeρ̂f (t)â

)
(25)

+H. C. (26)

The equation of motion for the reduced density operator TrR[ρ̂(t)] ≡ ρ̂f (t) is,

d
dt
ρ̂f (t) = (

1

i~
)2
∫ t

0

dt′TrR([ĤI(t), [ĤI(t
′), ρ̂f (t)⊗ ρ̂R(0)]]). (27)

Assume that r atoms are injected into the cavity per second, and they spend an average time of τ seconds inside the
cavity, i.e. ∫ τ

0

dt′rt′ =
1

2
rτ2, (28)

then,

d
dt
ρ̂f (t) = −1

2
Re[ââ

†ρ̂f − â†ρ̂f â]− 1

2
Rg[â

†âρ̂f − âρ̂f (t)â†] + H.C, (29)

where

Re = rρaag
2τ2, and Rg = rρbbg

2τ2. (30)

Here, Re is the rate coefficient for photon emission by atoms per second, Rg is the rate coefficient for photon absorption
by atoms per second, and the cavity photon decay rate ν

Q0
and the thermal equilibrium photon number nth are defined

by

ν

Q0
≡ Rg −Re, and Re(1 + nth) = Rgnth → nth =

Re
Rg −Re

=
1

exp(~ω/kbT )− 1
. (31)

The later one condition gives the thermal equilibrium photon number nth. We note that Re(1 + nth) is the sum of
spontaneous and stimulated emission rate per second; while Rgnth is (stimulated) absorption rate per second.

The diagonal elements of the reduced density matrix TrR[ρ̂(t)] are

d
dt
ρn,n(t) = − ν

Q0
{[nth(n+ 1)− (nth + 1)n]ρn,n (32)

−nthρn−1,n−1 − (nth + 1)(n+ 1)ρn+1,n+1}, (33)
= [−Re(n+ 1)−Rgn]ρnn +Renρn−1,n−1 +Rg(n+ 1)ρn+1,n+1, (34)

Equilibrium is obtain when the net flow between all pairs of level vanishes,

Rgnρn,n = Renρn−1,n−1, or ρn,n =
nth

nth + 1
ρn−1,n−1. (35)

This condition is referred to as detailed balance. The solution for detailed balance is

ρn,n = [1− exp(−~ω/kBT )]exp(−n~ω/kBT ), (36)

with nth = 1
exp(~ω/kbT )−1 . Detailed balance in this case gives the thermal (Bose-Einstein) distribution with an average

photon number,

〈n〉 =
∑
n

ρn,nn =
1

exp(~ω/kBT )− 1
= nth, (37)

this is the result we use for the thermal radiation field. Although the filed ρ̂f may initially be in a pure state, the
process of tracing over the (unobserved) atomic states leads to a field in a mixed state, ρ̂f =

∑
n ρn,n|n〉〈n|. The

effect of the atomic beam is to bring the field to the same temperature as that of atoms.
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VIII. RESERVOIR, DECOHERENCE, AND MEASUREMENT

The reservoir theory lies in the process of tracing over the reservoir coordinates, which induces dissipation and
decoherence of the system. At the same time, this is an irreversible dynamics for the system. This process corresponds
to the lack of measurement as to whether the atom is in the upper level or in the lower level after interaction with the
field. If the initial and final states of the atom are know, i.e., if the information concerning the atomic beam is not
discarded, the field remains in a pure state. The primary difference between the reservoir and quantum measurement
theories is whether information stored in the environment (reservoir) that interacts with system is discarded or read
out.


