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I. CLASSICAL CORRELATION FUNCTIONS

FIG. 1: Young’s interferometer.

Consider Young’s two-slit interference, the intensity at the output is described by

I(r) = 〈|E(r, t)|2〉 = 〈|K1E(r1, t1) +K2E(r2, t2)|2〉, (1)

where K1 and K2 are two constants, and time-average is defined as

〈f(t)〉 = lim
T→∞

1

T

∫ T

0

f(t) dt, (2)

a stationary average. The interference pattern has the form

I(r) = I1 + I2 + 2
√
I1I2Re[γ(1)(x1, x2)], (3)
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where I1 = |K1|2〈|E(r1, t1)|2〉 and I2 = |K2|2〈|E(r2, t2)|2〉 are the background (D.C) intensities. Here, the mutual
correlation function, γ(1)(x1, x2) with xi = ri, ti is introduced:

γ(1)(x1, x2) =
〈E∗(x1)E(x2)〉√
〈|E(x1)|2〉〈|E(x2)|2〉

. (4)

With such a correlation function, one can define the degree of coherence as

• complete coherence:

|γ(1)(x1, x2)| = 1.

• partial coherence,

0 < |γ(1)(x1, x2)| < 1.

• complete incoherence:

|γ(1)(x1, x2)| = 0.

A. Chaotic light

If we apply a Lorentzian correlation function, that is

〈E∗(t)E(t+ τ)〉 = E2
0e
−iω0te−|τ |/τ0 , (5)

then the corresponding classical correlation function

|γ(τ)| = e−2|τ |/τ0 . (6)

This is a typical model for chaotic light, with a given correlation time τ0.
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II. QUANTUM PHOTODETECTORS

FIG. 2: A illustration of semiconductor photodetector.

With the same analogy, we consider the single-atom detector couples to the quantized field through the dipole
interaction,

ĤI = −d̂ · Ê(r, t).

Here, we assume that the atom is initially in a ground state |g〉 and the field is in some state |ß〉. Upon the absorption
of radiation, the atom makes a transition to the state |e〉 and the field to the state |f〉, then

〈f |〈e|ĤI |g〉|i〉 ∝ −〈e|d̂|g〉 〈f |â|i〉, (7)

where Ê(r, t) =
∑
j cj [âj(t) + â†j(t)] = Ê(+)(r, t) + Ê(−)(r, t). The term associated with |〈e|d̂|g〉‖2 is the quantum

efficiency of a photodetector.
The probability that the detector measures all the possible final states,∑

f

|〈f |â|i〉|2 = 〈i|Ê(−)(r, t) · Ê(+)(r, t)|i〉. (8)

If we define a density operator,

ρ̂ =
∑
i

Pi|i〉〈i|, (9)

then the expectation value can be replaced by the ensemble average,

Tr{ρ̂Ê(−)(r, t) · Ê(+)(r, t)} =
∑
i

Pi〈i|Ê(−)(r, t) · Ê(+)(r, t)|i〉. (10)
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III. FIRST-ORDER QUANTUM CORRELATION FUNCTION

With the analogy to the classical correlation function, we have the first-order quantum correlation function by
normalizing it to one:

g(1)(x1, x2) =
G(1)(x1, x2)

[G(1)(x1, x1)G(1)(x2, x2)]1/2
, (11)

where G(1)(x1, x2) = Tr{ρ̂Ê(−)(x1) · Ê(+)(x2)}. Again, as the classical one, we have the degree of coherence, if

• complete coherence:

|g(1)(x1, x2)| = 1.

• partial coherence,

0 < |g(1)(x1, x2)| < 1.

• complete incoherence:

|g(1)(x1, x2)| = 0.

Consider a single-mode plane wave, Ê(+)(x) = iKâei(k·r−ωt). Then

1. If the field is in a number state |n〉, we have

G(1)(x, x) = K2n, G(1)(x1, x2) = K2nei[k(r1−r2)−ω(t1−t2)], (12)

and

|g(1)(x1, x2)| = 1. (13)

2. If the field is a coherent state |α〉, we have

G(1)(x, x) = K2|α|2, G(1)(x1, x2) = K2|α|2ei[k(r1−r2)−ω(t1−t2)], (14)

and

|g(1)(x1, x2)| = 1, (15)
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IV. CLASSICAL SECOND-ORDER CORRELATION FUNCTION

FIG. 3: Hanbury Brown and Twiss (HBT) interferometer.

We can extend the concept about correlation function to higher-orders. The classical second-order coherence
function is defined as

γ(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

=
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉

〈E∗(t)E(t)〉2
. (16)

If the detectors are at different distances from the beam splitter,

γ(2)(x1, x2) =
〈I(x1)I(x2)〉
〈I(x1)〉〈I(x2)〉

=
〈E∗(x1)E∗(x2)E(x2)E(x1)〉
〈|E(x1)|2〉〈|E(x2)|2〉

. (17)

The field is said to be classical coherence to second order if |γ(1)(x1, x2)| = 1 and γ(2)(x1, x2) = 1, with the factoriza-
tion,

〈E∗(x1)E∗(x2)E(x2)E(x1)〉 = 〈|E(x1)|2〉〈|E(x2)|2〉. (18)

For zero time-delay coherence function, we have

γ(2)(0) =
〈I(t)2〉
〈I(t)〉2

. (19)

For a sequence of N measurements taken at times t1, t2, . . . , tN ,

〈I(t)〉 =
I(t1) + I(t2) + · · · I(tN )

N
, and 〈I(t)2〉 =

I(t1)2 + I(t2)2 + · · · I(tN )2

N
. (20)

From Cauchy’s inequality, (I1 − I2)2 ≥ 0,

2I(t1)I(t2) ≤ I(t1)2 + I(t2)2,

we have

〈I(t)2〉 ≥ 〈I(t)〉2, or 1 ≤ γ(2)(0) <∞. (21)

For non-zero delay, we have

[I(t1)I(t1 + τ) + · · · I(tN )I(tn + τ)]2 ≤ [I(t1)2 + · · · I(tN )2][I(t1 + τ)2 + · · · I(tN + τ)2], (22)

then

〈I(t)I(t+ τ)〉 ≤ 〈I(t)〉2, or 1 ≤ γ(2)(τ) ≤ γ(2)(0), (23)

where 1 ≤ γ(2)(0) <∞.
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FIG. 4: Left: Photon anti-bunching effect from single photon source; Right: Photon bunching effect from thermal states.

1. For a light source containing a large number of independently photons,

γ(2)(τ) = 1 + |γ(1)(τ)|2. (24)

2. Since 0 ≤ |γ(1)(τ)|2 ≤ 1, it follows that for all kinds of chaotic light.

1 ≤ γ(2)(τ) ≤ 2. (25)

3. For light source with a Lorentzian spectrum,

γ(2)(τ) = 1 + e−2|τ |/τ0 . (26)

4. For τ →∞,

γ(2)(τ)→ 1. (27)

5. For zero delay, τ → 0,

γ(2)(τ)→ 2. (28)

6. Hanbury Brown and Twiss experiment shows that if the photon are emitted independently by the source, then
the photons arrive in pairs at zero time delay. This is called the photon bunching effect.
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FIG. 5: Experimental data for the photon anti-bunching effect from single photon source.

V. QUANTUM SECOND-ORDER CORRELATION FUNCTION

With the same concept, we define the normalized second-order quantum correlation function,

g(2)(x1, x2) =
G(2)(x1, x2)

[G(1)(x1, x1)G(1)(x2, x2)]
, (29)

where g(2)(x1, x2), is the joint probability of detecting one photon at (r1, t1) and (r2, t2). At a fixed position, g(2)
depends only on the time difference,

g(2)(τ) =
〈Ê(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(t)〉
〈Ê(−)(t)Ê(−)(t)〉〈Ê(−)(t+ τ)Ê(−)(t+ τ)〉

. (30)

• For a single-mode field,

g(2)(τ) =
〈â†â†ââ〉
〈â†â〉2

=
〈n̂(n̂− 1)〉
〈n̂〉2

= 1 +
〈∆n̂2〉 − 〈n̂〉
〈n̂〉2

. (31)

• For a coherent state |α〉,

g(2)(τ) = 1, (32)

which has a Poisson distribution, i.e., ∆n̂2〉 = 〈n̂〉.

• For a single-mode thermal state, ρ̂th = 1
Z

∑
exp(−En/kBT )|n〉〈n|,

g(2)(τ) = 2. (33)

• For a non-classical state, with sub-Poisson photon number distribution, i.e., 〈∆n̂2〉 < 〈n̂〉,

g(2)(τ) = g(2)(0) < 1, (34)

• For a Fock state |n〉,

g(2)(0) = 1− 1

n
. (35)

• For a single photon source, n = 1,

g(2)(0) = 0. (36)


