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I. PHASE SPACE PROBABILITY DISTRIBUTION FUNCTION

A classical dynamical system may be described by a phase space probability distribution function,

f({q}, {p}),

where

{q} ≡ q1, q2, . . . , qN ; and {p} ≡ p1, p2, . . . , pN ,

The probability

f({q}, {p})dNq dNp,

gives the description about the system in a volume element dNq dNp. In quantum mechanics, the phase coordinates
qi and pi can not described definite values simultaneously. Hence the concept of phase space distribution function
does not exist for a quantum system, However, it’s possible to construct a quantum quasi-probability distribution
resembling the classical phase space distribution functions. Let us consider a one dimensional dynamical system,
described classically by a phase space distribution function f(q, p, t),

〈A(q, p)〉cl =

∫
dq dpA(q, p)f(q, p, t),

for the quantum mechanical description, if we know that the system is in state |ψ〉, then an operator Ô has the
expectation value,

〈Ô〉qm = 〈ψ|Ô|ψ〉,

but we typically do not know that we are in state |ψ〉, then an ensemble average must be performed,

〈〈Ô〉qm〉ensemble =
∑
ψ

Pψ〈ψ|Ô|ψ〉.

With the completeness
∑
n |n〉〈n| = 1,

〈〈Ô〉qm〉ensemble =
∑
n

〈n|ρ̂Ô|n〉,

where the Pψ is the probability of being in the state |ψ〉, we can introduce a density operator,

ρ̂ =
∑
ψ

Pψ|ψ〉〈ψ|,
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the expectation value of any operator Â is given by,

〈Â(q̂, p̂)〉qm = Tr[ρ̂Â(q̂, p̂)],

where Tr stands for trace.The density operator ρ̂ can be expanded in terms of the number states,

ρ̂ =
∑
n

∑
m

|n〉〈n|ρ̂|m〉〈m| =
∑
n

∑
m

ρnm|n〉〈m|,

the expansion coefficients ρnm are complex and there is an infinite number of them. For problems where the phase-
dependent properties of EM field are important, this make the general expansion rather less useful. In certain case
where only the photon number distribution is of interest, one may use

ρ̂ =
∑
n

Pn|n〉〈n|.

For a chaotic field, Pn = 1
1+n̄ ( n̄

1+n̄ )n; while for a Poisson distribution of photons, Pn = e−n̄

n! n̄
n.

II. EXPANSION IN COHERENT STATES

Likewise the expansion may be in terms of coherent states,

ρ̂ =
1

π2

∫ ∫
d2αd2β|α〉〈α|ρ̂|β〉〈β|,

where 1
π

∫
|α〉〈α|d2α = 1, the expectation value of any operator Â is given by, 〈Â(â, â†)〉qm = Tr[ρ̂Â(â, â†)], quasi-

probability distribution,

〈Ô(â, â†)〉 =

∫
d2αP (α, α∗)ON (α, α∗), for normally ordering operators, (1)

=

∫
d2αQ(α, α∗)OA(α, α∗), for antinormally ordering operators, (2)

=

∫
d2αW (α, α∗)OS(α, α∗), for symmetric ordering operators, (3)

We can rewrite classical distribution as,

f(q, p, t) =

∫
dq′ dp′δ(q − q′)δ(p− p′)f(q′, p′, t), (4)

=
1

4π2

∫
dq′ dp′ dk dlexp{i[k(q − q′) + l(p− p′)]}f(q′, p′, t), (5)

=
1

4π2

∫
dk dlexp(ikq)exp(ilp)

∫
dq′ dp′exp(−ikq′)exp(−ilp′)f(q′, p′, t), (6)

=
1

4π2

∫
dk dlexp(ikq)exp(ilp)〈exp(−ikq)exp(−ilp)〉cl, (7)

with δ(x) = 1
2π

∫
dkexp(ikx). For the quantum analog of f(q, p, t),

1. replace the c-numbers q, p by the operators q̂, p̂,

2. replace the classical average by the quantum average,

3. express the exponential under the average as a sum of products of the form qmpn,

Due to non-commutativity of q̂ and p̂, there are several different operator forms of a c-number product qmpn, if
m,n 6= 0. For example, q2p may be represented by an of the forms: q̂2p̂, q̂p̂q̂, p̂q̂2 or by their linear combination
c1q̂

2p̂+c2q̂p̂q̂+c3p̂q̂
2, where xi are arbitrary subject to the condition c1 +c2 +c3 = 1. In general, we formally represent

a c-number product as an operator as,

qmpn → Ω(q̂mp̂n),
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which defines a linear combination of m q̂’s and n p̂’s. For example,

exp[α1â+ α2â
†] = exp[α2â

†]exp[α1â]exp[
1

2
α1α2], normally ordering, (8)

= exp[α1â]exp[α2â
†]exp[−1

2
α1α2], antinormally ordering, (9)

with the Baker-Hausdorff relation, eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂] = e+ 1

2 [Â,B̂]eB̂eÂ, provided [Â, [Â, B̂]] = [[Â, B̂], B̂] = 0.
Then, the quantum analog of the classical phase space distribution function is then,

fΩ(q, p, t) =
1

4π2

∫
dk dlexp(ikq)exp(ilp)〈Ω[exp(−ikq̂)exp(−ilp̂)]〉qm.

Note that different choices of the correspondence Ω lead to different fΩ(q, p, t), each called a quasi-probability distri-
bution function to emphasize that it is a mathematical construct and not a true phase space distribution function.

The quantum analog of the classical phase space distribution function in terms of the creation and annihilation
operators â and â† is,

fΩ(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]Tr[Ω{exp(−iα̂ξ)exp(−iα̂†ξ∗)}ρ̂], (10)

Now, let

Ω{exp(−iα̂ξ)exp(−iα̂†ξ∗)} =

N∏
j=1

[exp(−iαjξα̂)exp(−iβξ∗α̂†], (11)

= exp(−s
2
|ξ|2)exp[−i(ξα̂+ ξ∗α̂†)], (12)

where s is a complex number related with products of the αj and βj . Although, the exact expression of s in terms of
the αj and βj may be derived, it is inessential. The ordering for s = 0 is called the Weyl ordering, or the symmetric
ordering, The exponential operator may be put in the anitnormal or the normal ordering,

exp[−i(ξâ+ ξ∗â†)] = exp(−iξ∗â†)exp(−iξâ)exp(−1

2
|ξ|2), normally ordering, (13)

= exp(−iξâ)exp(−iξ∗â†)exp(
1

2
|ξ|2), antinormally ordering, (14)

The quantum analog of the classical phase space distribution function in the s-ordering is,

f (s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−s

2
|ξ|2)Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂}.

This is some kind of two-dimensional Fourier transformation, if we define

Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂} ≡ G(ξ, ξ∗)exp(
s

2
|ξ|2),

then

f (s)(α, α∗) =
1

π2

∫
d2ξG(ξ, ξ∗)exp[i(αξ + α∗ξ∗)],

and by the inverse Fourier transformation,

G(ξ, ξ∗) =

∫
d2αf (s)(α, α∗)exp[−i(αξ + α∗ξ∗)]

For antinormal form of the exponential:

Tr[exp[−i(ξâ+ ξ∗â†)ρ̂] = Tr[exp(−iξâ)exp(−iξ∗â†)ρ̂](
1

2
|ξ|2), (15)

= Tr[exp(−iξ∗â†)ρ̂exp(−iξâ)](
1

2
|ξ|2), (16)

=
1

π

∫
d2αexp[−i(αξ + α∗ξ∗)](

1

2
|ξ|2)〈α|ρ̂|α〉, (17)

= G(ξ, ξ∗)exp(
s

2
|ξ|2). (18)
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For the density matrix in the coherent state representation,

〈α|ρ̂|α〉 =
1

π

∫
d2ξG(ξ, ξ∗)exp(

s− 1

2
|ξ|2)exp[i(αξ + α∗ξ∗)]

and the relationship between the density operator and its various phase space representation through G(ξ, ξ∗) is,

ρ̂ =
1

π

∫
d2ξG(ξ, ξ∗)exp(

s− 1

2
|ξ|2)exp(iξ∗â†)exp(iξâ), for antinormally ordering, (19)

=
1

π

∫
d2ξG(ξ, ξ∗)exp(

s

2
|ξ|2)exp[i(ξâ+ ξ∗â†)], for symmetric ordering, (20)

=
1

π

∫
d2ξG(ξ, ξ∗)exp(

s+ 1

2
|ξ|2)exp(iξâ)exp(iξ∗â†), for normally ordering. (21)

The relation between different phase space representation f (s) and f (t) is,

f (s)(α, α∗) =
2

π(s− t)

∫
d2βexp[−2|α− β|2

s− t
]f (t)(β, β∗),

The phase space distribution function in the s-ordering is,

f (s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−s

2
|ξ|2)Tr[exp[−i(ξâ+ ξ∗â†)ρ̂].

The phase space representation of any operator Â is similar,

A(s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−s

2
|ξ|2)Tr[exp[−i(ξâ+ ξ∗â†)Â],

and the expectation value of Â is,

Tr[Âρ̂] =
1

π

∫
d2ξG(ξ, ξ∗)exp(

s

2
|ξ|2)Tr{Âexp[i(ξâ+ ξ∗â†)]}, (22)

=
1

π

∫ ∫
d2ξd2αf (s)(α, α∗)exp[−i(ξα+ ξ∗α∗)]exp(

s

2
|ξ|2)Tr{Âexp[i(ξâ+ ξ∗â†)]}, (23)

= π

∫
d2αf (s)(α, α∗)A(−s)(α, α∗), (24)

The expectation value of an operator is TE phase space integral of the product of its phase space function with its
conjugate representation of the density operator.

III. P -REPRESENTATION, NORMALLY ORDERING

The density operator ρ̂ can be expanded in terms of the number states,

ρ̂ =
∑
n

∑
m

|n〉〈n|ρ̂|m〉〈m| =
∑
n

∑
m

ρnm|n〉〈m|,

likewise the expansion may be in terms of coherent states,

ρ̂ =
1

π2

∫ ∫
d2αd2β|α〉〈α|ρ̂|β〉〈β|,

as only the photon number distribution is of interest, one may use

ρ̂ =
∑
n

Pn|n〉〈n|,

P -representation of a density operator,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|,
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Now, we have the P -representation of a density operator,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|,

and substitute into

f (s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−s

2
|ξ|2)Tr[exp[−i(ξâ+ ξ∗â†)]ρ̂],

with s = −1 and the exponential operator in the normal-ordering, we have

f (−1)(α, α∗) =
1

π2

∫
d2ξ

∫
d2βP (β, β∗)exp[i(αξ + α∗ξ∗)]Tr[e(−iξâ)|β〉〈β|e(−iξ∗â†)], (25)

=
1

π2

∫
d2ξ

∫
d2βP (β, β∗)exp{i[(α− β)ξ + (α∗ − β∗)ξ∗]}, (26)

= P (α, α∗). (27)

The phase space representation for s = −1 is thus the P -function, Equivalent, one can define

P (α, α∗) = Tr[ρ̂δ(α∗ − â†)δ(α− â)], (28)

= Tr[
∫

d2βP (β, β∗)|β〉〈β|δ(α∗ − â†)δ(α− â)], (29)

=

∫
d2α

∫
d2βP (β, β∗)〈α|β〉〈β|δ(α∗ − â†)δ(α− â)|α〉. (30)

Note it is normally ordering in the trace,

δ(α∗ − â†)δ(α− â),

The function P (α, α∗) can be used to evaluate the expectation values of any normal ordered function of â and â†

using the methods of classical statistical mechanics,

〈ÂN 〉 = Tr(ÂN ) =
1

π

∫
d2ξG(ξ, ξ∗)exp(

−1

2
|ξ|2)Tr{Âexp[i(ξâ+ ξ∗â†)]}, (31)

= π

∫
d2αf (−1)(α, α∗)A(1)(α, α∗), (32)

=

∫
d2αP (α, α∗)AN (α, α∗). (33)

Since Tr(ρ̂) = 1, ∫
d2αP (α, α∗) = 1,

the function P (α, α∗) is referred to as the P -representation or the coherent state representation,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|.

The function P (α, α∗) forms a connection between the classical and quantum coherence theory. Let |β〉 and | − β〉 be
the coherent states, then

〈−β|ρ̂|β〉 =

∫
d2αP (α, α∗)〈−β|α〉〈α|β〉, (34)

= e−|β|
2

∫
d2αP (α, α∗)e−|α|

2

eβα
∗−β∗α, (35)

= e−|β|
2

∫
dxα

∫
dyαP (xα, yα)e−(x2

α+y2
α)e2i(yβxα−xβyα), (36)
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with

〈α|β〉 = exp(−1

2
|α|2 + α∗β − 1

2
|β|2) = exp(−1

2
|α− β|2),

where α = xα + iyα and β = xβ + iyβ and this is the two-dimensional Fourier transform,

P (α, α∗) =
ex

2
α+y2

α

π2

∫
dxβ

∫
dyβ〈−β|ρ̂|β〉e(x2

β+y2
β)e−2i(yβxα−xβyα), (37)

=
e|α|

2

π2

∫
d2β〈−β|ρ̂|β〉e|β|

2

e−βα
∗+β∗α, (38)

For the thermal field,

ρ̂ =
exp(−Ĥ/kBT )

Tr[exp(−Ĥ/kBT )]
,

where kB is the Boltzmann constant and Ĥ is the free-field Hamiltonian, Ĥ = ~ω(â† + â+ 1/2),

ρ̂ =
∑
n

[1− exp(
−~ω
kBT

)]exp(− n~ω
kBT

)|n〉〈n|,

the expectation value of the photon number, 〈n̄〉 = Tr(â†âρ̂) = 1
exp(~ω/kBT )−1 . The photon distribution in a thermal

field becomes:

ρ̂ =
∑
n

〈n〉n

(1 + 〈n〉)n+1
|n〉〈n|,

which is the Bose-Einstein distribution.
The P -representation of the thermal field is

P (α, α∗) =
e|α|

2

π2

∫
d2β〈−β|ρ̂|β〉e|β|

2

e−βα
∗+β∗α, (39)

=
e|α|

2

π2(1 + 1
〈n〉 )

∫
d2βexp[

−|β|2

1 + 1
〈n〉

]e−βα
∗+β∗α, (40)

=
1

π〈n〉
e−|α|

2/〈n〉, (41)

which is a Gaussian distribution with the width of 〈n〉 in phase space,
For the coherent field, ρ̂ = |α0〉〈α0|, we have the corresponding P -representation of the coherent field

P (α, α∗) =
1

π2
e|α|

2−|α0|2
∫

d2βexp[−β(α∗ − α∗0) + β∗(α− α0)], (42)

= δ(2)(α− α0), (43)

which is a two-dimensional delta function in phase space, i.e.

f (s)(α, α∗) =
1

π2

∫
d2ξG(ξ, ξ∗)exp[i(αξ + α∗ξ∗)], (44)

G(ξ, ξ∗) =

∫
d2αf (s)(α, α∗)exp[−i(αξ + α∗ξ∗)] (45)

where Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂} ≡ G(ξ, ξ∗)exp( s2 |ξ|
2).

For thermal field, its P -representation is a Gaussian function in phase space; while for coherent state, its P -
representation is a 2D delta function in phase space. For a number state, ρ̂ = |n〉〈n|, then

〈−β|ρ̂|β〉 = 〈−β|n〉〈n|β〉 = exp(−|β|2)
(−1)n|β|2n

n!
,

and the corresponding P -representation is, P (α, α∗) = e|α|
2

n!
∂2n

∂αn∂α∗n δ
(2)(α), which is not a non-negative definite

function for n > 0, whenever the photon distribution ρnn is narrower than the Poisson distribution, P (α, α∗) becomes
badly behaved.
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1. Glauber-Sudarshan P -representation

Consider a single electromagnetic field mode in a cavity with finite leakage rate, the time evolution of the field
density is given by

d
dt
ρ̂f (t) =

−1

2
[Re(ââ

†ρ̂f − â†ρ̂f â) +Rg(â
†âρ̂f − âρ̂f â†)] + adjoint,

where Re and Rg are the photon emission and absorption rate coefficients. With the P -representation for the density
operator, ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|, we have∫
d2αṖ |α〉〈α| =

−1

2

∫
d2αP [Re(ââ

†|α〉〈α| − â†|α〉〈α|â) +Rg(â
†â|α〉〈α| − â|α〉〈α|â†)] (46)

+ adjoint. (47)

A. Fokker-Planck equation

With

|α〉〈α|â = (
∂

∂α∗
+ α)|α〉〈α|, (48)

â†|α〉〈α| = (
∂

∂α
+ α∗)|α〉〈α|, (49)

we have the Fokker-Planck equation,

d
dt
P (α, α∗) =

−1

2
(Re −Rg){

∂

∂α
[αP (α, α∗)] +

∂

∂α∗
[α∗P (α, α∗)]}+Re

∂2

∂α∂α∗
P (α, α∗),

compared with,

d
dt
ρ̂f (t) =

−1

2
[Re(ââ

†ρ̂f − â†ρ̂f â) +Rg(â
†âρ̂f − âρ̂f â†)] + adjoint.

The advantage of the Fokker-Planck equation is that it significantly simplifies the calculation process for the fields
that are approximately coherent states. When the fields become nonclassical, the P -representation is no longer well-
behaved, such as the squeezed and photon number states. In order to map an arbitrary nonclassical state into a
classical probability density, the dimension of the phase space must at least be doubled. One may use off-diagonal or
positive-P -representation for nonclassical states.
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IV. Q-REPRESENTATION, ANTI-NORMALLY ORDERING

For s = 1, the density matrix in the coherent state representation is,

〈α|ρ̂|α〉 =
1

π

∫
d2ξG(ξ, ξ∗)exp[i(αξ + α∗ξ∗))], (50)

= πf (1)(α, α∗) ≡ Q(α, α∗), (51)

where f (1)(α, α∗) is simply the matrix element of the operator in the coherent states representation, known as the
Q-function. The expectation value, Tr[Âρ̂] = 1

π

∫
d2αf (s)(α, α∗)A(−s)(α, α∗). If the density operator is represented

by P -function, then

〈â†mân〉 =

∫
d2αP (α, α∗)α∗mαm.

If the density operator is represented by P -function, then

〈ânâ†m〉 =

∫
d2αQ(α, α∗)α∗mαm.

Q-representation is defined as the antinormally ordering in the trace,

Q(α, α∗) = Tr[ρ̂δ(α− â)δ(α∗ − â†)], (52)

=
1

π
Tr

∫
d2β[ρ̂δ(α− â)|β〉〈β|δ(α∗ − â†)], (53)

=
1

π
Tr[ρ̂|α〉〈α|], (54)

=
1

π
〈α|ρ̂|α〉, (55)

i.e. Q(α, α∗) is proportional to the diagonal element of the density operator in the coherent state representation.
Unlike P -representation, Q(α, α∗) is non-negative definite and bounded, i.e.

Q(α, α∗) =
1

π

∑
ψ

Pψ|〈ψ|α〉|2,

Since |〈ψ|α〉|2 ≤ 1, we have

Q(α, α∗) ≤ 1

π
,

Q-representation may be related to the P -representation as,

Q(α, α∗) =
1

π

∫
d2βP (β, β∗)e−|α−β|

2

.

For a number state |n〉, its Q-representation is,

Q(α, α∗) =
1

π
|〈n|α〉|2 =

e−|α|
2 |α|2n

πn!
,

For a squeezed state |β, ξ〉, its Q-representation is,

Q(α, α∗) =
1

π
|〈α|β, ξ〉|2, (56)

=
sechr
π

exp{−(|α|2 + |β|2) + (α∗β + β∗α)sechr (57)

− 1

2
[eiθ(α∗2 − β∗2 + e−iθ(α2 − β2)]tanhr}, (58)

In the quarature phase-space, X1 = (α+ α∗)/2 and X1 = (α− α∗)/2i,

Q(α, α∗) =
sechr
π

exp{−(|α|2 + |β|2) + (α∗β + β∗α)sechr (59)

− 1

2
[eiθ(α∗2 − β∗2 + e−iθ(α2 − β2)]tanhr}, (60)
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V. W -REPRESENTATION, SYMMETRIC ORDERING

The quantum analog of the classical phase space distribution function in the s-ordering is,

f (s)(α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]exp(−s

2
|ξ|2)Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂},

For s = 0,

f (0)(α, α∗) = W (α, α∗) =
1

π2

∫
d2ξexp[i(αξ + α∗ξ∗)]Tr{exp[−i(ξâ+ ξ∗â†)]ρ̂},

here the Wigner-Weyl distibution function W (α, α∗) is associated with symmetric ordering. For example

1

2
〈ââ† + â†â〉 =

∫
d2αW (α, α∗)αα∗,

the Wigner function can be measured experimentally, including its negative values. In terms of q̂ and p̂,

W (p, q) =
1

(2π)2

∫
dσ

∫
dτexp[i(τp+ σq)]Tr{exp[−i(τ p̂+ σq̂)]ρ̂}, (61)

=
1

(2π)2

∫
dσ

∫
dτe[i(τp+σq)]Tr{e(−iτ p̂/2)e(−iσq̂/2)ρ̂e(−iτ p̂/2)}e(−iσq̂/2), (62)

=
1

(2π)2

∫
dσ

∫
dτe[i(τp+σq)]

∫
dq′〈q′|e(−iτ p̂/2)e(−iσq̂/2)ρ̂e(−iτ p̂/2)|q′〉e(−iσq̂/2). (63)

As

exp(−iτ p̂/2)|q′〉 = |q′ − ~τ/2〉,

we have

W (p, q) =
1

(2π)2

∫
dσ

∫
dτeiσ(q−q′)

∫
dq′〈q′ + ~τ/2|ρ̂|q′ − ~τ/2〉eiτp, (64)

=
1

π~

∫
dye(−2yp/~)〈q′ − y|ρ̂|q′ + y〉, (65)

where y = −~τ/2.


