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I. PHASE SPACE PROBABILITY DISTRIBUTION FUNCTION

A classical dynamical system may be described by a phase space probability distribution function,

f{a}Ar}),

where

{¢} =q1,q2,...,qn; and  {p} =p1,p2,...,pnN,

The probability

f{a}. {pH)d¥ qd"p,

gives the description about the system in a volume element ay q ay p. In quantum mechanics, the phase coordinates
¢; and p; can not described definite values simultaneously. Hence the concept of phase space distribution function
does not exist for a quantum system, However, it’s possible to construct a quantum quasi-probability distribution
resembling the classical phase space distribution functions. Let us consider a one dimensional dynamical system,

described classically by a phase space distribution function f(q,p,t),

M@MMz/@@M@Mﬂmm%

for the quantum mechanical description, if we know that the system is in state |¢), then an operator O has the

expectation value,

(O)qm = (¥|Ol),

but we typically do not know that we are in state [¢), then an ensemble average must be performed,

<<O>qm>ensemble = Z Pw <1/)|OA|’(/J>
¥

With the completeness >, |n)(n| =1,

<<O>qnl>cnscmblc = Z(Tl‘ﬁéhﬂ,

n

where the Py is the probability of being in the state |1}, we can introduce a density operator,

p=>_ Pylv)l,
P



the expectation value of any operator Ais given by,
(A(,))am = Tr[pA(d. 9)],

where T'r stands for trace.The density operator p can be expanded in terms of the number states,
p= 33 ) nlptmml = 33 ) o

the expansion coefficients p,,,,, are complex and there is an infinite number of them. For problems where the phase-
dependent properties of EM field are important, this make the general expansion rather less useful. In certain case
where only the photon number distribution is of interest, one may use

p= ZPn\?”L)(n

For a chaotic field, P, = —(ﬁ) ; while for a Poisson distribution of photons, P, = <-+n".

II. EXPANSION IN COHERENT STATES
Likewise the expansion may be in terms of coherent states,

_1 / / d2ad?8la)(alplB) (B,

where 1 [ la)(a|d*a = 1, the expectation value of any operator A is given by, (A(a,a"))qm = Tr[p
probability distribution,
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(O(a,al)) = /dQOéP(Oé,Oé*)ON(Oé,Oé*), for normally ordering operators, (1)
= /dzaQ(a, a*)O4(a,a”), for antinormally ordering operators, (2)
= /d2aW(a, a®)Og(a, ), for symmetric ordering operators, (3)

We can rewrite classical distribution as,

fapt) = [ dd a3l — )60 - $)1 (0 0'0) @)
= 412 dq’ dp' dk dlexp{i[k(q — ¢') +U(p — )} f(d', P, 1), (5)
- / dk diexp(ikq)exp(ilp) / dq’ dpfexp(—ikq'Yexp(—ily) f(d' . 1), (6)
= 1 [ dkdexplikqexplitp)exp(—ika)exp( i) -
with §(x) f dkexp(ikz). For the quantum analog of f(q,p,t),

1. replace the c-numbers ¢, p by the operators ¢, p,
2. replace the classical average by the quantum average,
3. express the exponential under the average as a sum of products of the form ¢™p",

Due to non-commutativity of ¢ and p, there are several different operator forms of a c-number product ¢™p", if
m,n # 0. For example, ¢?p may be represented by an of the forms: ¢2p, §pd, PG> or by their linear combination
c1G%p+ caGpd+c3pg?, where x; are arbitrary subject to the condition ¢; 4¢3 +c3 = 1. In general, we formally represent
a c-number product as an operator as,

qmpn _) Q( ~m "71)7



which defines a linear combination of m ¢’s and n p’s. For example,

1
explaia + azal] = exp[agdf]exp[ald}exp[ialag], normally ordering, (8)
1
= exp[ald]exp[agdwexp[f5041042], antinormally ordering, 9)
with the Baker-Hausdorff relation, eAt8 = eAeBe 3Bl = ¢+3[ABleBeA  provided [A,[A,B]] = [[4,B],B] = 0.

Then, the quantum analog of the classical phase space distribution function is then,

1 A .
g, p.t) = ype) dk dlexp(ikq)exp(ilp) (Qexp(—ik§)exp(—ilp)]) gm
Note that different choices of the correspondence €2 lead to different (g, p,t), each called a quasi-probability distri-
bution function to emphasize that it is a mathematical construct and not a true phase space distribution function.
The quantum analog of the classical phase space distribution function in terms of the creation and annihilation

operators ¢ and al is,

Paat) = 2 [ eesplitat + '€ THOexp(~iag)exp(~ia'e") )7l (10)
Now, let
N
Qfexp(—iaé)exp(—iater)} = H exp(—ic;Ed)exp(—iBgrall, (11)
= eXp(—§|§\ ?Jexp[—i(éa + £*al)], (12)

where s is a complex number related with products of the «; and ;. Although, the exact expression of s in terms of
the o; and ; may be derived, it is inessential. The ordering for s = 0 is called the Weyl ordering, or the symmetric
ordering, The exponential operator may be put in the anitnormal or the normal ordering,

exp[—i(¢a+&*al)] = exp(—z{*&T)exp(—ifd)exp(—%\§|2), normally ordering, (13)
= exp(—zfd)exp(—if*?ﬁ)exp(%|§|2)7 antinormally ordering, (14)
The quantum analog of the classical phase space distribution function in the s-ordering is,
Fa,a") = =5 [ dexplitag + o€ )exp(~3 |6 Tr{expl-ilca + ¢l
This is some kind of two-dimensional Fourier transformation, if we define
Tr{expl—i(ga+§"ah)]p} = G(&, € )exp( €[,
then
fasat) = % [ PGl ¢ emplifag +a7€)
and by the inverse Fourier transformation,
G(&.€) = [ Pafasat)expl-ilag +a"¢")

For antinormal form of the exponential:

Telexp[—i(€a+ €'a")7] = Trlexp(~i€ajexp(—i€"a )al(5/¢l?) (15)
= Trfexp(—i€*at)pexp(~ica) (5 €[?) (16)
= = [ Paewl-itag + e PN algla), (1)

G(&. € )exp(S€P). (18)



For the density matrix in the coherent state representation,

(alpla) = / QEG(E, € Yexp( " e )explifat + 7€)

and the relationship between the density operator and its various phase space representation through G(&,&*) is,

5= %/d%‘G(f,f*)exp(%|f|2)eXP(i€*&T)eXP(iE&)’ for antinormally ordering, (19)
— - [ G e IePIexplitca + €7l for symmetsic ordering, 20)
- %/ dQ«:‘G(af*)exp(#Is|2>exp<z‘fa>exp<z‘f*ﬁ), for normally ordering. @1)

The relation between different phase space representation f(*) and f(*) is,

2 [ @seal- 2200 p0 s ),

m(s —t)

The phase space distribution function in the s-ordering is,

f(s) (a7 a*) =

Fa,a") = =5 [ dexplitag + o€ Jexp(~ 3 ) rlexpl-i(€a + ")
The phase space representation of any operator A is similar,
: 1 . - en waty 7
A (o 07) = — / d€expli(ag + a”€")exp(— |¢[*) Trfexpl—i(éa + £"a") A,

and the expectation value of A is,

Tildg) = [ PG exp(GI€P T Aexplitéa + €'l (22
- %/ / dz&anf(*(a,a*)exp[—z‘(&a+£*a*)]exp<§|£\2>Tr{21exp[i<sa+f*&*)]}, (23)
= W/d2af(s)(a,a*)A(_s)(a,a*), (24)

The expectation value of an operator is TE phase space integral of the product of its phase space function with its
conjugate representation of the density operator.

III. P-REPRESENTATION, NORMALLY ORDERING
The density operator p can be expanded in terms of the number states,

P—ZZW (n|plm)(m| = Zzpnmm

likewise the expansion may be in terms of coherent states,

5= % / / dad®Bla)(alplB) (8],

as only the photon number distribution is of interest, one may use
H = Paln)(n],
n

P-representation of a density operator,

ﬁ:/d2aP(a,a*)|a><a|,



Now, we have the P-representation of a density operator,

p= [ Ear(a,anla)(al,
and substitute into

f(a,0") = % / dgexpli(a€ + "¢ exp(— 3 [¢[*) Trlexpl—i(&a+ §"ah)] ),

with s = —1 and the exponential operator in the normal-ordering, we have
F D (aat) = / a / d*BP(B, 5" )expli(ag + a”€")] Tr[el 42| 3) (€21, (25)
1

= 5 [ [ 6P, 8en(illa - 5)¢ + (0~ BIEI (26)
= P(a,a™). (27)

The phase space representation for s = —1 is thus the P-function, Equivalent, one can define
P(a,a*) = Tr[pé(a* — a")d(a — a)), (28)
= 1l [ @25P(,6)18) (8160 - ah)s(a - 0, (29)
— [ #a [ 5P(5,6) @3 (315" - )50 - da). (30)

Note it is normally ordering in the trace,
S(a* —ah)d(a —a),

The function P(a,a*) can be used to evaluate the expectation values of any normal ordered function of G and af
using the methods of classical statistical mechanics,

() = Te(dn) = = [ €66 € perp( e Teldexpliéa + "), (31)
= 7r/anf(_l)(oz,a*)A(l)(a,a*), (32)
= /dzaP(a,a*)AN(a,a*). (33)

Since Tr(p) = 1,
/d2aP(a,a*) =1,
the function P(«, a*) is referred to as the P-representation or the coherent state representation,
p= /anP(a,a*)|a><a|.

The function P(a, a*) forms a connection between the classical and quantum coherence theory. Let |3) and | — 8) be
the coherent states, then

(—B1A1B) = / LaP(a,a®){—Bla){alf). (34)

e 181° /d2ozP(o¢,oz*)(flalzeﬁa‘*fﬁ*o‘7 (35)

= 67|ﬂ|2/dxa/dyap(xa’ya)e*(l‘i‘HJi)eQi(yBZafIﬁya)7 (36)



with
(a|B) = ex (*1|a|2+0¢*5*1\5|2)*ex (*lla*ﬁ\z)
= exp B B = exp 2 )

where o = x4 + 1y, and J = x5 + iyg and this is the two-dimensional Fourier transform,

* ezieri ~ 2 2y 24 To—T
Plaa’) = S [doy [ dys(-plpia)elirible e e (37)
el 518)elBI” g~ B +8"a
= 5 [@s-pamete , (3)
For the thermal field,
b= exp(—H /kpT)

Tr[exp(—H /kpT)]’

where kp is the Boltzmann constant and H is the free-field Hamiltonian, H = hw(al + a4 1/2),

p= Y l1 = exp( o exp(— 1))

n

the expectation value of the photon number, (7) = Tr(a'ap) =
field becomes:

m. The photon distribution in a thermal

which is the Bose-Einstein distribution.
The P-representation of the thermal field is

|aef? .1 g
Plava’) = S [@(-glpig)e’es o, (39)
o w11
€ * *
— [ @exp[ s hara (40)
2 1 / 1 ’
1 2
— —lal*/(n) 41
7T<’n>€ ’ (41)

which is a Gaussian distribution with the width of (n) in phase space,
For the coherent field, p = |ag) (o], we have the corresponding P-representation of the coherent field

P(a,a*) _ %e|a\2—\aol2 /dzﬁexp[—,@(a* o O‘S) + ,8*(05 . 040)]7 (42)
= §®(a - ay), (43)
which is a two-dimensional delta function in phase space, i.e.
1
fPa,a%) = = / d*EG(&, £ )expli(at + a*€™)], (44)
Ge.€') = [ daf(a,an)expl-ila¢ +a¢") (45)

where Tr{exp[—i(¢a + ¢*al)]p} = G(f,{*)exp(%|§|2).
For thermal field, its P-representation is a Gaussian function in phase space; while for coherent state, its P-
representation is a 2D delta function in phase space. For a number state, p = |n)(n|, then

NSl

(=BlplB) = (~Bln)(n|B) = exp(~|B|*

«@ 2 n
and the corresponding P-representation is, P(«a,a*) = n!‘ aa?fwé(z)(a), which is not a mon-negative definite

function for n > 0, whenever the photon distribution p,, is narrower than the Poisson distribution, P(«, a*) becomes
badly behaved.

el




1. Glauber-Sudarshan P-representation

Consider a single electromagnetic field mode in a cavity with finite leakage rate, the time evolution of the field
density is given by

d . -1 it a At it an aa n ..
apf(t) = —[R.(aa'py — a'pra) + Ry(atapy — appa’)] + adjoint,

where R, and R, are the photon emission and absorption rate coefficients. With the P-representation for the density
operator, p = [ d*aP(a,a*)|a)(al, we have

/ PaPlaja] = / d2aP[R, (44" |a) (0] - a'la)(ala) + R, (a'ala){a] — ala)(ala)] (46)
+ adjoint. (47)

A. Fokker-Planck equation

With
@){ala = (o +a)la)ol (15)
- Ydar ’
ifla)(a] = (% + o)) (e, (49)
we have the Fokker-Planck equation,
d o -1 9 . J ., . 0? .
&P(a,a ) = T(Re — Rg){a—a[aP(a,a )] + Do [a* P(a, )]} —I—RemP(a,a )

compared with,

d -1 .

hr(t) =~ (R ; —a'pra) + Ry(a'apy — appat)] + adjoint.
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The advantage of the Fokker-Planck equation is that it significantly simplifies the calculation process for the fields
that are approximately coherent states. When the fields become nonclassical, the P-representation is no longer well-
behaved, such as the squeezed and photon number states. In order to map an arbitrary nonclassical state into a
classical probability density, the dimension of the phase space must at least be doubled. One may use off-diagonal or
positive-P-representation for nonclassical states.



IV. Q-REPRESENTATION, ANTI-NORMALLY ORDERING

For s = 1, the density matrix in the coherent state representation is,

1 « . -

» [ e eremlitag + o)) (50)
= 7fP(a,a*) = Q(a, ), (51)

where f (1)(a, a*) is simply the matrix element of the operator in the coherent states representation, known as the
Q-function. The expectation value, Tr[Ap] = %fdgaf(s)(a, a*)A%) (o, *). If the density operator is represented
by P-function, then

(alplar)

(at™man) = /dzaP(ma*)a*mam.
If the density operator is represented by P-function, then
(a"atm) = /d2aQ(a,a*)a*mam.

Q-representation is defined as the antinormally ordering in the trace,

Qlaa”) = Tifpi(a - a)i(a” —ah)), (52)
— 1 [ @plps(a - a)}3) (35" ~ ) (53
= “Trfplajial] (54)
= ~(alpa) (55)

ie. Q(a,a*) is proportional to the diagonal element of the density operator in the coherent state representation.
Unlike P-representation, Q(a, a*) is non-negative definite and bounded, i.e.

1
Qla.0) = 37 Pyl{wlo) .
P
Since [(|a)|? < 1, we have

Q(a,a") <

Q-representation may be related to the P-representation as,
1
Qa,a”) = — / ABP(3, f*)e 120
™

For a number state |n), its Q-representation is,

3

1
0

1 e~lal®|g2n
Q(oa®) = ~finlag? = IO
For a squeezed state |3, &), its Q-representation is,
Q) = ~l{alp. &) (56)
= W oxp{~(Jof? +[8P) + (0" f + B*a)sechr (57)
— %[ew(a*2 — B2 + 7 (a? — g?)]tanhr}, (58)

In the quarature phase-space, X; = (o + a*)/2 and X; = (o — ™) /21,

Qlava®) = *Mexpl~(af? + [5) + (a°5 + B a)sech (59)

— %[ew(oz*2 — B2 + e (a? — g?)]tanhr}, (60)



V. W-REPRESENTATION, SYMMETRIC ORDERING
The quantum analog of the classical phase space distribution function in the s-ordering is,
FO,a%) = / d*€expli(ag + a”€")exp(~ 5[ ) Tr{expl—i(&a + €"a'))p}.
For s =0,
£ (a,0%) = Wia,a") = = [ dgexplitag +a'¢") Te{expl-ilca + €"aD]p),
here the Wigner-Weyl distibution function W («, a*) is associated with symmetric ordering. For example
1., it
§<aaT +afa)y = /d2aW(a,a*)aa*,
the Wigner function can be measured experimentally, including its negative values. In terms of ¢ and p,
W(p,q) = ﬁ /da/dTeXp[i(Tp + 0q)]Tr{exp[—i(Tp + 0§)]p},

- 7(21)2 / do / dreliTPHoDI Ty {o(~i7P/2) ((~i0/2) po(~ih/2) o ~i7d/2)
m

_ (21)2 / 4o / drelitrroa)] / Ag’ (|6~ 777/D (—9/2) o~/ |y —i0/2)
i

exp(—itp/2)|q) = |¢' — hr/2),
we have

1 3 —q’ ~ 1T
W) = G / do / drei(i=a) / Aq'(d + hr/20pld — hr/2)e™,

1
_ due(=292/P) (! — w1 pld’
— [ dye (¢ —ylpld + ),

where y = —h7/2.



