Date	Topic	To Know	To Think
Feb. 23rd (Tue.)	Introduction	Scope	 Your and My Expectations. What is the nature of light? Anything else ?
Feb. 26th (Fri.)	Simple Harmonic Oscillator (SHO)	□ classical trajectory □ analogue to EM waves	□ Bohmian mechanics □ Inverted SHO □
week 1 (3/2, 3/9)	Quantum SHO	□ Fock states, $ n\rangle$ □ creation operator, \hat{a}^{\dagger}	 single-photon detection Wave-Particle Duality photon-number resolving
(3/12, 3/16, 3/19)		□ Vacuum state □ Quantum Fluctuations	□ Shot Noise Limit □ Casimir Force □
week 2 (3/23, 3/26)	Quantum Mechanics	 Schrödinger picture Heisenberg picture Interaction picture 	 Uncertainty Relation Probability Interpretation Measurement problem Non-locality Macrorealism
week 3 (3/30, 4/2 , 4/6)	Coherent states, $ \alpha\rangle$	 photon statistics bunching Correlation function 	□ Minimum Uncertainty States □ Classical-Quantum boundary □
week 4 (4/9, 4/13)	Quantum Phase Space	□ Wigner function	□ Quasi-probability □ Quantum State Tomography □
week 5 (4/20, 4/23)	Squeezed states	$\Box \xi\rangle$ $\Box OPO$	□ Continuous Variables □
week 6 (4/27, 4/29)	Two-mode Squeezed states	 EPR pair Cat states non-Gaussian states 	 Quantum Discord Entanglement Steering Bell's inequality
week 7 (5/4, 5/7)	Optical devices	□ Beam splitter □ Mach-Zehnder interferometer	□ linear optics □
week 8 (5/11, 5/14)	Interferometry	□ Young's Interferometry, $g^{(1)}$ □ HBT-Interferometry, $g^{(2)}$	□ Quantum Phase Estimation □ Quantum Fisher Information □

From Scratch !!

How much do you known about Quantum SHO ?

Note: Quantum SHO

- Quantum Simple Harmonic Oscillator, qSHO
- Hamiltonian
- Number operator
- Energy Quantization (equally spacing in energy)
- DVacuum state with zero-point energy
- Schrodinger picture
- Heisenberg picture
- More on qSHO
- Quantum SHO in phase space
- Derity-Time symmetric SHO

download

Simple Harmonic Oscillator, SHO

$$\vec{F} = m\vec{a} = m\frac{d^2\,\vec{x}}{dt^2} = -k\,\vec{x}.$$

$$\vec{x}(t) = A \cos(\omega_0 t + \phi_0), \qquad \omega_0^2 = \frac{k}{m},$$

$$H = {\rm K.E.} + {\rm P.E.} = \frac{1}{2} \frac{p^2}{m} + \frac{1}{2} k \, x^2.$$

- Newton's law
- Hooke's law
- Linear force (parabolic potential)
- Hamiltonian (energy) is constant (conserved).
- Equally distributions in KE and PE
- Sinusoidal motion
- Periodic orbit (trajectory) in phase space
- Response bandwidth

Simple Harmonic Oscillator, SHO

AA

SHO	EM waves	Quantum
particle	(transverse) mode	wave-particle
Newton's law	Maxwell's eqs	Schrodinger/Heisenberg eq. Quantum Liouville eq. Dirac eq.
sinusoidal sol.	plane wave sol.	harmonic waves
KE+PE	Poynting energy	Hamiltonian energy
Kinetic Energy	Diffraction/Dispersion	free-particle expansion
Potential Energy	refractive index change (GRIN lens)	Potential Energy
Trajectory	Phasor	Probability distribution (Husimi function)
x, p canonical coordinates	quadrature	$[\hat{X},\hat{P}]$

What is Quantum !?

Quantum Simple Harmonic Oscillator (SHO)

- Energy quantization
- Equally spacing in energy difference
- Zero-point energy $\neq 0$

$$\psi(\xi) = H_n(\xi) \exp[-\xi^2/2], \qquad \epsilon = 2n+1, \qquad n = 0, 1, 2, 3...$$

 $E = \frac{\hbar\omega}{2} \epsilon = \hbar\omega(n+\frac{1}{2}), \qquad n = 0, 1, 2, 3, ...$

$$\hat{H} = rac{1}{2}rac{\hat{p}^2}{m} + rac{1}{2}k\,\hat{x}^2, \;\; [\hat{x},\hat{p}] = i\hbar.$$

$$\hat{H}=\hbar\omega(\hat{a}^{\dagger}\hat{a}+rac{1}{2}). \quad [\hat{a},\hat{a}^{\dagger}]=1,$$

$$\hat{N}|n\rangle = n|n\rangle,
\hat{a}|n\rangle = \sqrt{n}|n-1\rangle,
\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle,
E_n = \hbar\omega(n+\frac{1}{2}).$$

Quantum Mechanics: Schrodinger's picture

 $i\hbar \frac{\partial}{\partial t} |\phi\rangle = \hat{H} |\phi\rangle.$

0.6

The equation of motion of a quantum state is described by the Schrödinger's equation:

For the eigen-state of SHO Hamiltonian,

we have

$$\begin{split} \hat{H} &= \frac{1}{2} \frac{\hat{p}^2}{m} + \frac{1}{2} k \, \hat{x}^2, \, \underbrace{\begin{smallmatrix} 0.0 \\ -0.2 \\ -0.4 \\ -0.6$$

$$rac{d^2}{d\xi^2} + (\epsilon - \xi^2)]\psi(\xi) = 0, \qquad \epsilon = rac{2E}{\hbar\omega},$$

which gives the Hermite-Gaussian solutions associated with Hermite polynomials H_n

 $\left[\frac{d^2}{dx^2}\right]$

$$\psi(\xi) = H_n(\xi) \exp[-\xi^2/2], \quad \epsilon = 2n+1, \quad n = 0, 1, 2, 3...$$

For the corresponding eigen-energy:

$$E = \frac{\hbar\omega}{2} \epsilon = \hbar\omega(n + \frac{1}{2}), \qquad n = 0, 1, 2, 3, \dots$$

Vacuum State: I0>

Vacuum State: I0>

FIG. 2 (color online). Experimental quantum states for the conversion from particle to wave. The leftmost column shows the input single-photon state, while the other three columns show the output states for a squeezing parameter γ of 0.26, 0.37, and 0.67, from left to right. (a) Quadrature distributions over a period. (b) Wigner functions. (c) Photon number distributions and photon number representation of density matrices. The minimum value of -0.22 for the input Wigner function becomes, respectively, -0.15, -0.12, and -0.06, after the conversion.

Quantum Mechanics: Heisenberg's picture

$$\hat{H}=\hbar\omega(\hat{a}^{\dagger}\hat{a}+rac{1}{2}). egin{array}{cc} \hat{a}&=rac{1}{\sqrt{2m\hbar\omega}}[m\omega\hat{x}+i\hat{p}],\ \hat{a}^{\dagger}&=rac{1}{\sqrt{2m\hbar\omega}}[m\omega\hat{x}-i\hat{p}]. \end{array} egin{array}{cc} [\hat{a},\hat{a}^{\dagger}]=1, \ \end{array}$$

Heisenberg's equation: The dynamics of the operator is governed by the Heisenberg's equation:

$$rac{d}{dt}\hat{O}=rac{1}{i\hbar}[\hat{O},\hat{H}].$$

For the annihilation operator of SHO, \hat{a} , we have

$$rac{d}{dt} \hat{a} = rac{1}{i \hbar} [\hat{a}, \hbar \omega (\hat{a}^\dagger \hat{a} + rac{1}{2})] = -i \omega \hat{a},$$

with the solution

$$\hat{a}(t) = \hat{a}(t=0)\exp[-i\omega t]$$

Quantum Mechanics: Heisenberg's picture

- 1. \hat{a} and \hat{a}^{\dagger} are *NOT* Hermitian operators, i.e., $\hat{a} \neq \hat{a}^{\dagger}$, for which no real eigenvalue are generated.
- 2. Number operator: An Hermitian operator can be defined as $\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$.
- 3. The commutation relations with the SHO Hamiltonian are:

$$\begin{array}{lll} [\hat{H}, \hat{a}] &=& -\hbar\omega\hat{a}, \\ \hat{H}, \hat{a}^{\dagger}] &=& \hbar\omega\hat{a}^{\dagger}, \end{array}$$

4. Raising (step-up) and Lowering (step-down) operators: Consider the eigenstate of SHO Hamiltonian, $\hat{H}|\phi\rangle = E|\phi\rangle$, then

$$\hat{H} \hat{a} |\phi\rangle = (E - \hbar\omega) \hat{a} |\phi\rangle, \hat{H} \hat{a}^{\dagger} |\phi\rangle = (E + \hbar\omega) \hat{a}^{\dagger} |\phi\rangle,$$

where $\hat{a}|\phi\rangle$ and $\hat{a}^{\dagger}|\phi\rangle$ are also eigen-states of SHO, but with the eigenvalues $E - \hbar\omega$ and $E + \hbar\omega$, respectively. $|\phi\rangle$ is a *discrete* states, denoted as $|n\rangle$ in the following.

Quantum Mechanics: Heisenberg's picture

5. Ground state:

$$\langle \phi | \hat{H} | \phi \rangle = \hbar \omega \langle \phi | \hat{a}^{\dagger} \hat{a} + \frac{1}{2} | \phi \rangle, \ge \frac{\hbar \omega}{2}.$$

Based on above, we denote the ground state as $|n = 0\rangle = |0\rangle$, with the energy $E_0 = \frac{1}{2}\hbar\omega$, which is the eigen-state of

 $\hat{a}|0\rangle = 0,$ the lowest energy state.

6. Exited state:

$$|n\rangle = (\hat{a}^{\dagger})^n |0\rangle,$$

with the energy

$$E_n = \hbar\omega(n + \frac{1}{2}).$$

7. Normalization constants:

$$\hat{N}|n\rangle = n|n\rangle, \hat{a}|n\rangle = C_n|n-1\rangle = \sqrt{n}|n-1\rangle, \hat{a}^{\dagger}|n\rangle = C_{n+1}|n+1\rangle = \sqrt{n+1}|n+1\rangle.$$

Quantized EM fields

- Energy quantization: nhv
- Equally spacing in energy difference
- Zero-point energy $\neq 0$, hv/2
- Characterized by mode (frequency, space mode, temporal mode, ...)

More on Quantum SHO

Ş

Local \mathcal{PT} Symmetry Violates the No-Signaling Principle

Yi-Chan Lee,^{1,2,*} Min-Hsiu Hsieh,² Steven T. Flammia,³ and Ray-Kuang Lee^{1,4}

Synopsis: Reflecting on an Alternative Quantum Theory

APS/Alan Stonebraker

Local PT Symmetry Violates the No-Signaling Principle Yi-Chan Lee, Min-Hsiu Hsieh, Steven T. Flammia, and Ray-Kuang Lee Phys. Rev. Lett. **112**, 130404 (2014) Published April 3, 2014

PHYSICAL REVIEW LETTERS 123, 080404 (2019)

Simulating Broken \mathcal{PT} -Symmetric Hamiltonian Systems by Weak Measurement

Minyi Huang,^{1,*} Ray-Kuang Lee,^{2,3,4,†} Lijian Zhang,^{5,‡} Shao-Ming Fei,^{6,7,§} and Junde Wu^{1,∥}

Parity-Time Hamiltonian

• Generalized Harmonic Oscillator (continuous):

$$\mathcal{H} = p^2 + x^2 \, (ix)^\epsilon$$

• Spin- $\frac{1}{2}$ or two-mode coupler (discrete):

$$H = s \left(\begin{array}{cc} i \sin \alpha & 1 \\ 1 & -i \sin \alpha \end{array} \right)$$

• Consider a family of differential equations parameterized by a continuous parameter $\epsilon > 0$ in the form:

$$\frac{\partial^2 \psi(x)}{\partial x^2} + V_{\epsilon}(x)\psi(x) + 2E\psi(x) = 0, \qquad (1)$$

• Here, let us specify the definition of $V_{\epsilon}(x) = -(ix)^{\epsilon}$, by stating explicitly the branch of logarithm :

$$V_{\epsilon}(x) = -(ix)^{\epsilon} = e^{\epsilon \log(ix)} = \begin{cases} -|x|^{\epsilon} \left[\cos(\epsilon \frac{\pi}{2}) + i\sin(\epsilon \frac{\pi}{2})\right], & \text{for } x > 0; \\ 0, & \text{for } x = 0; \\ -|x|^{\epsilon} \left[\cos(\epsilon \frac{\pi}{2}) - i\sin(\epsilon \frac{\pi}{2})\right], & \text{for } x < 0. \end{cases}$$
(2)

 In a Fock state basis, an analytical formula for the matrix element a_{nm}(ε) =
 ⟨m|H_ε|n⟩ of H_ε = ¹/₂ ^{∂²}/_{∂x²} + ^{V_ε(x)}/₂ can be constructed for any natural number
 n, m and positive ε:
 L. Praxmey, Popo Yang, and RKL,

$$a_{nm}(\epsilon) = \frac{\sqrt{n(n-1)}}{4} \delta_{m,n-2} + \frac{\sqrt{(n+1)(n+2)}}{4} \delta_{m,n+2} - \frac{2n+1}{4} \delta_{m,n} + \frac{\text{Phys. Rev. A 93, 042122 (2016).}}{\left[\frac{1-(-1)^{\tilde{n}+\tilde{m}}}{4}\cos(\epsilon\frac{\pi}{2}) + \frac{1+(-1)^{\tilde{n}+\tilde{m}}}{4}i\sin(\epsilon\frac{\pi}{2})\right] \frac{(-1)^{\lfloor\frac{n}{2}\rfloor+\lfloor\frac{m}{2}\rfloor}2^{\tilde{n}+\tilde{m}}n!m!}{\lfloor\frac{n}{2}\rfloor!\lfloor\frac{m}{2}\rfloor!} \times \\ \times \Gamma\left(\frac{1+\epsilon+\tilde{n}+\tilde{m}}{2}\right) F_{A}\left(\frac{1+\epsilon+\tilde{n}+\tilde{m}}{2}; -\lfloor\frac{n}{2}\rfloor, -\lfloor\frac{m}{2}\rfloor; \frac{2\tilde{n}+1}{2}, \frac{2\tilde{m}+1}{2}; 1, 1\right) \delta_{m,n}(3)$$

where Γ is an Euler gamma function; F_A is a Lauricella hypergeometric function; symbol $\lfloor \rfloor$ denotes a floor function: $\lfloor k \rfloor$ is the largest integer not greater than k; character tilde \tilde{k} denotes a binary parity function: \tilde{k} is 0 for an even k and 1 for an odd k.

• By using truncated Fock state basis, we diagonalize the matrix $M_{nn}(\epsilon)$ numerically, having truncated the basis to the first 31, 51, or 71 elements.

Real Spectrum in \mathcal{PT} Hamiltonian

\mathcal{PT} in Phase space: Ground states

Wigner flow of \mathcal{PT} : Ground states

L. Praxmey, Popo Yang, and RKL, Phys. Rev. A 93, 042122 (2016).