Note: Coherent States (CS)

- ☐ Eigenstate of Annihilation operator
- Displacement Operator
- Properties of CS
- Representation of CS
- Expectation Value of E-fields
- Generation of CS
- More on States
- Minimum Uncertainty States
- □ Uncertainty Relation → Minimum Uncertainty States
- □ Squeezed States
- □ CS in Phase space
- ¬ Max. Mixed CS
- □ Generalized CS
- □ Spin Coherent States
- — Fermionic Coherent States

Bose-Einstein Distribution:

Boltzmann's law

$$P(n) \propto \exp[-E_n/k_BT],$$

$$P(n) = \frac{\exp[-E_n/k_B T]}{\sum_{n=0}^{\infty} \exp[-E_n/k_B T]},$$

= $\exp[-E_n/k_B T] (1 - \exp[-\hbar\omega/k_B T]); \qquad E_n = n \hbar\omega$

$$\bar{n} = \sum_{n=0}^{\infty} n \, P(n) = \frac{1}{\exp[\hbar \omega/k_B T] - 1},$$
 • average photon number at temperature T

$$P(n) = \frac{1}{\bar{n}+1} (\frac{\bar{n}}{\bar{n}+1})^n,$$

$$\Delta n^2 = \bar{n} + \bar{n}^2,$$

Quantum Mechanics: von Neuman entropy

How can we discriminate pure from mixed states, or more generally, characterize the purity of a state? One option is the *von Neumann entropy*, i.e.,

$$S = -k_B \operatorname{tr}[\hat{\rho} \ln \hat{\rho}],$$

where k_B denotes the Boltzmann constant.

- $S(\rho)$ is zero if and only if ρ represents a pure state.
- $S(\rho)$ is maximal and equal to $\ln N$ for a maximally mixed state, N being the dimension of the Hilbert space.
- $S(\rho)$ is invariant under changes in the basis of ρ , that is, $S(\rho) = S(\hat{U}\rho\hat{U}^{\dagger})$, with \hat{U} a unitary transformation.
- $S(\rho)$ is additive for independent systems. Given two density matrices ρ_A , ρ_B describing independent systems A and B, we have

$$S(\rho_A \otimes \rho_B) = S(\rho_A) + S(\rho_B).$$

Thermal states with the Maximal Entropy

$$S = -k_B \sum_n \rho_n \ln \rho_n - \mu_1 (\sum_n \rho_n - 1) - \mu_2 (\sum_n \rho_n E_n - E),$$

Expectation value of E-fields:

Number (Fock) states

Wigner quasiprobability distribution

Non-classical states

$$W(x,p) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\xi \psi^*(x - \frac{\xi}{2}) \psi(x + \frac{\xi}{2}) e^{-ik\xi}$$

negative probability

with Ludmila Praxmeyer

Note: Minimum Uncertainty States (MUS)

- — Heisenberg's Uncertainty Relation
- Minimum Uncertainty States (MUS)
- □ Gaussian States
- □ Free-particle expansion
- Squeezed States
- More on Uncertainty Relations
- □ Intelligent States
- Robertson-Schrodinger uncertainty relations
- Quantum entropic uncertainty principle
- □ Quantum Metrology
- □ Heisenberg limit → Quantum Cramer-Rao bound
- □ Quantum Non-Demolition (QND) Measurement

From Scratch!!

How much do you known about Uncertainty Relation?

Heisenberg's Uncertainty Principle

in position

Joseph Fourier (1768-1830)

Werner Heisenberg (1901-1976)

Fourier-Transform Limit

Uncertainty Relation:

- Non-commuting observable do not admit common eigenvectors.
- •Non-commuting observables can not have definite values simultaneously.
- •Simultaneous measurement of non-commuting observables to an arbitrary degree of accuracy is thus incompatible.

Uncertainty Relation:

For any two non-commuting observables, $[\hat{A}, \hat{B}] = i\hat{C}$, we have the uncertainty relation:

$$\Delta A^2 \Delta B^2 \ge \frac{1}{4} [\langle \hat{F} \rangle^2 + \langle \hat{C} \rangle^2],$$

where

$$\hat{F} = \hat{A}\hat{B} + \hat{B}\hat{A} - 2\langle \hat{A} \rangle \langle \hat{B} \rangle,$$

where the operator \hat{F} is a measure of correlations between \hat{A} and \hat{B} .

Uncertainty Relation:

A Minimum Uncertainty State (MUS), $|\psi\rangle$, satisfies

$$[\hat{A}+i\lambda\hat{B}]|\psi\rangle=[\langle\hat{A}\rangle+i\lambda\langle\hat{B}\rangle]|\psi\rangle=z|\psi\rangle,$$

where z is a complex number.