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ABSTRACT

With this talk, I will first illustrate the implementation of our machine-learning (ML) enhanced quantum state
tomography (QST) for continuous variables, through the experimentally measured data generated from squeezed
vacuum states, as an example of quantum machine learning. At the same time, as a collaborator for LIGO-Virgo-
KAGRA (LVK) gravitational wave network and Einstein Telescope, our plan to inject this squeezed vacuum
field into the advanced gravitational wave detectors (GWD) will be introduced. Finally, I will report our recent
progress in applying such a ML-QST as a crucial diagnostic toolbox for applications with squeezed states, from
Wigner currents, optical cat state generation, and Bayesian estimation for GWD.
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1. INTRODUCTION

Due to unavoidable coupling from the noisy environment, the capability to precisely characterize the quantum
features in a large Hilbert space is needed. In general, the reconstruction is not in the quantum state, but the
corresponding density matrix as the degradation transforms the target quantum state into a mixed state. For
continuous variables with infinite dimensions, by utilizing quantum homodyne measurements, quantum state
tomography (QST) has provided us with a useful tool for reconstructing quantum states.!:>

By estimating the closest probability distribution to the data, the maximum likelihood estimation (MLE)
method is one of the most popular methods in reconstructing arbitrary quantum states. However, MLE suffers
from the overestimation problem as the required amount of measurements to reconstruct the quantum state
exponentially increases with the number of involved modes. However, in dealing with continuous variables, even
truncating the Hilbert space into a finite dimension, a very large amount of data are still needed in reconstructing
a truncated density matrix. In this talk, instead of training the machine on the reconstruction model, alter-
natively, we develop a characteristic model-based machine-learning (ML)-QST by skipping the training on the
truncated density matrix. Such a characteristic model-based ML-QST can avoid the problem of dealing with
large Hilbert space but keep feature extraction with high precision.?

2. MACHINE-LEARNING ENHANCED QUANTUM STATE TOMOGRAPHY

As illustrated in Figure 1, by feeding noisy data of a quadrature sequence acquired by quantum homodyne
tomography into 17 convolutional layers, we take advantage of good generalizability in applying CNN. In our
one-dimensional (1D)-CNN kernel, there are five convolution blocks used, each of which contains two convolution
layers (filters) in different sizes. In order to tackle the gradient vanishing problem, which commonly happens
in the deep CNN when the number of convolution layers increases, some shortcuts are also introduced among
the convolution blocks. Nevertheless, after flattening the 1D-CNN kernel, we either apply extra fully connected
layers to reconstruct the truncated density matrix (coined as the reconstructed model) or predict physical pa-
rameters directly (coined as the characteristic model). The details and differences in the reconstruction model
and characteristic modes will be described in my talk, as one example of quantum machine-learning.*
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Figure 1. Demonstration of direct parameter estimations with machine learning. Here, in a single-scan measurement

of the LO phase, the noisy data of quadrature sequence obtained by quantum homodyne tomography are fed to the
convolutional layers, denoted as a 1D-CNN kernel.

3. QUANTUM NOISE REDUCTION TO THE ADVANCED GRAVITATIONAL
WAVE DETECTORS

For broadband quantum noise reduction of gravitational-wave detectors, frequency-dependent squeezed vacuum
(FDSQZ) is the most promising technique and will be implemented in Advanced LIGO, Advanced Virgo and
KAGRA.® Here, by developing machine-learning (ML) enhanced quantum state tomography (QST) for squeezed
states, we applied this ML-QST as a crucial diagnostic toolbox for the advanced gravitational wave detectors.

With the benefits from the good properties of the Gaussian states, including vacuum and squeezed states, a
neural network can directly analyze the raw data to obtain the first and second moments of probability density
function. Nevertheless, difficulties arise for such a relatively simple prediction map when non-Gaussian states are
attacked. One may increase the number of neurons in dealing with non-Gaussian states, however the training
process tends to cause overfitting problem. Here, we report a neural network enhanced state tomography for
non-Gaussian states. Moreover, this fast and easy-to-install methodology helps us with a better understanding
on quantum optics experiments with non-Gaussian states, such as photon-added squeezed states.5
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