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Non‑classical light state transfer 
in su(2) resonator networks
A. F. Muñoz Espinosa1, R.‑K. Lee2,3,4,5 & B. M. Rodríguez‑Lara1*

We use a normal mode approach to show full and partial state transfer in a class of coupled resonator 
networks with underlying su(2) symmetry that includes the so‑called J

x
 photonic lattice. Our approach 

defines an auxiliary Hermitian coupling matrix describing the network that yields the normal modes of 
the system and its time evolution in terms of orthogonal polynomials. Our results provide insight on 
the full quantum state reconstruction time in a general su(2) network of any size and the full quantum 
transfer time in the J

x
 network of size 4n+ 1 with n = 1, 2, 3, . . . For any other network sizes, the Fock 

state probability distribution of the initial state is conserved but the amplitudes suffer a phase shift 
proportional to π/2 that results in partial quantum state transfer.

Integrated photonic quantum  technologies1,2 promise higher speed, lower energy loss or greater bandwidth, 
to mention a few, that may impact all optical quantum communications and computing. Resonator networks 
are available to fulfill these promises in multiple platforms using evanescent field coupling between modes of 
individual high-Q resonators; for example, whispering gallery modes in optical  resonators3–5, photonic crystal 
 cavities6–8, or femtosecond-laser-written waveguide  arrays9–11. Beyond integrated photonic technologies, perfect 
quantum state transfer has been discussed in coupled cavity resonator arrays loaded with three-level  atoms12, 
integrated superconducting  technologies13,14, quantum transducers integrating  superconducting15 or  optical16 
systems to mechanical resonators, Rydberg atoms in a  lattice17, as well as the coupling of distant resonators via 
photonic  waveguides18–20.

Here, we focus on the transfer of non-classical states of light required, for example, by switching and routing. 
We draw inspiration from the so-called Jx photonic lattice where experimental perfect state transfer for non-
entangled21,22 and  entangled23 photonic qubits was demonstrated using an array of eleven coupled waveguides. 
Recent advances on reconfigurable nanoelectronical networks allowed perfect coherent transfer on-chip24. On 
the theoretical side, there is a recent report of quantum state transfer of two-photon Fock and NOON states but 
not of squeezed and coherent states for twenty coupled  waveguides25. The latter left the question on the feasibility 
of nonclassical state transfer in such resonator networks open and we aim to answer it.

In the following, we deal with the idea of normal modes for a completely connected resonator network 
described by an auxiliary Hermitian coupling matrix feasible of unitary diagonalization. Then, we explore the 
idea of quantum state transfer in such coupled resonator network to show that it reduces to find the structure 
of an auxiliary evolution matrix given in terms of orthogonal polynomials. In order to provide a particular 
example, we study the quantum analog of photonic lattice with an underlying su(2) symmetry, that includes the 
so-called Jx photonic lattice, and give its auxiliary unitary, diagonal and evolution matrices in terms of Gauss 
Hypergeometric function that allows us to discuss full and partial quantum state reconstructions and transfer. 
Finally, we close with our conclusions.

Results
Normal modes of a resonator network. We follow a Schrödinger picture  equivalent26 of a Heisenberg 
picture method proposed by one of  us27. Let us start from a completely connected resonator network,

and rewrite it in a simplified form,
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Ĥ

�
=

∑

j

ωj â
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in terms of an auxiliary Hermitian coupling matrix M with diagonal elements provided by the resonator frequen-
cies, [M]j,j = ωj , and off-diagonal elements by the coupling strengths, [M]j,k = gj,k = [M]∗k,j . In the following, we 
make use of the fact that all tri-diagonal auxiliary Hermitian coupling matrices are feasible of unitary diagonaliza-
tion through orthogonal  polynomials28 as well as some penta-diagonal symmetric  matrices29. On a case-by-case 
basis, this may extend to block tri- and penta-diagonal matrices. In these and other cases, there exists a unitary 
matrix transformation D that diagonalizes our auxiliary Hermitian matrix,

with a real diagonal matrix � . Here, it is possible to define normal modes,

that provide a diagonal representation of our Hamiltonian,

where the normal mode frequencies are the elements of the diagonal matrix, [�]p,q = �pδp,q . The time evolution 
in terms of these normal modes,

may be complicated but straightforward to calculate as we will show in the following.

Quantum state transfer. For the sake of providing a practical example, let us focus on transferring an 
arbitrary initial state at the m-th resonator,

into the n-th resonator at some given transfer time τ > 0 . In order to discern the time evolution of the initial 
state, we may rewrite each Fock state in terms of creation operators, |k�m = (k!)−1/2â†km |0� , and expand the crea-
tion operator in terms of the normal modes, â†m =

∑

p [D]p,mĉ
†
p . Then, the time evolution of the initial state,

where we use the fact that the vacuum state is an eigenstate of the system and does not evolve, Û(t)|0� = |0� , and 
move back into the localized modes, ĉ†p =

∑

q [D]∗p,qâ
†
q . In order to simplify our notation,

we define an auxiliary evolution matrix,

provided by the unitary decomposition of the auxiliary Hermitian coupling matrix.
At this point, our problem of transferring the localized initial state from the m-th to the n-th resonator 

reduces to find a unitary decomposition of the auxiliary Hermitian matrix, whenever it is possible, calculate 
the auxiliary evolution matrix elements, and find a transfer time τ where the auxiliary evolution matrix has the 
desired transfer matrix shape. Thanks to the work on orthogonal polynomials for tri-diagonal Hermitian and 
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(5)
Ĥ
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†
q





k

|0�,

(12)U = D†e−i�tD,



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10505  | https://doi.org/10.1038/s41598-022-14277-9

www.nature.com/scientificreports/

penta-diagonal symmetric matrices, this process may simplify for networks whose effective Hermitian coupling 
matrix has these characteristics. In the other hand, we may look at the inverse problem, starting from a desired 
transfer matrix shape, find an auxiliary Hermitian matrix that allows us to define a resonator network. The latter 
is beyond the scope of this contribution. In the following, we look at the former using a well known quantum 
resonator network, and study its ability to produce quantum state transfer using our normal mode approach.

SU(2) resonator network. In photonics, there exists a well-known photonic lattice with an underlying 
su(2) symmetry that provides coherent transfer of classical light and single-photon  states22,30. In the quantum 
regime, it has been used to discuss the idea of synthetic  dimensions31. We will work with a general  form32 that 
translates into a coupled resonator network with the following  Hamiltonian26,

where the annihilation (creation) operators for the localized modes in the m-th resonator are âm ( ̂a†m ) and we have 
2j + 1 resonators in total. The frequency of each resonator is ωm = �0 + ω

(

m− j
)

 and the nearest neighbours 
couplings is gm = g

√

m(2j + 1−m) . The Hamiltonian conserves the total photon number operator,

that allows us to change into a reference frame, |ψ� = e−i�0N̂t |ψ1� , where the effective Hamiltonian,

is related to the auxiliary Hamiltonian coupling matrix,

with an underlying su(2) symmetry with Bargmann parameter j = n/2 with n = 1, 2, 3, . . . that connects with 
the 2j + 1 total number of resonators. This auxiliary Hamiltonian matrix yields the normal modes,

in terms of the auxiliary unitary, diagonal, and evolution auxiliary matrices,

in that order, related to the Wei–Norman decomposition parameters for the su(2)  algebra33,

and

where we express parameters Az and Bz(t) in terms of their square root to highlight the importance of branch 
cuts when working with this class of resonator networks. We define an effective resonator network frequency,

that will be at the core of our analysis. In these expressions, we define the matrix elements,
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†
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in terms of the Pochhammer symbol (x)n and the Gaussian Hypergeometric function 2F1(x1, x2; y; z)34. Again, we 
must be cautious with the ramifications of the Wei–Norman decomposition parameter Xz . For integer Bargmann 
parameters, j = 1, 2, 3 . . . , we may use its absolute value, otherwise, j = 1/2, 3/2, 5/2, . . . , we need to work with 
the definitions above. While this analytic result may seem complicated, it provides great insight about quantum 
transport in the resonator network.

Quantum state reconstruction. The Wei–Norman decomposition parameters, B±(t) and Bz(t) , of the auxiliary 
evolution matrix suggest an oscillatory behaviour with period,

that leads to decomposition parameters,

pointing to a relevant Hypergeometric function,

that yields an auxiliary evolution matrix equal to the identity,

This result suggest that the initial quantum state,

will be ideally reconstructed at this time.

Partial state reconstruction. Something interesting happens at half the reconstruction time,

that leads to decomposition parameters,

pointing to a relevant Hypergeometric function,

that yields an auxiliary evolution matrix,

equal to minus the identity for half odd integer, j = 1/2, 3/2, 5/2, . . . and the identity for integer, j = 1, 2, 3, . . . 
Bargmann parameters. Thus, the initial quantum state will ideally reconstruct,

only for odd sized networks. For networks of even size,

we recover the even components of the initial state and the odd ones will show a π-phase shift. In 
other words, the state will show the same probability distribution in terms of Fock states that the ini-
tial state, P(n) = |�n|ψ(τr/2)�|2 = |�n|ψ(0)�|2 = |αn|2 , but the fidelity will be less than the unit, 
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F = |�ψ(0)|ψ(τr/2)�|2 = |
∑∞

k=0(−1)k|αk|2|2 ≤ 1 unless the initial state only has even or odd components. 
For example, squeezed vacuum or even (odd) cat coherent states will fully reconstruct at this particular time 
but coherent states will not.

Perfect and partial quantum state transfer. In the classical and single-excitation quantum regime, the so-called 
Jx oscillator network produces coherent quantum transfer. This array requires all resonators in the network to be 
identical. In consequence, we deal with an effective nil frequency, ω → 0 , that produces Wei–Norman decom-
position parameters,

that helps us explore a quarter of the reconstruction time,

where the individual parameters above indeterminate but the matrix elements,

provide us with an auxiliary evolution matrix,

proportional to the backward identity matrix J . This result suggest that the initial quantum state will ideally 
transfer from the m-th resonator into the (2j −m)-th resonator,

for networks with size equal to 4d + 1 resonators with d = 1, 2, 3, . . . . Otherwise, we will obtain partial state 
transfer,

with phase shifts that depend on the size of the lattice and the Fock state component. Again, 
the state will show the same probability distribution in terms of Fock states that the initial state, 
P(n) = |�n|ψ(τt)�|2 = |�n|ψ(0)�|2 = |αn|2 , for any given resonator network size but we will have 
full quantum state transfer only for resonator networks with even Bargmann parameter as the Fidel-
ity, F = |�ψ(0)|ψ(τt)�n|2 = |

∑∞
k=0(−i)2jk|αk|2|2 ≤ 1 , only becomes the unit in such case, j = 2p with 

p = 1, 2, 3, . . . , for any given initial state. Figure 1(a) shows the evolution of the Fidelity for a coherent state,

with a mean photon number equal to one, α = 1 , starting in the first waveguide of the array, m = 0 , and Fig. 1(b) 
that for a squeezed vacuum state,

with squeezed parameter value ξ = reiϕ =
√
0.2 . In both cases, the fidelity starts with a unit value in the first reso-

nator and signals perfect quantum state transfer to the last resonator at the expected normalized time gt = π/2 . 
Then, we observe perfect quantum state reconstruction at the initial resonator at the normalized time gt = π , 
again, as expected from our analysis. The high fidelity baseline for the squeezed vacuum state is due to its high 
vacuum component for the small value of the squeeze parameter r =

√
0.2 . We compared our analytic predic-

tions with a full brute force numerical propagator to good agreement. Our numerical propagator considers an 
approximate Hilbert space from zero to up to five excitation for each of the five resonators. This allows us to cover 
most of the information from the single photon coherent and r =

√
0.2 squeezed vacuum states; their norms in 

these subspaces are �α|α� = 0.99996 and �reiϕ |reiϕ� = 0.99084 that allow us to assume a good approximation.
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Conclusion
We showed that a normal modes approach provides a tractable framework for propagation of non-classical light 
in networks of coupled resonators. Our approach yields propagation in terms of orthogonal polynomials that 
provide further insight into the dynamics in the network whenever it is possible to use a unitary diagonalization 
of the auxiliary Hermitian coupling matrix of the system; for example, resonator networks described by auxiliary 
tri-diagonal Hermitian coupling matrices and some penta-diagonal real symmetric coupling matrices.

In particular, we studied a network with underlying su(2) symmetry and were able to identify that it provides 
full quantum state reconstruction; that is, state transfer to the same initial site. In addition, we showed that it 
offers both partial and full reconstruction at half the full reconstruction time. In the case of partial reconstruction, 
the Fock state probability distribution is recovered but the amplitudes for odd Fock state components show a π
-phase-shift with respect to the original. Naturally, quantum states with only even (odd) components are fully 
reconstructed (up to an overall π-phase shift).

We also explored quantum state transfer in the equivalent of the so-called Jx photonic lattice. We showed 
that full quantum state transfer occurs at a quarter of the reconstruction time for coupled resonator networks 
with even Bargmann parameter; that is, networks composed by N = 4n+ 1 resonators with n = 1, 2, 3, . . . . The 
transfer occurs between the m-th and the (N −m)-th waveguides with m = 0, 1, 2, 3, . . . , 4n . Otherwise, the Fock 
state probability distribution at the transfer site is identical to the original one but the amplitudes for Fock state 
components shows a phase shift proportional to an integer multiple of π/2.

Our normal modes approach makes it straightforward to calculate correlations and other quantum quantities 
of interest in terms of orthogonal polynomials whenever a unitary diagonalization for the auxiliary Hermitian 
matrix exists.
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