RAPID COMMUNICATIONS

PHYSICAL REVIEW A 69, 021801R) (2004

Amplitude-squeezed fiber-Bragg-grating solitons
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Quantum fluctuations of optical fiber-Bragg-grating solitons are investigated numerically by the back-
propagation method. It is found that the band-gap effects of the grating act as a nonlinear filter and cause the
soliton to be amplitude squeezed. The squeezing ratio saturates after a certain grating length and the optimal
squeezing ratio occurs when the pulse energy is slightly above the fundamental soliton energy.
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In the literature, various types of optical soliton phenom-oped[9] to the cases of nonlinear bidirectional propagation
ena have been studied extensively in the area of nonlinegroblems. By following the same spirit of the back propaga-
optical physics. These include the nonlinear Sdimger  tion method, we will first derive a set of linear adjoint equa-
solitons in dispersive optical fibers, spatial and vortex soli-tions from the linearized NCMEs in such a way that any
tons in photorefractive materials or waveguides, and cavitynner product between the solutions of the two equation sets
solitons in resonatorfl]. It has also been well known that IS conserved during the time evolution. Under the lineariza-
fiber Bragg grating§FBGS with Kerr nonlinearity can ex- tion approximation, the measurements performed after the
hibit optical-soliton-like phenomena known as the fiber-time evolution can also be expressed in terms of the inner
Bragg-grating soliton§2,3]. The FBGs are one-dimensional Product between the perturbed quantum field operator and a
photonic band-gap crystals with weak index modulation. Bymeasurement characteristic function which depends on the
utilizing the high dispersion of the FBGs near the bandmeasurement to be performed. By back-propagating the
edges, one can produce optical solitons in the anomalou®easurement characteristic functiontteO through the so-
dispersion side if the input pulse has suitable pulse width antition of the adjoint equations, we can express the measured
peak intensity. From the theoretical point of view, solitary operator in terms of the input field operators which have
waves in one-dimensional periodic structures can travel wittknown quantum characteristics. In this way, the variance of
different group velocities and have been verified in somghe measured operator as well as its squeezing ratio can be
experimentg3]. Even for two- or three-dimensional nonlin- calculated readily for a given measurement characteristic
ear photonic band-gap crystals, solitary waves can also exi§gnction. To be more explicit, let us consider the wave propa-
[4] and have been observed recery. gation problem in a one-dimensional fiber grating structure

Most of the previous studies on fiber-Bragg-grating soli-with the nonlinearity coming from the third-order nonlinear-
tons have been on the classical effects and there is almost ffy of the optical fiber. With the self-phase modulation and
result on their quantum properties. The quantum theory ofross-phase modulation effects, we model Bragg solitons by
traveling-wave optical solitons has been intensively develusing the following NCMEs that describe the coupling be-
oped during the past 15 years and several approaches haigeen the forward and the backward propagating waves in a
been successfully carried out to calculate the quantum progiiform FBG:
erties of different traveling-wave optical solitons including L
the family of nonlinear Schidinger solitong6,7] as well as J Ja : . 2
the self-induced-transparency solitof§]. Fiber-Bragg- v_g Eua(z’t)Jr a—ZUa—I5Ua+IKUb+IF|Ua| Ua
grating solitons belong to the class of bidirectional pulse
propagation problems where the quantum theory is still lack +2il|Up|?U,, (1)
of enough consideration. It is the aim of this study to bridge
this gap by developing a general quantum theory for bidirec- 19 d . . ) )
tional pulse propagation problems and particularly applying ZtYn(z,0)— a_ZUb:'5Ub+'KUa+'F|Ub| Up
the theory to the case of fiber-Bragg-grating solitons. It will
be shown that the output fiber-Bragg-grating soliton pulses +2iT|U,[Up. ()
will quantum mechanically get amplitude squeezed and the
squeezing ratio can be calculated theoretically. In our modHere U,(z,t) and Uy (z,t) represent the forward and back-
eling, we use the nonlinear coupled mode equationsvard propagation pulses, respectively. They are in the units
(NCMES) to describe the two bidirectional waves propagat-of GWY%/cm. Moreover,vg is the group velocity of the
ing in a uniform FBG. We use the linearization approach topulse, « is the coupling coefficient\g is the Bragg wave-
study the quantum effects of optical solitons in FBGs bylength, § is the wavelength detuning parameter, dhdep-
extending the back-propagation method we previously develresents the self-phase modulation coefficient. This set of

NCMEs has analytical soliton solutions for the case of infi-
nite grating length, as is shown by Aceves and Wabnitz with
*Electronic address: yclai@mail.nctu.edu.tw the introduction of the massive Thirring modg]. However,
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for gratings of finite length, no analytic solution can be
found. So in our studies we directly use the finite difference
numerical simulation method with the parameters based on
the first experiment reported in the literat(igd. We consider

a 60 ps full width at half maximuntFWHM) sech-shaped
pulse incidents into a uniform grating with 15.0 chwave-
number detuning from the center of the band gap. The cou-
pling strength of the fiber grating is 10 ¢rh the nonlinear
coefficientI” is 0.018 cm/GW, and the group velocity, is

required value for forming a solitary pulse in the FBGs
(about 4.5 GW/crh in this casg the peak intensity of the
pulse will decrease along the propagation. On the other hand,
as shown in Fig. 1, when the input peak intensity is above
4.5 GW/cnt, the peak intensity of the pulse oscillates during
the propagation within the grating. Only when the nonlinear-
ity can exactly compensate the dispersion induced by the
FBGs, one can have a stable solitary pulse inside the grating.

After obtaining these classical solutions, we now turn to
the calculation of their quantum properties. In quantum
theory the NCMEs become the quantum nonlinear coupled
mode equation$QNCMES:
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[Up(21,1),08(22,1)1= 8(21~ 2,),
[Ua(z1,1),0a(22,)1=[0{(z;,1),0](z,,1)]=0,
[Un(z1,6),06(22,)1=[0(21,1),U4(22,1)]=0,

[Ua(z1,1),0p(22,0)1=[Ua(z1,1),0{(2,,1)]=0.

This is a set of coupled operator equations in the Heisenberg
epicture and can be derived from the following Hamiltonian
under the effective-mass approximatidro]:

AT - ~t 9o
H=—v4{ 8| dz0]0,+0[0,)+i | d4 0]=-0,

or [ dzmgogoboamgo;oaob)]. )

19, Jon
gﬁua(z,t)+Eufuaua+|Kub+|ru;uaua

This derivation automatically proves that the QNCMEs pre-
3) serve the commutation brackets.

Since for optical solitons the average photon number is
usually very large, we can safely use the linearization
approximation to study their quantum effects. By setting
Ua(Z,t) = UaO(th) + l’:L’:I(Z!t)! Ub(zvt) =U bO(Zit) + ab(zvt)a
and substituting them into Eq&3) and(4) for linearization,
we obtain the linear quantum operator equations in (By.

£ 2iT010,0,,

+2ir00,0,, (4)

malized fields which satisfy the usual equal time bosonicciated with the fiber-Bragg-grating solitons. The quantum

commutation relations:

perturbation fieldsi,(z,t) anduy(z,t) in Eq.(6) also have to
satisfy the same equal time commutation relations as the

[Ua(z1.1),0%(2,,0)1= 8(21-2,), original field operatord) ,(z,t) andU(z,t):

1%
- ——+i i 242 2 ik+2ilCUoUP N
1 ﬁ(ua) [?Z+I5+2|F|Uao| +2iT|Upo K a0Yho (Ua)
U_E ~ T ) . 9 ~
R I +2iFUZ0Upg E+i5+2ir|uao|2+2ir|ubo|2 Uo
. 2 . AT
iUz 2iT'U U\ [ Uy
+1 .. . ay | 6
2iTU Uy iTU% /|0 ©)
Jd . , 2 n ) . . N
1 g (ud _E+|5+2|F|Uao| +2iT|Upo ik+2iTU4Ug, "
vg dt\uf| up

. . J
i+ 2iTU% U0 E+i5+2ir|uao|2+2ir|ubo|2
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FIG. 1. Evolution of the fiber-Bragg-grating soliton with the
input peak intensity =9.0 GW/cn?.
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If we define the inner product operation according to

o

)

.~ 1 - A A A
(f19)=5 [ daria o a1l @

&

then Eq.(7) is the corresponding set of adjoint equations for
the perturbed QNCMEs, which have the following desired

property:

S

Optimal Squeezing Ratio (dB)
& &

o
T

(did t) (GA|0)=0, (9)

-
o
o

Peak Ini'enslty of Ir1|0put Pulse(é5W/cm2) 2
whereu”= (u2,uf)T is the solution of the adjoint equation
defined in Eq(7). The important thing is that the inner prod- ~ FIG. 2. Transmittancétop) and photon number squeezing ratio
uct between the solutions of the two equation sets is predottom for fiber-Bragg-grating solitons with different input inten-
served along the time axis. sities.

By taking advantage of the preservation of the inner prod-
uct, we can express the inner product of the output quantursolitary pulse incident into a uniform FBG, and calculate the
perturbation operator with a projection function in terms of quantum fluctuation of its first transmitted pulse based on the
the input quantum field operators by thack-propagation formulation given above.
method This will allow us to calculate the quantum uncer-  The transmittance of the FBGs with different input inten-
tainty for the inner product of the output quantum operatorsities of solitons for a constant FBG lend&0 cm) is shown
with any given projection function. Under the linearization in the top curve of Fig. 2. The calculated photon number
approximation, any measurement of a physical quantity caggqueezing ratio is shown in the bottom for the same param-
be expressed as an inner product between a measuremeiérs. When the input peak intensity is smaller than that of
characteristic function and the perturbed quantum field opthe fundamental soliton, the output squeezing ratio mono-
erator[9]. The squeezing ratio of the measured quantity thusonically decreases when the input peak intensity is in-

can be calculated according to creased. The output squeezing ratio will begin to oscillate
strongly with respect to the changing input intensity when

var[(ﬂf](t:T))] var[(lfT|ﬁ(t=0))] the input intensity is much larger than that of the fundamen-

R(T)= - = - (10 tal soliton. The oscillation behaviors of the FBG transmit-
vaf(flu(t=0))]  vaf(flu(t=0))] tance and the squeezing ratio match very well. That is, the

squeezing ratio has a local minimum when the transmission
Here vaf-] means the variancd, is the original projection has a IOCE_" maximum. Inftuitively_ the peri_odic grating struc-

. > - . ture acts like a spectral filter which can filter out the noisier
function, andrF is the back—propagatcid projection function. high-frequency components in the soliton spectrum and pro-
The choice of the characteristic functibnwill depend onthe  duce a net amplitude squeezing effect just as in the previous
measurement to be performed. For the photon number meapjiton amplitude squeezing experiments where a spectral
surementf is simply the normalized output classical pulsefilter is cascaded after a nonlinear fibgt2,13. And the
from the gratingd 11]. For the homodyne detection, it will be minimum squeezing ratio occurs when the pulse energy of
the local oscillator pulse. In the following we consider a soliton is slightly larger than that of the fundamental soliton.
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FIG. 3. Optimal squeezing ratio for Bragg solitons propagating s 7 eled)
through different length of FBGs. ) ) . .
FIG. 4. Squeezing ratio for different FBG lengths and different

. s . . local oscillator phases.
It is also intuitively clear that larger amplitude squeezing

should occur when the transmittance curve is saturated. Figane can see that for short FBG lengths the quadrature
ure 3 shows the dependence of the optimal squeezing ratigglueezing direction is close to but not exactly in the in-phase
for different FBG lengths with a constant input intensity ( (or amplitude quadrature #=0. However, when the FBG

=4.5 GW/cnf). If we only consider the gratings with the ength is long enough, the squeezing direction will approach
length longer than 1 cm, we find that the squeezing ratidh€ in-phase quadrature. This proves that the FBG solitons
monotonically decreases with the FBG length and saturate4ill indeed be squeezed in the amplitude direction when the
at the length around 60 cm. Intuitively this is because thé:B‘?olzz%m:rilgggvigoﬁg\% developed a general quantum
filtering effect of the grating will unavoidably introduce ad- L i : .

" : . . heory for bidirectional nonlinear optical pulse propagation
d|t|0nall NOISES on the light fields and eventually cause th(%)roblgms and have used it to caIcuIF;;lte thg sque%ziﬁggratio of
squSeefzmg ratAO o bﬁcom(tehs?ttl;]ratggé it il get fiber-Bragg-grating solitons in one-dimensional photonic

i 3 arwe a\(/jeds own that the Usg' OT]S VI\{I ge! arn'band—gap crystals. We find that the output pulses can get
plitude squeezed during propagation. Under the linearizatioq , iy\,de squeezed and the squeezing ratio exhibits interest-
approximation, the amplitude squeezing corresponds 10 th@q velations with the fiber grating length as well as with the

squeezing of the in-phase quadrature field component. Tpyansity of the input pulse. To measure the quantum fluctua-
further determine the maximum squeezing phase angle of thg, .« of fiber-Bragg-grating soliton experimentally, one

quadrature field components of the FBG soltions, we perpeeds to apply the direct measurement for the first transmit-

form another calculation to simulate t_he squeezing ratiqgy pulse from the grating by gating out other smaller mul-
when the homodyne detection scheme is used and when e reflected pulses. It will be very interesting to see if one

local oscillator pulse is exactly the classical output pulsescan acryally observe these effects experimentally in the fu-
With the homodyne detection scheme, one has the additiongl,,

degree of freedom to adjust the relative phase between the

local oscillator and the signal for detecting different quadra- The work of Y. Lai was supported in part by the National

ture field components. Figure 4 plots the squeezing ratio foScience Council of the Republic of China under Grant No.
different FBG lengths and for different local oscillator NSC 92-2120-M-001-005, as well as by the Ministry of Edu-

phases with a constant input intensity=(4.5 GW/cnf). cation of the Republic of China under the Excellence Project.
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