3, Atom-field interaction, semi-classical and guantum theo res

Semiclassical theory
Jaynes-Cummings Hamiltonian
Multi-mode squeezing

Rabi Oscillation

a >~ W h e

Superradiance

Ref:

Ch. 5, 6 in "Quantum Optics,” by M. Scully and M. Zubairy.

Ch. 5, 6 in "Mesoscopic Quantum Optics,” by Y. Yamamoto and A. Imamoglu.
Ch. 5 in "The Quantum Theory of Light,” by R. Loudon.

Ch. 10 in "Quantum Optics,” by D. Wall and G. Milburn.

Ch. 13 in "Elements of Quantum Optics,” by P. Meystre and M. Sargent lIl.
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Einstein on Radiation

fur Cluantentheae der Straklung
Vai A, Rigsteinl}

e focmale Shafehkeit der Kuswe der clifds
matischen Verelany der Temperaiurstrabiung
mit May wellweden Geschwindg st Veriefongs
foscic Wt 7= [mepmeat, .l]'.'ld.l'.ﬂlﬁl:l.l..l:l,Etll.hll:l!

, verbargen  bleben kdosen. o der Tat wande
bereirs W, Wien in der wichripen theoretischen
frbem, in wekdur oroacEs fﬂhﬂmq{!ﬂd&ﬂ.

o= wfl3) (1)
allcizss, durch dicic Abnllekieir aul exma weiior:
pchuncds Arsticmmung . dér Stahlungalorme e
filhrt. Er fapd hierhei belaanihch e FVoriod

pe=gple 4T [2)

"On the Quantum Theory of Radiation"

A/B
D(w) = chw/kpT _ 1
A hw?
B = o
VAzZAERSD A. Einstein, Phys. Z. 18, 121 (1917).

D. Kleppner, "Rereading Einstein on Radiation," Physics Today 58, 30 (Feb.|2005).
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Quantization of the Electromagnetic Field

2
1 A .
g—m + §km2, where [z, p] = ih,

ﬁﬁ

Na

tio

al Ts

R

Like simple harmonic oscillator, H =
~ 2

For EM field, H = 1 3~ [m;jw?,¢? + %], , where [G;, p;] = ihd;;,

the Hamiltonian for EM fields becomes: H = > hwj(&j.&j + 1),

the electric and magnetic fields become,

By(z,t) = Z(EO;W?[ je it + ale™ it sin(k;2),
N hw ; .
Hy(z,t) = —ieoc;(eo—‘;)lm[djewjt ale™i'] cos(k;z),

% A

Hu

aUn
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Planck’s Law

9 In the thermal equilibrium at temperature T, the probability P,, that the mode
oscillator is thermally excited to the n-th excited state is given by the Boltzman factor,

b eXPI-E /kpT]
Ty, expl—En/kpt]’

9 the mean number 7 of photons is,

U 1
’ﬁ,:Z’nP,n: _— = ,
1-U exp(hw/kgT) —1

where U = exp(—fw/kpT)and > > ;U™ =1/(1 -U).
9 energy density of the radiation:
Dw)dw = nhwdw = nhwp,,dw,

A3 dw

= ahwldw/r%c® = :
" wjme w2c3 explhw/kpT] — 1

X~ E 5 2 | oo
¥ @mjszf‘gﬁgﬁelectromagnetlc energy density: [° D(w)dw = 1/2V [ .. €o|E(r,t)[?dV.

avity
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Fluctuations in Photon Number

9 the ergodic theorem of statistical mechanics: time averages are equivalent to
averages taken over a large number of exactly similar systems, each maintained in
a fixed state (ensemble).

D the probability of finding »n photons,

exp|—En/kpT)| n"

Fn = >, eXp[—Eyn/kpt] =1-0Uut = (1+n)ttn’

which is a thermal distribution or the geometric distribution.

9 the root-mean-square deviation:

An® =) (n—n*)P, =0+,

then

TEZAERES

National Tsing Hua Un
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Probabillity distribution for

n=1

R HEERG

Mational Tsing Hua University

plm)
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Einstein’'s A and B coefficients

9 For a two-level atom, the rates of changes of N; and N are,

dN dV.
d—tl — _d—t2 = N2A21 — NlBlgD(W) + N2B21D(w)7

9 Az1 is the probability of photon in state 2 spontaneously fall into the lower state 1,
l.e. spontaneous emission;

9 B2 is the probability of photon absorption in state 1 into state 2, i.e. absorption;

9 B2 is the probability of photon emission from state 2 into state 1, i.e. stimulated
emission;

le __dN2 _O
de dt !

9 inthermal equilibrium,

Ao

D) = (N /N2)Bus = Bar

where the populations N; and N2 are related by Boltzmann’s law,

X 5L A N1/N2 = (g1/g2)exp[hw/kpT],
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Einstein’'s A and B coefficients

9 the density distribution of EM fields in a two-level atom,

Aaq
(g1/g2)explhiw/kpT]B12 — B21’

D(w) =

where g; and g2 are the level degenerate parameters.

9 compare it in free space,

hiw? 1
n2c3 explhw/kgT]) — 1’

D(w) =

9 atall temperatures T, we have

(g1/92)B12 = Boai,
(%3/7T203)Bgl = Aoq,

9 the consistency between the Einstein theory and Planck’s law could not have been
achieved without the introduction of the stimulated emission process.

a2 %?% ‘1

National Tsing Hua Un
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Einstein’'s A and B coefficients

9 for nondegenerate two-level atom, g1 = go = 1 and N1y + Ny = N,

dNy dNo
—— =———= = N2A+ (N2 — N1)BD
dt dt ? (N> 1) (@),

9 the solution for Ny is,

) N(A + BD(w) N[A + BD(w)]
Ny = [N7 - A + 2BD(w) P AT BN A+2BD(W)

where NY is the initial value of Ny att = 0,

9 jf N9 = 0, all atoms are in the ground state at ¢t = 0,

NBD(w)
= 1 —exp|—(A+2BD t
2D L OPI-(A+2BD@)1]
9 inthe steady-state,
7 NBD(w) :
= ~ 0.5, if BD A,
National Ts %:H%—u 2 A + 2BD(W) (W) >>
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Macroscopic theory of Absorption

9 for the excited state,

d.N.
T2 NLA,
dt

with the solution No = NJexp[— At], where A = 1/7x the radiative lifetime of the
excited states.

In macroscopic, the polarization P by an applied electric field E is related with
P = ¢gxE, where the susceptibility x = x1 + 7x2,

the relation between frequency and the wavevector,
kc/w=14+x =n? = (n+ix)?, where n? — k? = 1 + x1 and 2nx = xa2,

the traveling-wave solution propagated in the z—direction becomes,

WKRZ

B

expli(kz — wt)] = exp[iw(% —1) - =

the averaged Poynting vector, I = (E x B/ug) = %eocn\E(r, t)|2, where

I(z) = Ipexp[—2wkz/c],
Rl

nanonai Teins Hes ywhyeye 2wk /c IS called the absorption coefficient.
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Microscopic theory of Absorption

eo|E(r, t)|2dV.

2 total electromagnetic energy density: [ D(w)dw = 1/2V fcavity

2 fora lossy dielectric medium, [;* D(w)dw = 1/2V fcavity eon?|E(r, t)|2dV.

2 i steady-state condition, —d& = No A+ (N2 — N1)BD(w)/n? = 0, with an
additional factor n? for the energy density,

9 the attenuation energy within a small section of dz, cross-section A is,

%D(w)dedz = — (N1 — N2)F(w)dwBD(w)/n*hw(Adz/V),
9 for the absorption, — 2 D(w)dwAdz = — 2 TdwAdz, or 2 D(w) = 21T,
2 forl= . 2, we have cD(w) = nl, then,

%f = —(N1 — No)F(w)(Bhw/Ven)hl,

where F'(w) is the distribution of atomic transition frequencies.
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Microscopic theory of Absorption

2 if N9 = 0, all atoms are in the ground state at ¢ = 0,

NBD(w)
A+ 2BD(w)/n?

NBD(w)
A+ 2BD(w)/n?’

No = [1 —exp[—(A + 2BD(w))t] ~

and we have,

NA NA

Ny — Na = - __
! 2 A+2BD(w)/n? A+2BI/cy

9 the equation for the average beam intensity becomes,

L4 2810  NBRwF()
I Acn 82 N Ven
9 for all ordinary light beams, ?43[ < 1, then we have,
I(z) = Iyexp|[-NBhwF(w)z/Ven],
= Ipexp[—Kz],

E 2k 2R

National Tsing Hua Un
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Microscopic theory of Absorption

A dielectric with one single resonance may be modeled as a distribution of "+" and
"—" charges, the + charges immobile and the — charges tied to the + charges by
a spring constant k,

2

m( s + 28— +w0>d——§E,

d

for the incident field E = Egpexp[—i(wt — kz)] and the dipole
d = aexp|—i(wt — kz)], we have

—(e/m)Ep
w? — w2 + 2ifw’

a —=

the polarization P = Np = N3 ed; = Na(w)Eoe™*«t~#2), where
—e2/m
w2—w8—|—2i5w )

a(w) =

Ch. 2,3, 7,8 in "Lasers,” by P. Milonni and J. Eberly.

B 5 i £ A

MNatio

al Tsing Hua Un
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Microscopic theory of Absorption

9 the dispersion relation,

2 2
w Noa(w 9
K= 51+ ( )] = —5n*(w?),
c €0 c
9 the real index of refraction,
Ne? w2 — w?
nr(w) =1+ 0

meo (Wi — w?)2 + 432w2’

9 the absorption coefficient or extinction coefficient,

2Ne? Buw?
mepc (wi — w?)? + 432w?’

a(w) =2nr(w)w/c =

which has the lineshape of the Lorentzian function,

Ne? dwo
2mepc (wo — w)?2 + dwd’

a(w) =

VA EEAREG

Mational Tsing Hua Wﬁrseltly‘re 5w — /8
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Population Inversion: the Laser

9 for athree level atom, N1 + N2 + N3 = N, the rate equations are:

dN:

_d: = —NyAp — NaAgs + DpBa3(N3 — Na) — D(w)Ba1 (N2 — N1),
dN

d—tl — N2A21 —N1A13+D(W>B21(N2_N1>7

dN.

d—t3 = —N2A23—|—N1A13—DpBQB(NB_N2)7

the pumping rate v = D, B3 (N3 — N3)/N,

in steady-state,

N3[A21 + B21D(w)] = Ni[Ai12 4+ B21D(w)],
NoAz3z + N1A1z = Nr,

2 for As1 < Ai3, we have Ny > Nj.

TEZAERES

National Tsing Hua Un
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Purcell effect : Cavity-QED (Quantum ElectroDynamics)

Fabry-Perot Whispering gallery Photonic crystal

]
@

Ry 14 :
o 2.000 Q12,000 Qyy 1,000 Q13,000
V5 (i) 1A 6 (W)} Qpogy: 1.3x105 1 1.2 (/)3
I
5 |
- N |
=~ - |
F 48108 0 Bx10° 0 108
V¥ 1,690 wmd I 3,000 um?

E. M. Purcell, Phys. Rev. 69 (1946).

Nobel laureate Edward Mills Purcell (shared the prize with Felix Bloch) in 1952,

for their contribution to nuclear magnetic precision measurements.

Rl R
ﬂml nffm,mf from: K. J. Vahala, Nature 424, 839 (2003).
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The motion of a free electron

9 the motion of a free electron is described by the Schr odinger equation,

—h? o
— V2V = ih—,
2m ot’

D the probability density of finding an electron at position » and time ¢ is

P(T7 t) - ‘\P(T»t)‘27
2 s W (r,t) is a solution os the Schrédinger equation so is

Wi (r,t) = ¥(r t)explix],
where x is an arbitrary constant phase,
9 the probability density P(r,t) would remain unaffected by an arbitrary choice of y,
9 the choice of the phase of the wave function ¥ (r,t) is completely arbitrary,

two funct|ons differing only by a constant phase factor represent the same physical

Mﬂ "% Sfété“

IPT5340. Fall '06 — n. 17/



Local gauge (phase) invariance

9 the motion of a free electron is described by the Schr odinger equation,

—h? o
— V20 = ih—,
2m ot

9 ifthe phase of the wave function is allowed to vary locally, i.e.

Wy(r,t) — W(r,t)explix(r,t)],
9 the probability P(r,t) remains unaffected but the Schrddinger equation is no
longer satisfied,

to satisfy local gauge (phase) invariance, then the Schrodinger equation must be
modified by adding new terms,

— K2

2m

v
[V — i%A(’r, t)]? + eU(r, t)} U = iha—,

t ot

where A(r,t) and U(r, t) are the vector and scalar potentials of the external field,
g iade I érgg%ﬁctively,

Mational Tsing Hua Universit
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Minimal-coupling Hamiltonian

2 1o satisfy local gauge (phase) invariance, then the Schroédinger equation must be
modified by adding new terms,

52
{—h[V — z—A(r t)]? + eU(r, t)} U = zh%—\f

and

h
A(r,t) —  A(r,t)+ —Vx(rt),
e

U t) = UG — = XD,
e

where A(r,t) and U (r,t) are the vector and scalar potentials of the external field,
respectively,

9 A(r,t) and U(r, t) are the gauge-dependent potentials,
9 the gauge-independent quantities are the electric and magnetic fields,

OA
E = —-VU-— —,

VA 2 %? ot

National Tsing Hua Un B _ VA
- )
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Minimal-coupling Hamiltonian

9 an electron of charge e and mass m interacting with an external EM field is
described by the minimal-coupling Hamiltonian,

A 1
H=—[p—eA(r,t)]?> + eU(r,t),
2m
where p = —ihV is the canonical momentum operator, A(r,t) and U(r, t) are the

vector and scalar potentials of the external field, respectively,
the electrons are described by the wave function ¥ (r,t),
the field is described by the vector and scalar potentials A and U,

9 in this way, the photon has been 'derived’ from the Schrodinger equation plus the
local gauge invariance arguments,

9 the gauge field theory leads to the unification of the weak and the electromagnetic
interactions,

TEZAERES

National Tsing Hua Un
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Dipole approximation and r - E Hamiltonian

2 if the entire atom is immersed in a plane EM wave,
A(rg +7,t) = A(t)explik - (ro +7)] = A(t)exp(ik - ro),

where rg is the location of the electron,
in this way, the dipole approximation, A(r,t) ~ A(rg, t),
and the minimal-coupling Hamiltonian becomes,

i - %[p — eA(ro, t)]% + eU(r, ) + V (),

where V' (r) is the atomic binding potential,

9 in the radiation gauge, R-gauge,

U(r,t) =0, and V- -A(r,t)=0,

9 the minimal-coupling Hamiltonian becomes,

Rl S o

T — 8A(T0,t)

+V(T)+€r'T,

(8
41T Ul
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Dipole approximation and r - E Hamiltonian

9 inthe dipole approximation the minimal-coupling Hamiltonian becomes,
. 1 5
H = % [p - eA(TO7 t)] + GU(T’, t) + V(T>7

9 the wave function with a local phase,

U(r,t) = &(r, t)eXp[ A(’ro,t) r],

then
in Cr P00 gy 1 P D e ) = (2 v(rlexpl A 1)
9 in terms of the gauge-independent field E, the Hamiltonian for W(r,t) is,

A p2 8A(T0, t)

H = —+4V —
2m T Vir) +er ot '
p° N7

,-i:-...lﬂ %_2— — %—l—‘/(T)_erE(TO,t):HO_l_Hl,

al Tsing Hua Un
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Dipole approximation and r - E Hamiltonian

9 inthe dipole approximation the minimal-coupling Hamiltonian becomes,
2 p2 a’A‘(TO7 t)
H = —+4V —_—
2m +Vir)+e ot
p* N
= ——|—V( )—GF-E(To,t):Ho—i—Hl,
2m
in terms of the gauge-independent field E and where
. p2
Ho - ST V(T)7
2m
[:Il = —er-E(ro,1t),
)

this Hamiltonian is for the atom-field interaction,

sl - %é

al Tsing Hua Un
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p - A Hamiltonian

2 in the radiation gauge, R-gauge,

U(r,t) =0, and V- -A(r,t)=0,

the latter one implies [p, A] = 0, then

9 andthe minimal-coupling Hamiltonian becomes,

~ 1

H = —[p — eA(To,t)]Q —+ V(T) = I:I() + I:IQ,
2m
where
. p2
HO — — + V(T’),
2m
~ e 62 €
Hy = ——p-A(To,t)—l——A2(T0,t)%——p-A(To,t),
m 2m m
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Differences inr - E and p - A Hamiltonian

9 inr-E

I:I;L = —erl - E(’I“(),t),

9 in p - A Hamiltonian

e
Hy = ——p - A(ro,t),
m

9 these two different Hamiltonian H, and H; give different physical results,

9 for example, consider a linearly polarized monochromatic plane-wave field,

1
E(ro =0,t) = Egcoswt, and A(ro =0,t) = —— Epsinwt,
w

2 the ratio of the matrix elements for the Hamiltonian £, and H is

Al (e/ma) Pl - Bo | wp
(fIH1l2) e(fIrlé) - Eo w

? A Was first pointed out by Lamb, this makes a difference in measurable quantities
like. fransition rates,

MNational Tsing Hu
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Interaction of a single two-level atom with a single-mode fie

consider the interaction of a single-mode radiation field of frequency v,
and a two-level atom with upper and lower level states |a) and |b),

the unperturbed part of the Hamiltonian Hy has the eigenvalues fw, and fw;, for
the atom,

2 the wave function of a two-level atom can be written in the form,
|Wt) = Cal(t)]a) + Cp(t)[0),

the corresponding Schrodinger equation is

maqéf) — (Ho + H)W (1),
where
Ay = la)(al+ 15)(b]) Fola) (a] -+ b) (b)) = huala)(al + sy b} B]
I:h = —er-E(t) = —e(la)(a] + [b){b])r(|a){al + [b)(b])E,

’VW %«?—- = —(Papl@) (b + Ppala) (BDE(D),
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Probability amplitude method

9 inthe dipole approximation,
Ho = Tfwala){a| + Fuoy|b) (b,
Hi = —(Papla) (bl + Ppala) (B)E(®),
where p,;, = pj, = e{alr|b),
9 fora single-mode field,
E(t) = Eg cosvt,
9 the equation of motion for the probability amplitude are
d | . o
&Ca = —iwgCq + 1Qpg cos(vt)e™ *?CY,
d .
EC’b = —wpCh +1Qp COS(l/t)e_H(bCa,
9 where Qg |pab| 9 is the Rabi frequency which is proportional to the amplitude

of the classical fleld

B 2 5 i— A& 2
National . and. qb is the phase of the dipole matrix element p_, = |p,,|€XP(i¢),
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Probability amplitude method

9 the equation of motion for the probability amplitude are
d : : —i¢
&Ca = —iwgCq + 1Qpg cos(vt)e Ch,
d .
&Cb = —’iwab -+ ZQR COS(Vt)€+Z¢CCL7

9 define the slowly varying amplitudes,

co = Cue™@et  and ¢, = Cpe'wbl,
then
%Ca = iQ—Re_w[ei(“’_”)t + M@ t)e, » i%e_wei(w_y)tcb,

where w = wq — wy IS the atomic transition frequency,

F 3 :3 ?"‘ﬁ @50 apply the rotating-wave approximation by neglecting terms with
National Tsing Hua @}‘{"ﬁ[\ﬂ:z(w —|— I/)t],
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Probability amplitude method

> the equation of motion for the probability amplitude are
ECG = iQ—Re_'L(bei(w_V)tc 7
d¢ 2
d Q
&Cb = 7;7Rez¢e—z(w—y)tc :
9 the solutions are
Qt A Qt 0O Ot , _
ca(t) = {[COS(;) — 7,5 Siﬂ(;)]ca(O) + ZER Sin(7)e—z¢cb(0)}ezAt/2’
Ot A Ot Q Qt . ,
cp(t) = {[005(7) + 7,5 sin(;)]ab(o) + iﬁR Sin(7>e’b¢cb(0)}e—zAt/27

= w —v, frequency detuning,
Q = /0% + A2

R HEERG

ational Tsing Hua Universi
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Rabi oscillation

D tis easy to verify that
[ca()]* + len(8)]* =

2 assume that the atom is initially in the excited state |a), i.e ¢4 (0) = 1 and
cp(0) = 0, then the population inversion is

AQ_QR

W(t) = lea(t)l? — len(t)]” = =32 sin® () + cos(5 )

9 the population oscillates with the frequency Q2 = , /Q% + A2,

9 when the atom is at resonance with the incident field A = 0, we get 2 = Qp, and
W (t) = cos(Q2Rrt),

the inversion oscillates between —1 and +1 at a frequency Q2 g,

TEZAERES
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Rabi oscillation
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Interaction picture

9 Consider a system described by |¥(¢)) evolving under the action of a hamiltonian

H(t) decomposable as,
I:I(t) = I:I() + ﬁl(t),

where ﬁo is time-independent.

2 Define
W (t)) = exp(iHot/R)|¥(t)),

then |W;(t)) evolves accords to

zh%m(t)) = Hy(t)|¥(1)),

where

A

9 The evolution is in the interaction picture generated by Ho.

E 2k 2R

National Tsing Hua Un

Hi(t) = exp(iHot/h)H1(t)exp(—iHot/h).
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Interaction picture

9 inthe dipole approximation,

Ho = hwala)(al + huwyb) (b,
Hi = —(pgpla) (b + ppola)(B)E() = —hQr(e”"?|a)(b] + €'?|a)(b]) cos vt,
where p,, = p;, = e{a|r|b) and Qg = |pab|EO’

9 the interaction picture Hamiltonian is
Hi(t) = exp(iHot/h)H1(t)exp(—iHot/h),
= 5[ |a)(ble T + &) {ale @

+ e "la)(b|e’ T 4 e |b) (ale T T,

9 In the rotating-wave approximation,
. A , ‘ | |
H(t) = —§QR[e—Z¢|a><b\ez<w—v>t + ey (ale @)1,
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Interaction picture

9 on resonance w — v = 0,

(1) = — S Qnle” ®|a)(b] + ¢ ) all

2 the time-evolution operator in the interaction picture U7 (t) is

. t
<Texp[— L drHjy(7)],
h to

22 Japdal + [6) (6] + i sin(~22 ) (e % a) (o] + €*¢[b) al),

Ur(t)

= cos(

9 if the atom is initially in the excited state |V (¢t = 0)) = |a), then

w(t) = Ur(®)la),

Qrt Qrt
)l + isin(—=)e'|b),

cos(

s il %:i_

National Ts Hua Un
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Density Operator

2 for the quantum mechanical description, if we know that the system is in state |v),
then an operator O has the expectation value,

(O)gm = (¥|O[y),

but we typically do not know that we are in state |¢), then an ensemble average
must be performed,

<<O>qm>ensemble — Z Py <¢|O|¢>a
Y

where the P, is the probability of being in the state |+)) and we introduce a density
operator,

p=>_ Pylv)(®l,
P

9 the expectation value of any operator O is given by,

. (0))qm = Tr[p0],
VA EEAREG
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where T'r stands for trace.
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Equation of motion for the density matrix

9 density operator is defined as,

p=> Pyl)w
P

9 in the Schrodiner picture,
0 A
ih—|U) = H|P),
ot
then we have
W p = Hp— pi = (A, 5
iN—p = - — 9 )
5 p—p p

which is called the Liouville or Von Neumann equation of motion for the density
matrix,

9 using density operator instead of a specific state vector can give statistical as well
as quantum mechanical information,

'ﬁﬁm :)i‘c'é-mpared to the Heisenberg equation, zh A(t) (A, H(t)]

al Tsing Hu
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Decay processes in the density matrix

9 equation of motion for the density matrix,
0

h—p = [H,p],

ihoep=[H,p)

9 the excited atomic levels can also decay due to spontaneous emission or collisions
and other phenomena,

9 the decay rates can be incorporated by a relaxation matrix I,
(n|L'|m) = ynénm,

then the density matrix equation of motion becomes,

0 i 1
5= ——[H. 5] — ={T. 5
577 h[ , O] 2{ , P},

where {I', p} =T'p + oI,

9 the 17th matrix element is,

TRz AERE ; 1

- “ |
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Two-level atom
9 atwo-level atom with upper and lower level states |a) and |b),
(W) = Ca(t)la) + Cu(t)]b),

9 the density matrix operator is

p= |UN¥|=|Cal?la)(al + CaCyla)(b] + CLCE|b)(al + |Cp|*|b){b],
= paala){al + pap|a)(b] + ppa|b)(al + pps|b) (D],

9 diagonal elements, p,q and pyp, are the probabilities in the upper and lower states,

9 off-diagonal elements, p,;, and p,,,, are the atomic polarizations,

9 from the equation of motion for the two-level atom 2 p=—L[H,p| — {T, p}, we
have
0 7
apaa = i_i[pabpra — C.C] — YaPaa,
0 = : P, E c.C]
PN ﬂ %ZL 2 EYCL 3 PabEPba — C. YbPbb;
National Tsing Hua Un a 7}
— g = ——D E(paq — ppy) — (lw + %L—F%)nnk.

- gt~ h "7 ' 2 -~ |
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Inclusion of elastic collisions between atoms

9 the physical interpretation of the elements of the density matrix allows us to
include terms associated wither certain processes,

for example, one can have elastic collision between atoms in a gas,

during an atom-atom collision the energy levels experience random Stark shifts,

0

By Pab = —ifiw 4+ 16w (t) + YablPab,

after integration,
t
pab = XP—(iw +7ap)t — i | Q' (t")]pas (0),
0

for a zero-mean random process, (dw(t)) = 0,

the variations in dw(t) are usually rapid compared to other changes which occur in
times like ypp,
(Ow(t)ow(t")) = 2vypnd(t — t),
Rl S
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Inclusion of elastic collisions between atoms

9 assume that dw(t) is described by a Gaussian random process, then

t
(expl—i [ d'w(t')]) = expl—pnt],
0
which gives for the average of p,p,
Pab — eXp[—(iw + Yab — Vph)t]pab(o)y

92 forthe process of atom-atom collisions,

0

apab — —z[zw + ’Y]pab pabE(,Uaa - pbb)7

where v = 745 + Ypn IS the new decay rate,

sl - %é
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Population matrix

9 fora single two-level atom, its density operator at time ¢ and position z is

(¢, t0) = Z ,0045(2, t,to)|a) (B,
o,

where o, 3 = a, b and the atom starts interacting with the field at an initial time ¢,
for a medium consists of two-level homogeneously broadened atoms,

the effect of all atoms which are pumped at the rate r,(z, to) atoms per second
per unit volume is the population matrix,

t t
B(2.1) :/ dtora (2, t0)p(z, L, o) :Z/ dtora (2 topas (2, to)|a) (],
— OO a,/B — OO

where the excitation r(z, tg) generally varies slowly and can be taken to be a
constant, i.e.

p(z,t) = Z pap(z,t)|a) (B,
o,

TAZEERS

National Tsing Hua Un

IPT5340. Fall '06 — n. 41/



Population matrix

the macroscopic polarization of the medium, P(z, t) is the ensemble of atoms that
arrive at z at time t, regardless of their time of excitation,

P(Z7t) — Tr[ﬁ . pA(Z7t)] — Zpaﬁ(zat)pﬁaa

9 for a two-level atom, p,, = Py, = P

P(Z7t> — p[pab('z?t) + pba(z7t>] — p[pab(z7t> + C'C]a

9 the off-diagonal elements of the population matrix determine the macroscopic
polarization,
0 1
apaa = %[pabpra — C.C] — YaPaa,
0 = ! p,E c.C]
YL » PabEPba : Vb Pbb
0 ( Ya + Vb
— = ——p,E — — (lw + —— :
ot Pab hpab (paa Pbb) ( 5 )pab

TEZAERES

MNatio
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Maxwell-Schrodinger equations

9 the equations for the two-level atomic medium coupled to the field E are

%) )

- aaq e - a E a _CC - Qa aas

57" h[p »Epb | = Yap

0 = 7;[ E c.C]

atpbb 3 P.bvEPba : YbPbb s

0 7 . Ya + Vb

—~ Pa — - E aa — — abs
5y Pab +Pab (p pob) — (iw + 5 )Pab

9 the condition of self-consistency requires that the equation of motion for the field E is
driven by the atomic population matrix elements,

9

9 the field is described by the Maxwell’s equation,

OB
V.-D=0, VXE=-——,
ot
oD
V.-B=0, VxH=J+—,
ot

R HEERG
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Maxwell-Schrodinger equations

9 the field is described by the Maxwell’'s equation,

OE 0°E 02P
VX (VXE — = — :
( ) + noo y + po€o —5 572 vy

9 fora running wave polarized along z-direction,

1
E(r,t) = £§E(z, t)exp[—i(vt — kz + ¢)] + c.c,
D the response of the medium is assumed

P(r,t) = = P(z,t)exp[—i(vt — kz 4+ ¢)] + c.c,

N | =

where E(z,t), ¢(z,t), and P(z,t) are all slowly varying function of position and

time, i.e.
oF oF 0 0
— E, — kE, — — k,
%i— o1 <L v 5, < ey <<1/az<<
bl P P
ﬂ al Tsing Hua Un a—<<I/Pa—<<kp

ot 0z
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Maxwell-Schrodinger equations

9 the response of the medium is assumed
P(z,t)exp[—i(vt — kz + ¢)] + c.c,
in terms of the population matrix,

P(z,t) = 2Ppgpexpli(vt — kz + ¢)],

9 the Maxwell’s equation for the slowly varying envelope function is,

(8+18)(_3+12)E__ 8_E_ o’p
9z " cot’\ 9z cot HOT 5 — HO g2

9 along with the equations of motion for the two-level atom,

) )
— Paa f— —_ a E a — C-C - araa
el h[p »EDb | = vap
0 )
o P = _—[pabpra — C.C] — b pbb,
%ﬁm %2‘ o Ya + Vb
” —Pab = ——pabE(Paa — pvp) — (iw + )Pab;

| * 2
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Jaynes-Cummings Hamiltonian

9 inthe dipole approximation, the semi-classical Hamiltonian is

Ho = hwala)(al+ hwy|b){b],
Hi = —(Papla) (] 4 Ppala) (B)E(),

9 toinclude the gquantized field,

H = I:IA+I:_IF—GF-E,

= Z ngzz + Z h’/k L&k + ) — Z P@JO-U ZEk

where

Is the coupling constant,

R HEERG
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Jaynes-Cummings Hamiltonian

9 {0 include the guantized field,

9 for a two-level atom, P,;, = Py, we have g, = gt = gbe, then

. X X L 1 X X X X
H = hwq6aaq + hwpopp + Zh’/k(akak + ha) + hzgk(%b + Opa)(ar + a,z),
k k

9 define new operators,

5'z — 5'aa_a'bb: |a><a|_|b><b|7
6+ = Gab=|a)(bl,
6- = Opa = |b){al,

and the new energy level

R HERD ) ) 1.1
Mational Tsing Hua University hwao-aa + mbo-bb — §hwaz + a(wa + wb>7
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Jaynes-Cummings Hamiltonian

9 the Hamiltonian for a two-level atom interaction with guantized fields becomes

A 1
1 ot
H = 5%02; + gk hvg(a, ar +

where the atomic operators satisfy the spin-1/2 algebra of the Pauli matrices, i.e.

6_,64]=—6., and [6_,6.] =26_,

2 inthe rotating-wave approximation, we drop terms a, 6 and d};fm_, then we have
Jaynes-Cummings Hamiltonian

A

1 1
H = _hwo + Zl;huk(akak +5)+ hzk: gr(6+ap +alé-),

R HEERG
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Interaction of a single two-level atom with a single-mode fie

9 the Jaynes-Cummings Hamiltonian,

.1
H = ~hwo + wa'a + hg(6La+alé_),

9 the interaction Hamiltonian is,

V = expliHot/hHiexp[—iHot/H],
= hg(6yae'® +ale_e 120,

where A = w — v,

9 the equation of motion for the state |V is
19, R
ith—|¥) = V|U),
ot
where the state | V) is the superposition of

’VW %,?.- (W (t)) = ;[Ca,n(t)lam) + ba,n(t)[b,m)],

al Tsing Hua Un
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Interaction of a single two-level atom with a single-mode fie

the interaction Hamiltonian is,

V = hg(6ae'™t +ato_e 1A,
which only cause transitions between the states |a,n) and |b, n 4 1), and

d , :

” Ca,n —igvn + 161Atcb,n+1,
d . W
” Chn+1 —igvn + le ZAtca,n,

2 compared to the semi-classical equations,
d IR —i¢ it(w—v)t
—Cq = 1—¢€ & Ch,
dt ¢ 2 ’
d Qr

—c :i_ei¢e—i(w—l/)tc :
dt ? 9 ¢

R HEERG
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Interaction of a single two-level atom with a single-mode fie

2 for the initially excited state, cq,»(0) = cn(0) and ¢ ,+1(0) = 0, and here ¢, (0) is
the probability amplitude for the field along,

9 the solutions are

Qnt 1A\ Qnt..
Can(t) = Cn(o)[COS(T) T Sm(T)]e At/2

21g+/ 1 Qpt . .
tg Qn+ sin( : )ezAt/27

n

cont1(t) = —cn(0)

9 the Rabi frequency is Q, = A2 + 492 (n + 1), which is proportional to the photon
number of the field,

9 the probability p(n) that there are n photons in the field at time ¢ is,

() = lean® +lepn(t),
= lea(O)Pleost () + () sin? (2] 4 en-1(0) JE ASPRRLS
n 1

sl - %é
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2 forn photons in the field at time ¢ = 0 with a coherent state, |c,, (0)|? =

<n>ne—(n>

n!

A=0,(n)=254gt=0 gt = 3.0
0. 08! 0.1
0. 06 0.08|
0. 06/
0.04!
0. 04!
0.02! 0 02
10 20 30 40 50 10 20 30 40 50
0.14! 0. 12|
0.12! o1
0.1/
0.08|
0.08!
0.06!
0.06!
0. 0al 0. 04/
0.02] 0.02¢
. . . A . m“‘ .
10 20 30 40 50 10 20 30 40 50
TR EERYG
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Interaction of a single two-level atom with a single-mode fie

9 the population inversion,

W(t) = Z [Can()]? = |epn(t)]? = Z |cn(0)‘2[Q2 4 o cos(Qnt)],
n 0 n n
1

0. 75
0.5

) AVAVAM H s wvnvnnnnf\ﬂh | HAMMMM W L

20 'l o '8ay| )0
-0.5
R HEERG
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Revival and Collapse of the population inversion

9 the population inversion,

o0 2 2 n
W)= lean®)® = lcon®)®> =) |cn(0)\2[§2 + = (Q; 2 cos(Qnt)],
n 0 n n

each term in the summation represents Rabi oscillation for a definite value of n,

9 atthe initial time ¢ = 0, the atom is prepared in a definite state and therefore all the
terms in the summation are correlated,

D astimes increases, the Rabi oscillations associated with different frequent
excitations have different frequencies and there fore become uncorrelated, leading to
a collapse of inversion,

9 as time is further increased, the correlation is restored and revival occurs,

9 in the semi-classical theory, the population inversion evolves with sinusoidal Rabi
oscillations, and collapses to zero when on resonance,

9 for the quantized fields, the collapse and revival of inversion is repeated with
‘ incr?ﬁasing time, but the amplitude of Rabi oscillations decreasing and the time
=78 2. i Zgiiation in which revival takes place increasing,

Mational Tsing Hua University
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Vacuum Rabi Oscillation

9 the revivals occur only because of the quantized photon distribution,

9 for a continuous photon distribution, like a classical random field, there is only a
collapse but no revivals,

9 compared to Fourier transform and Discrete Fourier transform,

9 even for initial vacuum field, lcn (0)|? = 8,0, the inversion is

1
W(t) = AT 1ag? [A2 + 4g2 cos(v/ A2 + 4g21)],

A2 +

9 the Rabi oscillation take place due to the vacuum state,

9 the transition from the upper level to the lower level in the vacuum becomes possible
due to spontaneous emission,

R HEERG
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Collective angular momentum operators

9 for a two-level atom, one can use Pauli spin operator to describe,

where

6. = la)al— Bl 64 =la)bl, & =b)al,
60 = la)(bl+|b)al, and &, = —i(ja)(b| - [b)(al),

9 foran assembly of IV two-level atoms, the corresponding Hilbert space is spanned
by the set of 2V product states,

N
— H U
n=1

9 we can define the collective angular momentum operators,

= S 1 ~
B m %2‘ Ju = §Un,ua (b =m,y,2),
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Analogs between J and &, af

9 the analogies between the free-field quantization, é and a', and the free atom
guantization,

J_=Jy —i —  a= wq + 1P
g Vare At
Jy=Je+iJ, — al= = (wq — ip)
Vv 2hw

A

1 - o - .
JZ:§(J+J_J_J+) — n=ala,

9 and the commutation relations,

J_,Ji]=—-2J. < J[a,a']=1,
J_,J.]=J. < [a,7n]=a,
[j—|-7jz]:_j—|- A [&Taﬁ]:_&Ty
hen all the atoms are in the ground state, the eigenvalue of J, is —J = —%, the

T ”’%i‘ menutatlon relation is reduced to a bosonlike one, [J_, J4] = N « [a,at] = 1,

Mational Tsing Hua Q,
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Angular momentum eigenstates (Dicke states)

9

9

the Dicke states are defined as the simultaneous eigenstates of the Hermitian

operators J, and J2, i.e.

J.|M,J) = M|M,J), and ,J%|M,J)=J(J+1)|M,J),

where (M = —-J,—J +1,...,J —1,J) and

Jy|M,J)y=+/J(J+1)— M(M+1)|M+1,J)
J_|M,J)=+/J(J+1)— MM —1)|M—1,J)
J_|—J,J)=0

—1/2
1 2J A
I - ( ) HD

(M—i—J)! M+ J

!

!

atln) =vn+1|n+1)
al0) =0,

1 AT\
n) = ﬁ(aT) 10),

the Dicke states is the counterpart of the Fock state, the state | M, J) denotes an
atomic ensemble where exactly J + M atoms are in the excited state out of

N = 2J atoms,

sl - %é %3’
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Interaction between [N two-level atoms and a single-mode field

2 the Dicke states | — J, J) corresponds to the case in which all the atoms are in the
ground state, J = N/2,

9 the Dicke states | — J + 1, J) corresponds to the case in which only one atom is in
the excited state,

2 the Dicke states |J, J) corresponds to the case in which all the atom are in the
excited state,

9 the total Hamiltonian for N two-level atoms with a single-mode field is,

1. a1 L
H = 575sz + hv(a'a + 5) + hg(Jya+a'J_),

> collective Rabi oscillation

R HEERG
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Spontaneous emission of a two-level atom

9 the interaction hamiltonian, in the rotating-wave approximation, for a two-level
atom is,

= hZ(Qk(TO)*6+dk€i( k)t—i-gk(’l“o) 26 _7;(“)—%)75)7
k

where gi (r0) = grexp(—ik - ro) is the spatial dependent coupling coefficient,

9 assume at ¢ = 0 the atom is in the excited state |a) and the field modes are in the
vacuum state |0),

[T(1)) = ca(t)la,0) + > cprlb, i),

k

with ¢, (0) = 1 and Cb’k(O) =0,

2 ) = —L|W(t)), we have
ca(t) = —i» gi(ro)e' @ i, (1),
k
ér(t) = —igr(re)e M@ TvR)te, (1),

sl - %é
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Welisskopf-Wigner theory of spontaneous emission

2 in the interaction picture, |¥(t)) = —%|\I/(t)), we have
ca(t) = —i» gi(ro)e' @ i, (1),
k
. _ o —’i(w—Vk)t
&(t) = —igr(ro)e ca (1),

9 the exact solutions are

—ige(ro) / dt’ =i oy (1),

talt) = =3 lo(ro)? / dt' e =) (e, (¢,
L 0

cy(t)

9 assuming that the filed modes are closely spaced in frequency,

V 27 T . oo 5
Z—>2 3/ dqb/ d0$1n0/ dkk~,
(2m)° Jo 0 0

k

aaiadlF N ) ?Whe% V' is the quantization volume,
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Welisskopf-Wigner theory of spontaneous emission

9 the exact solutions are

t ) ,
) = =S lantro)l? [ dreilemmt=a,w),
k

9 the coupling coefficient,

P. E,

. PQb cos? 0,

2=

2 _
9e(ro)|* = | T

where 0 is the angle between the atomic dipole moment P, and the electric field
polarization vector ¢, i.e. Fy(r,t) = ék(Z)L";)l/Q[dk +a, ],

9 the equation for ¢, (t) becomes

2
éa(t) _ 4Pa,b / dl/k/ dt’ v 3 ’L(w v ) (t— t)c (t/),
(27T)26h6003

where we have use k = v /c,

sl - %é
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Welisskopf-Wigner theory of spontaneous emission

9 the equation for ¢, (t) becomes

4P2
éa(t) — ab / de/ dt, 3 z(w vy ) (t— t) (t )7

(271')26h€() c3

9 for most of the optical problems, v, varies little around the atomic transition
frequency w,

9 we can safely replace 1/};’ by w3 and the lower limit in the v, integration by —oo,

then
4P2bw3 oo t ) ,
2 (t _ a d d¢’ (w—rp)(t—t") u ¢! :
a(t) (27r)26heoc3 /_ Vk/ ) alf)
4P2, w
— dt’276(t — t')cq (t)),
e, 82 ealt)
I
E — — Cqg t 9
> ca(t)
4P2 3 . .
Where ' = % is the decay rate of the excited state,

%ﬁlﬂ %i—j_ % 127T2h60
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Photonic Bandgap Crystals: two(high)-dimension
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Band diagram and Density of States
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Modeling DOS of PBCs
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TR EERG
Nﬂ)n%:%u% S. Y. Zhu, et al., Phys. Rev. Lett. 84, 2136 (2000).
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1. coupling constant:

) 7 .
= g.(d, 7)) = |d|w, d-Ei(7g
g = 94(&, 7o) = ldloa | 35 BT

2. memory functions:

P
~—~
2

Il

3" lgel2e2 0 )
k

S lgel2e 240 ()
k

3
o
2

]

3. Markovian approximation:
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photon-atom bound state
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S. John and H. Wang, Phys. Rev. Lett. 64, 2418 (1990).
Rl S

al Tsing Hua Un

IPT5340. Fall '06 — n. 68/7



Hamiltonian of our system: Jaynes-Cummings model

h Q . .
H = 5Wa0z T+ hzk: wragay, + §h(U—GMLt + oy e )

+ hY (grotax + gralo-)
k

And we want to solve the generalized Bloch equations:

b)) = it (t)emA 4 / dt'G(t — ). (t)o_ (') +n_(t)

2 —o
o.(t) = —i%az(t)eim—l— / dt'G.(t —to (t)o.(t) +ny(t)
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Fluorescence quadrature spectra near the band-edge
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it %é + .%_ﬂ, R.-K. Lee and Y. Lali, J. opt. B, 6, S715 (Special Issue 2004).
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