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Suppression of soliton transverse instabilities
in nonlocal nonlinear media
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We analyze transverse instabilities of spatial bright solitons in nonlocal nonlinear media, both analytically and
numerically. We demonstrate that the nonlocal nonlinear response leads to a dramatic suppression of the
transverse instability of the soliton stripes, and we derive asymptotic expressions for the instability growth
rate in both short- and long-wave approximations. © 2008 Optical Society of America

OCIS codes: 190.3270, 190.4420, 190.6135.
w
i
l
a
t
t

2
N
W
l
d

w
i
f
s
t
i

o
u
a

s
s
p

. INTRODUCTION
ymmetry-breaking instabilities have been studied in dif-

erent areas of physics, since they provide a simple means
o observe the manifestation of strongly nonlinear effects
n nature. One example is the transverse instabilities of
patial optical solitons in nonlinear Kerr media [1] asso-
iated with the growth of transverse modulations of
uasi-one-dimensional bright and dark soliton stripes for
oth focusing [2–6] and defocusing [7] nonlinearities. In
ddition, such instabilities are also studied and observed
n materials with quadratic nonlinearities [8]. In particu-
ar, this kind of symmetry-breaking instability turns a
right-soliton stripe into an array of two-dimensional fila-
ents [9], and it bends a dark-soliton stripe, creating

airs of optical vortices of the opposite polarities [10].
onsequently, transverse instabilities set severe limits on

he observation of quasi-one-dimensional spatial solitons
n bulk media [11].

Several different physical mechanisms for suppressing
oliton transverse instabilities have been proposed and
tudied in detail, including the effect of partial incoher-
nce of light [12,13] and anisotropic nonlinear response
13] in photorefractive crystals and the stabilizing action
f nonlinear coupling between different modes or polar-
zations [14]. Recently initiated theoretical and experi-

ental studies of nonlocal nonlinearities revealed many
ovel features in the propagation of spatial solitons, in-
luding the suppression of modulational [15] and azi-
uthal [16] instabilities.
In this paper we demonstrate that a significant sup-

ression of soliton transverse instabilities can be achieved
n nonlocal nonlinear media. We derive analytical results
or the instability growth rate in both long- and short-
cale asymptotic limits. First, in Section 2 we employ the
umerical approach to solve and analyze soliton trans-
erse instability in the framework of the nonlinear
chrödinger equation with diffusion-type nonlocality of
he self-focusing nonlinear response. Second, in Section 3
0740-3224/08/040576-6/$15.00 © 2
e construct analytical models to describe the transverse
nstability by means of two asymptotic expansions in
ong- and short-scale regimes. Finally, in Section 4 we
nalyze numerically the evolution of the soliton stripe in
he nonlinear regime and verify the theoretical predic-
ions. Section 5 concludes the paper.

. TRANSVERSE INSTABILITY IN
ONLOCAL MEDIA
e consider the propagation of an optical beam in a non-

ocal nonlinear medium described by the normalized two-
imensional nonlinear Schrödinger equation:

i
�E

�z
+

1

2
��E + nE = 0,

n − d��n = �E�2, �1�

here ��=�2 /�x2+�2 /�y2, E=E�x ,y ;z� is the slowly vary-
ng electric field envelope, n=n�x ,y ;z� is the optical re-
ractive index, and the parameter d stands for the
trength of nonlocality. Model (1) describes light propaga-
ion in different types of nonlocal nonlinear media, includ-
ng nematic liquid crystals [17].

We look for stationary solutions of Eqs. (1) in the form
f bright-soliton stripes, E�x ,y ;z�=u�x�exp�i�z�, where
�x� is a (numerically found) localized function, u�±� �=0,
nd � is the (real) propagation constant.
The transverse instability of quasi-one-dimensional

olitons in nonlocal nonlinear media is investigated by a
tandard linear stability analysis [1] by introducing the
erturbed solution in the form

n = n �x� + ��n,
0

008 Optical Society of America
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E = ei�z�u0 + ��v + iw�ei�z+ipy + ��v* + iw*�e−i�*z−ipy�, �2�

here �u0 ,n0� is the solution of Eqs. (1), ��1 is a small
erturbation, and v�x�, w�x�, and �n�x� are perturbed am-
litudes that are modulated in the transverse y direction
ith the wavenumber p. The instability growth rate is de-
ned as an imaginary part of the eigenvalue �.
Substituting these asymptotic expansions into Eqs. (1),

o the first order of � we obtain a set of linear equations,

�w = �� +
1

2
p2�v −

1

2

�2v

�x2 − n0v − u0�n, �3�

�v = �� +
1

2
p2�w −

1

2

�2w

�x2 − n0w, �4�

�n = d� �2

�x2 − p2��n + 2u0v, �5�

hich we then investigate both numerically and analyti-
ally.

Typical localized solutions of model (1) for bright soli-
ons are shown in Fig. 1(a) for local (solid curve) and non-
ocal (dashed and dashed–dotted curves) media. Figure
(b) shows the growth rate of the soliton transverse insta-
ilities versus the modulation wavenumber p for local �d
0� and nonlocal (d=0.5 and d=1) nonlinearities. It can
e seen that nonlocality reduces the growth rate of the

ig. 1. (a) Intensity profiles of the bright solitons in local (d=0,
olid) and nonlocal (d=0.5, dashed; d=1, dashed–dotted) nonlin-
ar media. (b) Instability growth rate for bright solitons versus
he transverse wavenumber p for local (solid) and nonlocal (d
0.5, dashed; d=1, dashed–dotted) nonlinear media. (c), (d) Cut-
ff value of the transverse wavenumber and maximum growth
ate versus the nonlocality parameter d.
ransverse instability of the soliton stripe. Moreover, the
utoff transverse wavenumber pc of the gain spectrum be-
omes smaller as the value of the nonlocality parameter d
rows.

To describe the suppression of the soliton transverse in-
tabilities quantitatively, we calculate the dependence of
he cutoff transverse wavenumber pc and the maximum
rowth rate on the strength of nonlocality, d, shown in
igs. 1(c) and 1(d). We observe that the maximum growth
ate decreases significantly at large values of the nonlo-
ality parameter, and eventually it approaches zero when
→�. The cutoff wavenumber pc of the transverse insta-
ility domain becomes smaller as the value of nonlocality
rows. In the limit of very large values of d, the cutoff
avenumber vanishes as well. Consequently, the soliton

tripe becomes more stable when the degree of nonlocality
ncreases.

. ANALYTICAL APPROACH
ext, we analyze the transverse instability of bright soli-

ons in nonlocal nonlinear media by applying a variation
ethod. We proceed in accord with the following steps.
irst, we expand the nonlocal refractive index function

nto series in the nonlocality parameter [18] in the terms
nvolving the refractive index in Eq. (5). Second, we apply
he method of [4] to construct the asymptotic expansions
f the elliptical problem defined by Eqs. (3)–(5). We em-
loy the corresponding ansatz defined as v=v0+�v1 and
=w0+�w1, where v0 and w0 are the neutral mode, and �

s an imaginary part of the eigenvalue of the linear sta-
ility problem. To begin with, we derive an approximate
nalytical solution for the soliton in a nonlocal medium by
xpanding the nonlinear refractive index to the first order
n the nonlocality parameter d:

n�x� = �
m=0

� 1

m!
hm

�m�E�2

�xm 	 �E�2 + d
 �2

�x2 ��E�2�� + O�d2�,

�6�

here

hm = im
dm

d�m �H�����=0

s the expansion of the Fourier transform, H���, of the
onlocal kernel function. The approximate stationary so-

ution E can then be calculated by minimizing the La-
rangian:

L =� dx
 i

2
�EzE* − Ez

*E� −
1

2
�Ex�2 +

1

2
�E�4 + �E�2

+
d

2�− ��E�2�E�x
2 −

1

2
E2Ex

*2 −
1

2
E*2Ex

2� + O�d2�� , �7�

here the subscripts z and x stand for the derivatives
ith respect to the longitudinal and transverse coordi-
ates, respectively. Given the ansatz of the stationary
tate E=u0�x�exp�i�z�, the wavenumber � and solution
0=A sech�ax� are obtained by minimizing the Lagrang-

an of the nonlocal nonlinear Schrödinger equation (7).
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or a given power P and nonlocality parameter d, we ob-
ain

� = �1/6�Pa + �1/6�a2 + �2/15�dPa3,

A = �Pa/2�1/2,

a = �− 5 + �25 + 60dP2�1/2��12dP�−1, �8�

hich are solved to the first order in d. The results of the
ariation method in the first and second orders of nonlo-
ality parameter d are compared with numerical calcula-
ions, and they are shown in Fig. 2. We note that, with a
ufficient order of expansion, the variation approach pro-
ides a good approximation to the numerical results.

. Long-Scale Expansion
n the long-scale expansion, we expand the solution E
round the stationary solution u0 and use perturbations
or its neutral mode: v0 and w0 at p=0 such that

0 = �v0 −
1

2

�2v0

�x2 − n0v0 − u0�n0, �9�

0 = �w0 −
1

2

�2w0

�x2 − n0w0, �10�

�n0 = d
�2�n0

�x2 + 2u0v0, �11�

hich can be solved as v0=0 and w0=u0. By substituting
=v0+�v1 and w=w0+�w1 into Eqs. (3)–(5) and equating
he first-order terms in �, we obtain

ig. 2. Wavenumber versus nonlocality parameter d at fixed
ower �P=2�. Solid and dashed curves show the solution obtained
y the variational method to the first and second order in d, re-
pectively. Circles mark the numerical results.
w0 = �� +
1

2
p2�v1 −

1

2

�2v1

�x2 − n0v1 − u0�n1, �12�

v0 = �� +
1

2
p2�w1 −

1

2

�2w1

�x2 − n0w1, �13�

�n1 = d� �2

�x2 − p2��n1 + 2u0v1. �14�

hen we multiply Eq. (4) times w0 and integrate over x to
btain

��w0,v� = �w0,
�� +
1

2
p2� −

1

2

�2

�x2 − n0�w� , �15�

here we define

�w,v� =�
−�

�

dxw*v. �16�

Subsequently, considering the relation given in Eq.
10), we obtain the expression

1

2
p2�w0,w� = − ��w0,v�. �17�

Repeating the same operations for Eqs. (3)–(5) yields

��w0,w� =
1

2
p2�w0,v� − �w0,u0�n1�, �18�

�n1 =
2u0v1

1 + dp2 + d

�2

�x2 �2u0v1�

�1 + dp2�2 . �19�

hen d and p are small, �n1 can be approximated by

�n1 	 2u0v1 + d
 �2

�x2 �2u0v1�� � �n�v1;p = 0�. �20�

sing Eq. (17) to replace �w0 ,w� by �w0 ,v�, recalling v
v0+�v1=�v1 to represent its neutral mode, we obtain

he instability growth rate � and transverse wavenumber
in the form

�2 =
�w0,u0�n�v1;p = 0��

�w0,v1�
p2 −

1

4
p4. �21�

he task now is to find the solution v1 according to Eq.
12). Herein we again apply the variation method by us-
ng the ansatz v1=d2�sech�b1x�� /dx2, where the param-
ter b1 is obtained by minimizing the system Lagrangian
orresponding to Eq. (12):
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Lv1 =�
−�

�

dx
− w0�v1�2 +
1

2� �v1

�x �2

+ �� +
p2

2 ��v1�2

− ��u0�2 + d
�2�u0�2

�x2 ��v1�2 −
2u0

2�v1�2

1 + dp2 −
2d

�1 + dp2�2

	�u0

�2u0

�x2 �v1�2 − u0
2� �v1

�x �2�� . �22�

hile evaluating the system Lagrangian, we use
he functional expansion, sech�ax�	sech�b1x�
sech�b1x�tanh�b1x��a−b1�x, to deduce a closed form for

he Lagrangian in Eq. (22). The parameter b1 can there-

ore be obtained as a function of both d and P by solving t

c

d
t

n
t

0 = �5134

315
daP +

155

21 �b1
4 −

1048

225
dPa2b1

3

+ �14

5
� +

494

105
dPa3 −

139

35
Pa −

31

35

�b1

2

+ � 19

210

a −

92

105
da4P +

10

21
Pa2�b1. �23�

ext, substituting the variational parameters subjected
o the solution ansatz into Eq. (21), we express the long-
cale approximation of nonlocal transverse instabilities in

erms of d and P as
�2 =

−

2

5
ab1 + d�−

139

630
a4 +

53

210
ab1

3 −
61

630
a2b1

2 +
473

630
a3b1��P

−
a + b1

3

p2 −
1

4
p4,
here a, � are obtained from Eqs. (8) and b1 is calculated
y Eq. (23).

. Short-Scale Expansion
or the asymptotic expansion near the cutoff wavenum-
er pc, we employ the same procedures as those described
bove for the long-scale expansion, except that we use an-
ther ansatz, v0=sech2�b0x�, w0=0, and w1=sech�c1x�,
hich yields

0 = �� +
1

2
pc

2�v0 −
1

2

�2v0

�x2 − n0v0 − u0�n, �24�

0 = �� +
1

2
pc

2�w0 −
1

2

�2w0

�x2 − n0w0, �25�

�n0 = d� �2

�x2 − pc
2��n0 + 2u0v0. �26�

gain, to obtain b0 we minimize the Lagrangian Lv0
cor-

esponding to Eq. (24) at p=pc:

Lv0 =�
−�

�

dx
1

2� �v0

�x �2

+ �� +
pc

2

2 ��v0�2 − ��u0�2 + d
�2�u0�2

�x2 �
	�v1�2 −

2u0
2�v0�2

1 + dpc
2 −

2d

�1 + dpc
2�2

	�u0

�2u0

�x2 �v0�2 − u0
2� �v0

�x �2�� . �27�

Then the cutoff wavenumber p is found from the con-
ition Lv0
=0 with an optimized value of b0, which is ob-

ained by simultaneously solving the equations

0 =
�Lv1

�b0
= � 8

15
+

352

315

d

�1 + dpc
2�2

Pa�b0 −
32

63

d

�1 + dpc
2�2

Pa2

+ �4

3
� +

2

3
pc

2 −
32

45
Pa +

80

63
dPa3 −

64

45

1

1 + dpc
2aP

+
416

315

d

�1 + dpc
2�2

a5P�b0
−1 + �−

208

315
da4P +

8

45
Pa2

−
176

315

d

�1 + dpc
2�2

a6P +
16

45

1

1 + dpc
2a2P�b0

−2, �28�

0 = Lv1
=

8

15
+

352

315

d

�1 + dpc
2�2

Pa + �32

45
Pa +

64

45

1

1 + dpc
2aP

−
4

3
� −

2

3
pc

2 −
416

315

d

�1 + dpc
2�2

a5P −
80

63
dPa3�b0

−2

+ �−
32

45

1

1 + dpc
2a2P +

416

315
da4P −

16

45
Pa2

+
352

315

d

�1 + dpc
2�2

a6P�b0
3. �29�

Introducing a small perturbation near the cutoff wave-
umber, p̄=p−pc, the resulting parameters b0 and pc are
hen deemed as constant in the Lagrangian for w ,
1
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Lw1 =�
−�

�

dx
− v0�w1�2 +
1

2� �w1

�x �2

+ �� +
p̄2

2 ��w1�2

− ��u0�2 + d
�2�u0�2

�x2 ��w1�2� , �30�

o deduce the dependence of c1 on P and d. Similarly, in
he short-scale expansion the amplitude growth rate can
e calculated as

�2 =
�v0,u0�n�w1;p̄ = 0��

�v0,w1�
p̄2 −

1

4
p̄4, �31�

here

�v0,w1� =
5

6

b0

−1 −
1

3

c1b0

−2,

v0,u0�n�w1;p̄ = 0�� = P
�−
3

80

 +

1

2
d� 27

140

 +

1

70
a2
��c1

+ �−
3

40

 +

1

2
d� 1

35

 −

13

140
a2
�� +

3

16



+
9

80
a
 +

1

2
d�−

1

4

 −

31

140
a
 −

4

5
a2

+
11

140
a3
 +

1

8
a2
�� . �32�

ig. 3. Growth rate of the soliton transverse instabilities de-
ned from numerical simulations and the variational approach.
olid and dashed curves are numerical data for local �d=0� and
onlocal �d=0.5� nonlinearities. Triangles above and below the
olid curve are the long-scale and short-scale asymptotic expan-
ions for local nonlinearity. Squares and circles are the long-scale
symptotic expansion based on the linearized nonlocal eigen-
alue system expanded up to the first and second orders in d.
ots and crosses are the short-scale asymptotic expansion up to

he first and second orders in d.
Figure 3 compares the analytical results with the re-
ults of our direct numerical calculations. For nonlocal
edia, the long-scale expansion to the first order in d

circles) is insufficient, but the second-order expansion
squares) gives a good result. In the short-scale expan-
ion, both the first- (dots) and second-order (crosses) ex-
ansions are in good agreement with the numerics. It is
orth mentioning that in the calculation of the second-
rder expansion, we employ the generalized variation
quation from the averaged Lagrangian containing
igher-order derivatives, as discussed in [19].

. NONLINEAR WAVE EVOLUTION
o observe the consequence of the predicted instability
uppression, we study numerically the evolution of the
oliton stripe described by Eqs. (1). Figure 4 compares the
ransverse instability of a bright-soliton stripe with the
xed power 2 in local and nonlocal media, with the initial
eld modulated transversely with the maximum growth
ate. In Figs. 4(a)–4(c) we show snapshots of the soliton
tripe evolution in a local nonlinear medium at z=1.0, 6.0,
nd 10.0, respectively. We observe that at z=10.0 [Fig.
(c)] the bright-soliton stripe decays into a sequence of
laments due to the modulation in the y direction. In
harp contrast, there is no visible decay of the soliton
tripe in a nonlocal medium �d=1� [Figs. 4(d)–4(f)], there-
ore confirming our major conclusion that the soliton
ransverse instabilities are substantially suppressed in
onlocal nonlinear media.

ig. 4. Evolution of a modulated bright-soliton stripe in (a)–(c)
ocal and (d)–(f) nonlocal nonlinear media at the distances z
1.0, 6.0, and 10.0, in that order.



5
W
o
b
W
s
i
t
m

A
T
A
L
t
M
a
t

R

1

1

1

1

1

1

1

1

1

1

Lin et al. Vol. 25, No. 4 /April 2008 /J. Opt. Soc. Am. B 581
. CONCLUSIONS
e have analyzed the transverse instabilities of spatial

ptical solitons in nonlocal nonlinear media by employing
oth linear stability analysis and numerical simulations.
e have demonstrated that the nonlocal nonlinear re-

ponse can significantly suppress soliton transverse
nstabilities, allowing experimental observations of
he stable propagation of soliton stripes in nonlocal
edia.
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