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Role of Quantum Optics

photons occupy an electromagnetic mode,
we will always refer to modes in quantum optics,
typically a plane wave;

the energy in a mode is not continuous but discrete in
quanta of ~ω;

the observables are just represented by probabilities
as usual in quantum mechanics;

there is a zero point energy inherent to each mode which
is equivalent with fluctuations of the electromagnetic
field in vacuum, due to uncertainty principle.

quantized fields and quantum fluctuations (zero-point energy)
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Vacuum

vacuum is not just nothing, it is full of energy.
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Vacuum

spontaneous emission is actually stimulated by the vacuum fluctuation of the
electromagnetic field,

one can modify vacuum fluctuations by resonators and photonic crystals,

atomic stability : the electron does not crash into the core due to vacuum fluctuation
of the electromagnetic field,

gravity is not a fundamental force but a side effect matter modifies the vacuum
fluctuations, by Sakharov,

Casimir effect : two charged metal plates repel each other until Casimir effect
overcomes the repulsion,

Lamb shift : the energy level difference between 2S1/2 and 2P1/2 in hydrogen.

. . .
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Simple Harmonic Oscillator

The simple harmonic oscillator has no driving force, and no friction (damping), so
the net force is just:

F = −kx = ma = m
d2x

dt2
,

if define ω2
0 = k/m, then

d2x

dt2
+ ω0

2x = 0

the general solution x = ACos(ω0t+ φ) ,

The kinetic energy is T = 1
2
m

“

dx
dt

”2
= 1

2
kA2 sin2(ω0t+ φ),

the potential energy is U = 1
2
kx2 = 1

2
kA2 cos2(ω0t+ φ)

the total energy of the system has the constant value E = 1
2
kA2.
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Quantum Harmonic Oscillator: 1D

In the one-dimensional harmonic oscillator problem, a particle of mass m is

subject to a potential V (x) =
1

2
mω2x2.

In classical mechanics, mω2 = k is called the spring stiffness coefficient or force
constant, and ω the circular frequency.

The Hamiltonian of the particle is: H = p2

2m
+ 1

2
mω2x2 where x is the position

operator, and p is the momentum operator
“

p = −i~ d
dx

”

. The first term

represents the kinetic energy of the particle, and the second term represents the
potential energy in which it resides.

IPT5340, Spring ’08 – p. 7/51



Maxwell’s equations in Free space

Faraday’s law:

∇× E = −
∂

∂ t
B,

Ampére’s law:

∇× H =
∂

∂ t
D,

Gauss’s law for the electric field:

∇ · D = 0,

Gauss’s law for the magnetic field:

∇ · B = 0,

the constitutive relation: B = µ0H and D = ǫ0E.
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Plane electromagnetic waves

Maxwell’s equations in free space, there is vacuum, no free charges, no currents,
J = ρ = 0,

both E and B satisfy wave equation,∇2E = ǫ0µ0
∂2E
∂t2

,

we can use the solutions of wave optics,

E(r, t) = E0exp(iωt)exp(−ik · r),
B(r, t) = B0exp(iωt)exp(−ik · r),
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Mode Expansion of the Field

A single-mode field, polarized along the x-direction, in the cavity:

E(r, t) = x̂Ex(z, t) =
X

j

(
2mjω

2
j

V ǫ0
)1/2qj(t)Sin(kjz),

where k = ω/c, ωj = c(jπ/L), j = 1, 2, . . . , V is the effective volume of the
cavity, and q(t) is the normal mode amplitude with the dimension of a length (acts
as a canonical position, and pj = mj q̇j is the canonical momentum).

the magnetic field in the cavity:

H(r, t) = ŷHy(z, t) = (mj
2ω2

j

V ǫ0
)1/2(

q̇j(t)ǫ0
kj

)Cos(kjz),

the classical Hamiltonian for the field:

H =
1

2

Z

V
dV [ǫ0E

2
x + µ0H

2
y ],

=
1

2

X

j

[mjω
2
mq

2
j +mj q̇

2
j ] =

1

2

X

j

[mjω
2
mq

2
j +

p2j

mj
].
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Quantization of the Electromagnetic Field

Like simple harmonic oscillator, Ĥ = p2

2m
+ 1

2
kx2, where [x̂, p̂] = i~,

For EM field, Ĥ = 1
2

P

j [mjω
2
mq

2
j +

p2

j

mj
], where [q̂i, p̂j ] = i~δij ,

annihilation and creation operators:

âje
−iωjt =

1
p

2mj~ωj

(mjωj q̂j + ip̂j),

â†je
iωjt =

1
p

2mj~ωj

(mjωj q̂j − ip̂j),

the Hamiltonian for EM fields becomes: Ĥ =
P

j ~ωj(â
†
j âj + 1

2
),

the electric and magnetic fields become,

Êx(z, t) =
X

j

(
~ωj

ǫ0V
)1/2[âje

−iωjt + â†je
iωjt]Sin(kjz),

Ĥy(z, t) = −iǫ0c
X

j

(
~ωj

ǫ0V
)1/2[âje

−iωjt − â†jeiωjt]Cos(kjz),
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Quantization of EM fields

the Hamiltonian for EM fields becomes: Ĥ =
P

j ~ωj(â
†
j âj + 1

2
),

the electric and magnetic fields become,

Êx(z, t) =
X

j

(
~ωj

ǫ0V
)1/2[âje

−iωjt + â†je
iωjt] sin(kjz),

=
X

j

cj [â1j cosωjt+ â2j sinωjt]uj(r),
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Simple Harmonic Oscillator in Schrödinger picture

one-dimensional harmonic oscillator, Ĥ = p2

2m
+ 1

2
kx2,

Schrödinger equation,

d2

dx2
ψ(x) +

2m

~2
[E − 1

2
kx2]ψ(x) = 0,

with dimensionless coordinates ξ =
p

mω/~x and dimensionless quantity
ǫ = 2E/~ω, we have

d2

dξ2
ψ(x) + [ǫ− ξ2]ψ(x) = 0,

which has Hermite-Gaussian solutions,

ψ(ξ) = Hn(ξ)e−ξ2/2, E =
1

2
~ωǫ = ~ω(n+

1

2
),

where n = 0, 1, 2, . . .

Ch. 7 in ”Quantum Mechanics,” by A. Goswami.
Ch. 2 in ”Modern Quantum Mechanics,” by J. Sakurai.

IPT5340, Spring ’08 – p. 13/51



Quantum Harmonic Oscillator

d2

dξ2
ψ(x) + [ǫ− ξ2]ψ(x) = 0,

which has Hermite-Gaussian solutions,

ψ(ξ) = Hn(ξ)e−ξ2/2, E =
1

2
~ωǫ = ~ω(n+

1

2
),

where n = 0, 1, 2, . . .
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Simple Harmonic Oscillator: operator method

one-dimensional harmonic oscillator, Ĥ = p2

2m
+ 1

2
kx2, where [x̂, p̂] = i~

define annihilation operator (destruction, lowering, or step-down operators):

â =
p

mω/2~x̂+ ip̂/
√

2m~ω.

define creation operator (raising, or step-up operators):

â† =
p

mω/2~x̂− ip̂/
√

2m~ω.

note that â and â† are not hermitian operators, but (â†)† = â.

the commutation relation for â and â† is [â, â†] = 1.

the oscillator Hamiltonian can be written as,

Ĥ = ~ω(â†â+
1

2
) = ~ω(N̂ +

1

2
),

where N̂ is called the number operator, which is hermitian.
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Simple Harmonic Oscillator: operator method

the number operator, N̂ = â†â,

[Ĥ, â] = −~ωâ, and [Ĥ, â†] = ~ωâ†.

the eigen-energy of the system, Ĥ|Ψ〉 = E|Ψ〉, then

Ĥâ|Ψ〉 = (E − ~ω)â|Ψ〉, Ĥâ†|Ψ〉 = (E + ~ω)â†|Ψ〉.

for any hermitian operator, 〈Ψ|Q̂2|Ψ〉 = 〈Q̂Ψ|Q̂Ψ〉 ≥ 0.

thus 〈Ψ|Ĥ|Ψ〉 ≥ 0.

ground state (lowest energy state), â|Ψ0〉 = 0.

energy of the ground state, Ĥ|Ψ0〉 = 1
2

~ω|Ψ0〉.

excited state, Ĥ|Ψn〉 = Ĥ(â†)n|Ψ0〉 = ~ω(n+ 1
2
)(â†)n|Ψ0〉.

eigen-energy for excited state, En = (n+ 1
2
)~ω.
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Simple Harmonic Oscillator: operator method

normalization of the eigenstates, (â†)n|Ψ0〉 = cn|Ψn〉, where cn =
√
n.

â|Ψn〉 =
√
n|Ψn−1〉,

â†|Ψn〉 =
√
n+ 1|Ψn+1〉,

x-representation, Ψn(x) = 〈x|Ψn〉.

ground state, 〈x|â|Ψ0〉 = 0, i.e.

[

r

mω

2~
x+ ~

1√
2m~ω

d

dx
]Ψ0(x) = 0,

define a dimensionless variable ξ =
p

mω/~x, we obtain

(ξ +
d
dξ

)Ψ0 = 0,

with the solution Ψ0(ξ) = c0exp(−ξ2/2).
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brain-storms

Damped harmonic oscillator: d2x
dt2

+ b
m

dx
dt

+ ω0
2x = 0,

where b is an experimentally determined damping constant satisfying the
relationship F = −bv. An example of a system obeying this equation would be a
weighted spring underwater if the damping force exerted by the water is assumed
to be linearly proportional to v.

Mode expansion of the field in other bases, e.x. spherical wave:

E(r) =
A

|r − r0|
exp(−ik|r − r0|),

How to quantize fields?
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Postulates of Quantum Mechanics

Postulate 1 : An isolated quantum system is described by a vector in a Hilbert space. Two
vectors differing only by a multiplying constant represent the same physical state.

quantum state: |Ψ〉 =
P

i αi|ψi〉,

completeness:
P

i |ψi〉〈ψi| = I ,

probability interpretation (projection): Ψ(x) = 〈x|Ψ〉,

operator: Â|Ψ〉 = |Φ〉,

representation: 〈φ|Â|ψ〉,

adjoint of Â: 〈φ|Â|ψ〉 = 〈ψ|Â†|φ〉∗,

hermitian operator: Ĥ = Ĥ†,

unitary operator: Û Û† = Û†Û = I .

Ch. 1-5 in ”The Principles of Quantum Mechanics,” by P. Dirac.
Ch. 1 in ”Mathematical Methods of Quantum Optics,” by R. Puri.
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Operators

For a unitary operator, 〈ψi|ψj〉 = 〈ψi|Û†Ûψj〉, the set of states Û |ψ〉 preserves
the scalar product.

Û can be represented as Û = exp(iĤ) if Ĥ is hermitian.

normal operator: [Â, Â†] = 0, the eigenstates of only a normal operator are
orthonormal.
i.e. hermitian and unitary operators are normal operators.

The sum of the diagonal elements 〈φ|Â|ψ〉 is call the trace of Â,

Tr(Â) =
X

i

〈φi|Â|φi〉,

The value of the trace of an operator is independent of the basis.

The eigenvalues of a hermitian operator are real, Ĥ|Ψ〉 = λ|Ψ〉, where λ is real.

If Â and B̂ do not commute then they do not admit a common set of eigenvectors.
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Postulates of Quantum Mechanics

Postulate 2 : To each dynamical variable there corresponds a unique hermitian operator.
Postulate 3 : If Â and B̂ are hermitian operators corresponding to classical dynamical
variables a and b, then the commutator of Â and B̂ is given by

[Â, B̂] ≡ ÂB̂ − B̂Â = i~{a, b},

where {a, b} is the classical Poisson bracket.
Postulate 4 : Each act of measurement of an observable Â of a system in state |Ψ〉
collapses the system to an eigenstate |ψi〉 of Â with probability |〈φi|Ψ〉|2.
The average or the expectation value of Â is given by

〈Â〉 =
X

i

λi|〈φi|Ψ〉|2 = 〈Ψ|Â|Ψ〉,

where λi is the eigenvalue of Â corresponding to the eigenstate |ψi〉.
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Uncertainty relation

Non-commuting observable do not admit common eigenvectors.

Non-commuting observables can not have definite values simultaneously.

Simultaneous measurement of non-commuting observables to an arbitrary degree
of accuracy is thus incompatible.

variance: ∆Â2 = 〈Ψ|(Â− 〈Â〉)2|Ψ〉 = 〈Ψ|Â2|Ψ〉 − 〈Ψ|Â|Ψ〉2.

∆A2∆B2 ≥ 1

4
[〈F̂ 〉2 + 〈Ĉ〉2],

where

[Â, B̂] = iĈ, and F̂ = ÂB̂ + B̂Â− 2〈Â〉〈B̂〉.

Take the operators Â = q̂ (position) and B̂ = p̂ (momentum) for a free particle,

[q̂, p̂] = i~→ 〈∆q̂2〉〈∆p̂2〉 ≥ ~
2

4
.
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Uncertainty relation

Schwarz inequality: 〈φ|φ〉〈ψ|ψ〉 ≥ 〈φ|ψ〉〈ψ|φ〉.

Equality holds if and only if the two states are linear dependent, |ψ〉 = λ|φ〉, where λ
is a complex number.

uncertainty relation,

∆A2∆B2 ≥ 1

4
[〈F̂ 〉2 + 〈Ĉ〉2],

where

[Â, B̂] = iĈ, and F̂ = ÂB̂ + B̂Â− 2〈Â〉〈B̂〉.

the operator F̂ is a measure of correlations between Â andB̂.

define two states,

|ψ1〉 = [Â− 〈Â〉]|ψ〉, |ψ2〉 = [B̂ − 〈B̂〉]|ψ〉,

the uncertainty product is minimum, i.e. |ψ1〉 = −iλ|ψ2〉,

[Â+ iλB̂]|ψ〉 = [〈Â〉+ iλ〈B̂〉]|ψ〉 = z|ψ〉.

the state |ψ〉 is a minimum uncertainty state.
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Uncertainty relation

if Re(λ) = 0, Â+ iλB̂ is a normal operator, which have orthonormal eigenstates.

the variances,

∆Â2 = − iλ
2

[〈F̂ 〉+ i〈Ĉ〉], ∆B̂2 = − i

2λ
[〈F̂ 〉 − i〈Ĉ〉],

set λ = λr + iλi,

∆Â2 =
1

2
[λi〈F̂ 〉+ λr〈Ĉ〉], ∆B̂2 =

1

|λ|2 ∆Â2, λi〈Ĉ〉 − λr〈F̂ 〉 = 0.

if |λ| = 1, then ∆Â2 = ∆B̂2, equal variance minimum uncertainty states.

if |λ| = 1 along with λi = 0, then ∆Â2 = ∆B̂2 and 〈F̂ 〉 = 0, uncorrelated equal

variance minimum uncertainty states.

if λr 6= 0, then 〈F̂ 〉 = λi
λr
〈Ĉ〉, ∆Â2 =

|λ|2
2λr
〈Ĉ〉, ∆B̂2 = 1

2λr
〈Ĉ〉.

If Ĉ is a positive operator then the minimum uncertainty states exist only if λr > 0.
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Momentum as a generator of Translation

For an infinitesimal translation by dx, and the operator that does the job by T (dx),

T (dx)|x〉 = |x+ dx〉,

the infinitesimal translation should be unitary, T †(dx)T (dx) = 1,

two successive infinitesimal translations, T (dx1)T (dx2) = T (dx1 + dx2),

a translation in the opposite direction, T (dx1) = T −1(dx),

identity operation, dx→ 0, then limdx→0 T (dx) = 1,

define a Hermitian operator,

T (dx) = exp(−iK̂ · dx) ≈ 1− iK̂ · dx,

Ch. 2 in ”Modern Quantum Mechanics,” by J. Sakurai.
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Momentum as a generator of Translation

define a Hermitian operator,

T (dx) = exp(−iK̂ · dx) ≈ 1− iK̂ · dx,

we have the communication relation,

[x̂, ⌈§] = dx, or [x̂i, K̂j ] = iδij ,

L. De Brogie’s relation,
2π

λ
=
p

~
,

define K̂ = p̂/~, then

[x̂i, p̂j ] = i~δij ,

Ch. 2 in ”Modern Quantum Mechanics,” by J. Sakurai.
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Momentum Operator in the Position basis

the definition of momentum as the generator of infinitesimal translations,

(1− ip̂∆x

~
)|α〉 =

Z

dxT (∆x)|x〉〈x|α〉

=

Z

dx|x+ ∆x〉〈x|α〉

=

Z

dx|x〉〈x−∆x|α〉

=

Z

dx|x〉(〈x|α〉 −∆x
∂

∂x
〈x|α〉)

comparison of both sides,

p̂|α〉 =
Z

dx|x〉(−i~ ∂

∂x
〈x|α〉),

or

〈x|p̂|α〉 = −i~ ∂

∂x
〈x|α〉
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Uncertainty relation for q̂ and p̂

take the operators Â = q̂ (position) and B̂ = p̂ (momentum) for a free particle,

[q̂, p̂] = i~→ 〈∆q̂2〉〈∆p̂2〉 ≥ ~
2

4
.

define two states, |ψ1〉 = [Â− 〈Â〉]|ψ〉 ≡ α̂|ψ〉, |ψ2〉 = [B̂ − 〈B̂〉]|ψ〉 ≡ β̂|ψ〉.

for uncorrelated minimum uncertainty states,

α̂|ψ〉 = −iλβ̂|ψ〉, 〈ψ|α̂β̂ + β̂α̂|ψ〉 = 0,

where λ is a real number.

if Â = q̂ and B̂ = p̂, we have (q̂ − 〈q̂〉)|ψ〉 = −iλ(p̂− 〈p̂〉)|ψ〉.

the wavefunction in the q-basis is, i.e. p̂ = −i~∂/∂q,

ψ(q) = 〈q|ψ〉 = 1

(2π〈∆q̂2〉)1/4
exp[

i〈p̂〉q
~
− (q − 〈q̂〉)2

4〈∆q̂2〉 ],

in the p-basis, ψ(p) = 〈p|ψ〉 = 1
(2π〈∆p̂2〉)1/4

exp[− i
~
(〈q̂〉(p− 〈p̂〉)− (p−〈p̂〉)2

4〈∆p̂2〉 ].
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Minimum Uncertainty State

(q̂ − 〈q̂〉)|ψ〉 = −iλ(p̂− 〈p̂〉)|ψ〉

if we define λ = e−2r , then

(er q̂ + ie−r p̂)|ψ〉 = (er〈q̂〉+ ie−r〈p̂〉)|ψ〉,

the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator er q̂ + ie−r p̂ with a c-number eigenvalue er〈q̂〉+ ie−r〈p̂〉.

the variances of q̂ and p̂ are

〈∆q̂2〉 = ~

2
e−2r , 〈∆p̂2〉 = ~

2
e2r.

here r is referred as the squeezing parameter.
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Gaussian Wave Packets

in the x-space,

Ψ(x) = 〈x|Ψ〉 = [
1

π1/4
√
d
]exp[ikx− x2

2d2
]

, which is a plane wave with wave number k and width d.

the expectation value of X̂ is zero for symmetry,

〈X̂〉 =

Z ∞

−∞
dx〈Ψ|x〉X̂〈x|Ψ〉 = 0.

variation of X̂ , 〈∆X̂2〉 = d2

2
.

the expectation value of P̂ , 〈P̂ 〉 = ~k, i.e. 〈x|P̂ |Ψ〉 = −i~ ∂
∂x
〈x|Ψ〉.

variation of P̂ , 〈∆P̂ 2〉 = ~
2

2d2 .

the Heisenberg uncertainty product is, 〈∆X̂2〉〈∆P̂ 2〉 = ~
2

4
.

a Gaussian wave packet is called a minimum uncertainty wave packet.
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Phase diagram for EM waves

Electromagnetic waves can be represented by

Ê(t) = E0[X̂1 sin(ωt)− X̂2 cos(ωt)]

where

X̂1 = amplitude quadrature

X̂2 = phase quadrature
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Quadrature operators

the electric and magnetic fields become,

Êx(z, t) =
X

j

(
~ωj

ǫ0V
)1/2[âje

−iωjt + â†je
iωjt] sin(kjz),

=
X

j

cj [â1j cosωjt+ â2j sinωjt]uj(r),

note that â and â† are not hermitian operators, but (â†)† = â.

â1 = 1
2
(â+ â†) and â2 = 1

2i
(â− â†) are two Hermitian (quadrature) operators.

the commutation relation for â and â† is [â, â†] = 1,

the commutation relation for â and â† is [â1, â2] = i
2

,

and 〈∆â2
1〉〈∆â2

2〉 ≥ 1
16

.
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Phase diagram for coherent states
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Coherent and Squeezed States

Uncertainty Principle: ∆X̂1∆X̂2 ≥ 1.

1. Coherent states: ∆X̂1 = ∆X̂2 = 1,

2. Amplitude squeezed states: ∆X̂1 < 1,

3. Phase squeezed states: ∆X̂2 < 1,

4. Quadrature squeezed states.
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Vacuum, Coherent, and Squeezed states

vacuum coherent squeezed-vacuum

amp-squeezed phase-squeezed quad-squeezed
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Generations of Squeezed States

Nonlinear optics:

Courtesy of P. K. Lam
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Generation and Detection of Squeezed Vacuum

1. Balanced Sagnac Loop (to cancel the mean field),

2. Homodyne Detection.

M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).
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Schrödinger equation

Postulate 5 : The time evolution of a state |Ψ〉 is governed by the Schrödinger equation,

i~
d
dt
|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉,

where Ĥ(t) is the Hamiltonian which is a hermitian operator associated with the total
energy of the system.
The solution of the Schrödinger equation is,

|Ψ(t)〉 =←−T exp[− i
~

Z t

t0

dτĤ(τ)]|Ψ(0)〉 ≡ ÛS(t, t0)|Ψ(t0),

where
←−
( T ) is the time-ordering operator.

Schr ödinger picture :

|Ψ(r, t)〉 =
X

i

αi(t)|ψi(r)〉.
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Time Evolution of a Minimum Uncertainty State

the Hamiltonian for a free particle, Ĥ = p̂2

2m
, then

Û = exp(− i
~

p̂2

2m
t).

the Schrödinger wavefunction,

Ψ(q, t) = 〈q|Û |Ψ(0)〉 =

Z ∞

−∞
dp〈|p〉Ψ(p, 0)exp(− i

~

p2

2m
t),

=
1

(2π)1/4(∆q + i~t/2m∆q)1/2
exp[− q2

4(∆q)2 + 2i~t/m
],

where ∆q = ~/2〈p̂2〉1/2, and 〈q|p〉 = 1√
2π~

exp( ipq
~

).

even though the momentum uncertainty 〈∆p̂2〉 is preserved,

the position uncertainty increases as time develops,

〈∆q̂2(t)〉 = (∆q̂)2 +
~
2t2

4m2(∆q)2
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Gaussian Optics

Wave equation: In free space, the vector potential, A, is defined as
A(r, t) = ~nψ(x, y, z)ejωt, which obeys the vector wave equation,

∇2ψ + k2ψ = 0.

The paraxial wave equation: ψ(x, y, z) = u(x, y, z)e−jkz , one obtains

∇2
T u− 2jk

∂u

∂z
= 0,

where ∇T ≡ x̂ ∂
∂x

+ ŷ ∂
∂y

.

This solution is proportional to the impulse response function (Fresnel kernel),

h(x, y, z) =
j

λz
e−jk[(x2+y2)/2z],

i.e. ∇2
T h(x, y, z)− 2jk ∂h

∂z
= 0.
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Gaussian Optics

The solution of the scalar paraxial wave equation is,

u00(x, y, z) =

√
2√
πw

exp(jφ)exp(−x
2 + y2

w2
)exp[− jk

2R
(x2 + y2],

beam width w2(z) = 2b
k

(1 + z2

b2
= w2

0 [1 + ( λz
πw2

0

)2],

radius of phase front 1
R(z)

= z
z2+b2

= z
z2+(πw2

0
/λ)2

,

phasedelay tanφ = z
b

= z
πw2

0
/λ

,

with the minimum beam radius w0 =
√

2bk.
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Heisenberg equation

The solution of the Schrödinger equation is,
|Ψ(t)〉 =←−T exp[− i

~

R t
t0

dτĤ(τ)]|Ψ(0)〉 ≡ ÛS(t, t0)|Ψ(t0).

The quantities of physical interest are the expectation values of operators,

〈Ψ(t)|Â|Ψ(t)〉 = 〈Ψ(t0)|Â(t)|Ψ(t0)〉,

where

Â(t) = Û†
S(t, t0)ÂÛS(t, t0).

The time-dependent operator Â(t) evolves according to the Heisenberg equation,

i~
d
dt
Â(t) = [Â, Ĥ(t)].

Schrödinger picture: time evolution of the states.

Heisenberg picture: time evolution of the operators.
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Interaction picture

Consider a system described by |Ψ(t)〉 evolving under the action of a hamiltonian
Ĥ(t) decomposable as,

Ĥ(t) = Ĥ0 + Ĥ1(t),

where Ĥ0 is time-independent.

Define

|ΨI(t)〉 = exp(iĤ0t/~)|Ψ(t)〉,

then |ΨI(t)〉 evolves accords to

i~
d
dt
|ΨI(t)〉 = ĤI(t)|ΨI(t)〉,

where

ĤI (t) = exp(iĤ0t/~)Ĥ1(t)exp(−iĤ0t/~).

The evolution is in the interaction picture generated by Ĥ0.
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Paradoxes of Quantum Theory

Geometric phase

Measurement theory

Schrödinger’s Cat paradox

Einstein-Podolosky-Rosen paradox

Local Hidden Variables theory
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Quantum Zeno effect (watchdog effect)

multi-time joint probability: P ({|φi〉, ti}), the probability that a system in a state
|φ0(t0)〉 at t0 is found in the state |φi〉 at ti, where i = 1, . . . , n.

at t1: the state is ÛS(t1, t0)|φ0(t0)〉.

projection on |φ1〉 is

|φ1(t1)〉 = |φ1〉〈φ1|ÛS(t1, t0)|φ0(t0)〉.

the sate |φ1(t1)〉 then evolves till time t2 to ÛS(t2, t1)|φ1(t1)〉, with the projection,

|φ2(t2)〉 = |φ2〉〈φ2|ÛS(t2, t1)|φ1(t1)〉.

continuing till time tn,

P ({|φi〉, ti}) = |
n

Y

i=1

〈φi|ÛS(ti, ti−1)|φi−1〉|2.
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Quantum Zeno effect (watchdog effect)

consider a time-independent hamiltonian, ÛS(ti, tj) = exp[−iĤ(ti − tj)/~].

let the observation be spaced at equal time intervals, ti − ti−1 = t/n.

the probability that at each time ti the system is observed in its initial state |φ0〉 is,

P ({|φ0〉, ti}) = |〈φ0|exp[−iĤt/n~]|φ0〉|2n.

let t/n≪ 1,

|〈φ0|exp[−iĤt/n~]|φ0〉|2 ≈ 1− (
t

n~
)2∆Ĥ2,

where ∆Ĥ2 = 〈φ0|Ĥ2|φ0〉 − 〈φ0|Ĥ|φ0〉2.
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Quantum Zeno effect (watchdog effect)

the joint probability for n equally spaced observations becomes,

P ({|φ0〉, ti}) = [1− (
t

n~
)2∆Ĥ2]n.

for unobserved in between, the probability is,

P ({|φ0〉, t}) = 1− (
t2

~2
)∆Ĥ2.

the probability of finding the system in its initial state at a given time is increased if it
is observed repeatedly at intermediate times.

for n≫ 1,

P ({|φ0〉, ti}) = [1− (
t

n~
)2∆Ĥ2]n ≈ exp[−t2∆Ĥ2/n~

2],

the system under observation does not evolve.

this effect was invoked to predict the inhibition of decay of an unstable system.
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Time-dependent perturbation theory

with the interaction picture, Ĥ = Ĥ0 + Ĥ1.

the state, Ψ(r, t) =
P

n Cn(t)un(r)e−iωnt with the energy eigenvalue
Ĥ0un(r) = ~ωnun(r).

the wavefunction has the initial value, Ψ(r, 0) = ui(r), i.e. Ci(0) = 1, Cn 6=i = 0.

the equation of motion for the probability amplitude Cn(t) is,

Ċn(t) = − i
~

X

m

〈n|Ĥ1|m〉eiωnmtCm(t),

≈ Ċn
(1)

(t) = −i~−1〈n|Ĥ1|i〉eiωnit.

if Ĥ1 = V0 time independent, we have

Cn(t) ≈ Cn
(1)(t) = −i~−1〈n|Ĥ1|i〉

eiωnit − 1

iωni
= −i~−1〈n|Ĥ1|i〉eiωnit/2 sin(ωnit/2)

ωni/2

Ch. 3 in ”Elements of Quantum Optics,” by P. Meystre and M. Sargent III.
Ch. 5 in ”Modern Quantum Mechanics,” by J. Sakurai.
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Rotational-Wave Approximation

if Ĥ1 = V0 cos νt, we have

Cn(t) ≈ Cn
(1)(t) = −i Vni

2~
[
ei(ωni+ν)t − 1

i(ωni + ν)
+
ei(ωni−ν)t − 1

i(ωni − ν)
],

where Vni = 〈n|Ĥ1|i〉.

if near resonance ωni ≈ ν, we can neglect the terms with ωni + ν. This is called
the rotational-wave approximation .

making the rotational-wave approximation,

|C(1)
n |2 =

|Vni|2
4~2

sin2[(ωni − ν)t/2]
(ωni − ν)2/4

.

we have the same transition probability as the dc case, provided we substitute
ωni − ν for ωni.
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Fermi-Golden rule

the total transition probability from an initial state to the final state is,

PT ≈
Z

D(ω)|C(1)
n |2dω,

where D(ω) is the density of state factor.

Fermi-Golden rule,

PT =

Z

dωD(ω)
|V (ω)|2

4~2
t2

sin2[(ωni − ν)t/2]
[(ωni − ν)t/2]2

.

consider resonance condition ω = ν,

PT ≈ D(ν)
|V (ν)|2

4~2
t2

Z

dω
sin2[(ωni − ν)t/2]
[(ωni − ν)t/2]2

,

=
π

2~2
D(ν)|V (ν)|2t.

the transition rate, Γ = dPT
dt

= − d
dt
|C(1)

n |2 = π
2~2

D(ν)|V (ν)|2, which is a constant
in time.
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Casimir effect
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