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Field Quantization

Simple Harmonic Oscillator

Quantization of a single-mode field

Basic Quantum Theory

Time-Dependent Perturbation Theory
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Quantum fluctuations of a single-mode field
Quadrature operators for a single-mode field
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Role of Quantum Optics

2 photons occupy an electromagnetic mode,
we will always refer to modes in quantum optics,
typically a plane wave,

2 the energy in a mode is not continuous but discrete In
guanta of hw;

2 the observables are just represented by probabilities
as usual in quantum mechanics;

2 there Is a zero point energy inherent to each mode which
IS equivalent with fluctuations of the electromagnetic
field in vacuum, due to uncertainty principle.

a;.:T"
ﬂ %i‘ ? quantized fields and quantum fluctuations (zero-point energy)
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Vacuum

AR F = - M, : : : L
B 2 %‘jﬁ‘ % vacuum is not just nothing, it is full of energy.
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Vacuum

spontaneous emission IS actually stimulated by the vacuum fluctuation of the
electromagnetic field,

one can modify vacuum fluctuations by resonators and photonic crystals,

atomic stability : the electron does not crash into the core due to vacuum fluctuation
of the electromagnetic field,

gravity 1S not a fundamental force but a side effect matter modifies the vacuum
fluctuations, by Sakharov,

Casimir effect : two charged metal plates repel each other until Casimir effect
overcomes the repulsion,

Lamb shift : the energy level difference between 2.5 ;5 and 2P, /5 in hydrogen.
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Simple Harmonic Oscillator

9 The simple harmonic oscillator has no driving force, and no friction (damping), so
the net force is just:

d2 PAALEAS IS S
F:—ka::ma:m—x,
di¢?
D if define w2 = k/m, then
d?x 5
@ —I- wo T = O

the general solution =z = ACos(wot + @),

2
The kinetic energy is T = <m (i—f) = 1kA? sin?(wot + ¢),

9  the potential energy is U = Lkz2 = 1 kA2 cos?(wot + ¢)

1
2

9 the total energy of the system has the constant value £ = %kAQ.

R HEERG
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Quantum Harmonic Oscillator: 1D

9 |n the one-dimensional harmonic oscillator problem, a particle of mass m is
. . ]. 2 2
subject to a potential V' (z) = MWz,
9 |n classical mechanics, mw? = k is called the spring stiffness coefficient or force
constant, and w the circular frequency.
- - - - 2 . - .
9 The Hamiltonian of the particle is: H = £~ + 1mw2z2 where = is the position
2m 2
operator, and p is the momentum operator (p = —ih%). The first term
represents the kinetic energy of the particle, and the second term represents the
potential energy in which it resides.
Paotantial anergy
of form Energy
%kxz '!' Transition
N : E""Erg}'/
n=3\ fhf: /E,.,={n+1,1ﬁm
n=2\ E t / _
n=1 .
n=0 Eg= %ﬁ[:\_\
Internuclear separation X
~
i o
=N = - A x=0 represents the equilibriu
LS N S
[ —
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Maxwell’s equations in Free space

2 Faraday’s law:

0
E=——B
V X 575
2 Ampére’s law:
0
H=—D
V X 570

9 Gauss’s law for the electric field:
V-D=0,
2 Gauss’s law for the magnetic field:

V-B =0,

igﬁ% o _
w1 D @ constitutive relation: B = pgH and D = ¢E.
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Plane electromagnetic waves

9 Maxwell's equations in free space, there is vacuum, no free charges, no currents,
J = p = O’
. . 2
9 pothEand B satisfy wave equation, V2E = eouo%,

2 we can use the solutions of wave optics,

E(r,t) = Eopexp(iwt)exp(—ik -r),
B(r.t) = Bnexp(iwt)exp(—ik -r),
E,
A Direction of Propagation e K

B

— = = l‘ll
R4
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Mode Expansion of the Field

9 A single-mode field, polarized along the z-direction, in the cavity:
E(r,t) = 2Ez(2,t) = Z( e )1/2q](t)S|n(k 2),

where k = w/c, w; = c(jn/L), 5 =1,2,..., V is the effective volume of the
cavity, and ¢(t) is the normal mode amplitude with the dimension of a length (acts
as a canonical position, and p; = m g, is the canonical momentum).

9 the magnetic field in the cavity

H(r, 1) = G, (2,8) = (m; o )1/2 (14090 Cogk, 2), /

J

modes 2

2 the classical Hamiltonian for the field: J\—I/
mode |
1

H = —/ dV[EOEg—l—,u,oHS],
2 Jv

2
~;-=T' ‘ 1 Pz
j(? al Ts %:H%—u — 5 Z[m] mqj +m]qj] -5 Z[m] ??nqu + —]]
J

m .
j J
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Quantization of the Electromagnetic Field

D Like simple harmonic oscillator, H = % + %ka, where [z, p] = ih,
A 2.
D ForEMfield, H = 1 °.[m;w2,¢% + 2L ], where [, p;] = id;;,
J m;

9 annihilation and creation operators:

, 1
A — 't A - A
aje "It = (mjw;d; +ipj),
Qmjhwj
"T /Lwt_ 1 A o A
a'e’™I1" = miwiq; —1pP4j),
! e (mje0jd; — if)

2 the Hamiltonian for EM fields becomes: H = > hu)j(&j-&j + 1),

9 the electric and magnetic fields become,

~ hw . ) ) _
Ey(zt) = Y (—2)/?laje " +ale™s*ISin(k;z2),
— ¢oV
A hw . . .
Hy(z,t) = —’iEOCE (EO—‘i)l/Q[dje_wjt—dj.ewjt]Cos(ka)
J

R HEERG
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R HEERG

Quantization of EM fields

2 the Hamiltonian for EM fields becomes: H = > hwj(&j.&j + 1),

9 the electric and magnetic fields become,

Mational Tsing Hua University

Ba(zt) = (=

— Z Cj [&U cosw;t + &23' sin th]uj (T>7

J

|

mode 2

v\

energy

Eﬁh
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Simple Harmonic Oscillator in Schrodinger picture

2 one-dimensional harmonic oscillator, H =

9 Schrodinger equation,

d

2
p
— T

ka2,

2
@)+ [E — —kx%(w) =0,

with dimensionless coordinates ¢ = /mw/hx and dimensionless quantity

e = 2F/hw, we have

d£2

which has Hermite-Gaussian solutions,

$(€) = Hn(&)e ¢ /2,

wheren = 0,1, 2,...

Ch. 7 in "Quantum Mechanics,” by A. Goswami.

Ch.2in’ Modern Quantum Mechanics,” by J. Sakurai.

sl - %é
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1

w<:c> + [e — &p(z) = 0,
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Quantum Harmonic Oscillator

d2

—(z) + [e — E](z) = 0,
d¢

which has Hermite-Gaussian solutions,

1 1
V(O =Hn(©e¢ /% B = shwe=ho(n+ ),
wheren =0,1,2,...

E, =T in +% )
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Simple Harmonic Oscillator: operator method

0 " " . . 2 A A .
2 one-dimensional harmonic oscillator, A = o+ %ka, where [z, p] = ih

9 define annihilation operator (destruction, lowering, or step-down operators):

a = +\/mw/2ht + ip/V2mhw.

9 define creation operator (raising, or step-up operators):

al = /mw/2hi — ip/V2mhw.

note that @ and &' are not hermitian operators, but (a")T = a.
the commutation relation for & and a' is [a,a] = 1.

the oscillator Hamiltonian can be written as,
R A 1 - 1

where N is called the number operator, which is hermitian.

R HEERG
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Simple Harmonic Oscillator: operator method

9 the number operator, N = a'a,

[H, 4] = —hwa, and [H,a'] = hwa.

9 the eigen-energy of the system, H|¥) = E| W), then
Ha|U) = (E — hw)a|®),  Ha'|¥) = (E 4 hw)a' | D).
2 for any hermitian operator, (¥|Q2|¥) = (QU|QV) > 0
9 thus (T|H|T) > 0.
9 ground state (lowest energy state), a|¥g) = 0.
2 energy of the ground state, H|¥g) = = hw|Wo).
D excited state, H|W,,) = H(ah)"|Wo) = hw(n + 1)@ o).
9 eigen-energy for excited state, £, = (n + %)m.

sl - %é
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Simple Harmonic Oscillator: operator method

9 normalization of the eigenstates, (a7)™|¥g) = ¢, |V, ), where ¢, = /n.
2 alvn) = al¥noa),
2 afwn) = Vi F 1 ¥as),
2 x-representation, ¥, (z) = (x|¥,).
2 ground state, (z|a|Wo) = 0, i.e.
[ e+ hmee 1 W0(0) = 0.

9 define a dimensionless variable ¢ = y/mw/hx, we obtain
(E+ )y =0
d£ 0o —Y,
with the solution W (&) = coexp(—£2/2).

sl - %é
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brain-storms

. . 2
9 Damped harmonic oscillator: F + 2 +woz =0,

dt2 m dt
where b is an experimentally determined damping constant satisfying the
relationship F' = —bv. An example of a system obeying this equation would be a

weighted spring underwater if the damping force exerted by the water is assumed
to be linearly proportional to v.

9 Mode expansion of the field in other bases, e.x. spherical wave:

A
E(T) = —eXp(—Zkl'r - TO|)7
|7 — 7o
Wave fronts
(constant phase surfaces) Wave fronts
/\ Wave fronts "
> FAUS*
i i,
—+Pp—> & P o
_ =7 ’ J:n
A perfect plane wave A perfect spherical wave A divergent beam d il
i .
u
(a) (b) (c) "
VE S EERE
National Tsing Hua University HOW to quantlze f|e|dsr)
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Postulates of Quantum Mechanics

Postulate 1 : An isolated quantum system is described by a vector in a Hilbert space. Two
vectors differing only by a multiplying constant represent the same physical state.

2 quantum state: |¥) = > . a;|1;),

completeness: > . |v;)(¥i| = I,

probability interpretation (projection): ¥ (x) = (z| W),
operator: A|¥) = |®),

representation: (¢|A|v),

adjoint of A: (| Aly)) = (1| AT|g)*,

hermitian operator: H=HT,

O VU O O U U ¢

unitary operator: UUT = UTU = I.

Ch. 1-5 in "The Principles of Quantum Mechanics,” by P. Dirac.
Ch. 1 in "Mathematical Methods of Quantum Optics,” by R. Puri.

R HEERG
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Operators

2 For a unitary operator, (1;|1;) = (1;|UT;), the set of states U|+)) preserves
the scalar product.

U can be represented as U = exp(iH) if H is hermitian.

normal operator: [A, AT] = 0, the eigenstates of only a normal operator are
orthonormal.
l.e. hermitian and unitary operators are normal operators.

2 The sum of the diagonal elements (¢|A|v) is call the trace of A,
Tr(A) = Z(%\A\@%

The value of the trace of an operator is independent of the basis.
The eigenvalues of a hermitian operator are real, H|U) = \|¥), where X is real.

If A and B do not commute then they do not admit a common set of eigenvectors.

A 342 ARG
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Postulates of Quantum Mechanics

Postulate 2 : To each dynamical variable there corresponds a unique hermitian operator.
Postulate 3 : If A and B are hermitian operators corresponding to classical dynamical
variables a and b, then the commutator of A and B is given by

A A

[A, Bl = AB — BA = ik{a, b},

where {a, b} is the classical Poisson bracket.

Postulate 4 : Each act of measurement of an observable A of a system in state |¥)
collapses the system to an eigenstate |+;) of A with probability |(¢;|¥)|2.

The average or the expectation value of A is given by

=3 il )2 = (w]Al),

where ), is the eigenvalue of A corresponding to the eigenstate |15

TEZAERES
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Uncertainty relation

2 Non-commuting observable do not admit common eigenvectors.
2 Non-commuting observables can not have definite values simultaneously.

9 Simultaneous measurement of non-commuting observables to an arbitrary degree
of accuracy is thus incompatible.

2 variance: AA2 = (U|(A — (A))2|0) = (V| A2| D) — (V| A|D)2.

AA2AB?

1V

where
A, B]=iC, and F=AB+ BA—2(A)(B).

9D Take the operators A = § (position) and B = p (momentum) for a free particle,
2 2 h?
4,5) = ih— (AP)AP) > .

TEZAERES
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Uncertainty relation
9

Schwarz inequality: (¢[¢)(i|) = (¢|Y) (¥|).

Equality holds if and only if the two states are linear dependent, [1)) = \|¢), where A
IS a complex number.

2 uncertainty relation,

where
[A,B]=iC, and F=AB+ BA—2(A)(B).

9 the operator F' is a measure of correlations between A andB.

9 define two states,

1) = [A—(D]lv),  |v2) = [B—(B)]l¥),
the uncertainty product is minimum, i.e. |¢1) = —i\|2),

[A 4+ iAB]|y) = [(A) + iX(B)]|¢) = z[).
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Uncertainty relation
9

if Re(\) = 0, A + iAB is a normal operator, which have orthonormal eigenstates.

the variances,

A A A A A A A
AR =~ R + i), AB® = — [(F) —i(0))
D set A=\ + i),
12 1 r; = 22 1 12 ~ n
AAZ = SD(F) +A(C),  AB WAA C NG =M (FY=0

if \| = 1, then AA2 = AB?2, equal variance minimum uncertainty states.

if [\| = 1 along with \; = 0, then AA%2 = AB? and (F) = 0, uncorrelated equal
variance minimum uncertainty states.

D ifA, #£0 then (F) = 2(0),  AA2=RT(ey,  AB2= ;1 (0).

If C is a positive operator then the minimum uncertainty states exist only if A, > 0.
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Momentum as a generator of Translation

9 For an infinitesimal translation by dz, and the operator that does the job by 7 (dz),

T (dz)|z) = |z + dx),

the infinitesimal translation should be unitary, 77 (dz)7 (dx) =
two successive infinitesimal translations, 7 (dz1)7 (dz2) = 7 (dx1 + dz2),
a translation in the opposite direction, 7 (dz1) = 7 ~1(dx),

identity operation, dx — 0, then limg, .o 7 (dx) = 1,

O O O O

define a Hermitian operator,

T (dz) = exp(—iK - dz) ~ 1 — iK - dx,

Ch. 2 in "Modern Quantum Mechanics,” by J. Sakurai.

sl - %é
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T (dz) = exp(—iK - dz) ~ 1 — iK - dx,

2 we have the communication relation,

@,

9 | De Brogie’s relation,

9 define K = p/h, then

Ch. 2 in "Modern Quantum Mechanics,” by J.

sl - %é

al Tsing Hua Un

or 24, K] = 1dij,
r_ P
A R’
(&, D5] = ihdj,
Sakurai.

Momentum as a generator of Translation

2 define a Hermitian operator,
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Momentum Operator in the Position basis

9 the definition of momentum as the generator of infinitesimal translations,

o) = [ daT(Aw)lz)(ala)
= /dcc|a;—|—Aa;>(a;|a)
= /dcc|a;>(a; — Azx|a)

0
— [ dala)((wla) - Ao (ala))

9 comparison of both sides,

play = [ dola) (~ih" (alo)),

A

(@lpla) = —ih—(z|a)

il A AN
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Uncertainty relation for ¢ and p

9 take the operators A = § (position) and B = p (momentum) for a free particle,

[,P] = ih — (AG*)(AP?) > —.

define two states, [¢1) = [A — (A)][¢) = &l),  [h2) = [B — (B)][¢) = Bl).
for uncorrelated minimum uncertainty states,
aly) = —iABly),  (Ylaf + Baly) =0,

where X is a real number.
if A=gand B =p, we have (4 — (§))[¢) = —iA(p — (§))|¢).

the wavefunction in the g-basis is, i.e. p = —ihd/0q,

[i<ﬁ>q (g — (@))*

Y(q) = (q|v) = N J;

r(A@)/A T

8 2. D Fiftie p-basis, v(p) = (pl) = Grrazmra Pl 1 (@) (b — () — SEZE,

al Tsing Hua Un
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Minimum Uncertainty State

(@ = (@) = =iMp = (B)[¥)

if we define A\ = e—27, then
(e"q+ie”"p)y) = (e"(q) +ie” " (D)) |Y),

9 the minimum uncertainty state is defined as an eigenstate of a non-Hermitian
operator e”§ + ie~"p with a c-number eigenvalue e” (¢) 4+ ie ™" (p).

9 the variances of q and p are

9 here r is referred as the squeezing parameter.

R HEERG

Mational Tsing Hua University

IPT5340. Sprina '08 — p. 29/F



Gaussian Wave Packets

in the x-space,

O VvV VU VU O

- lexp[ik v
IR — ——=
xl/4/d P 2d?

, which is a plane wave with wave number k& and width d.

U(z) = (z[¥) = |

]

the expectation value of X is zero for symmetry,

(X) = /OO dz (U |z) X (x| ) = 0.

— O

variation of X, (AX?2) = %.

the expectation value of P, (P) = hk, i.e. (z|P|¥) = —ih-2 (z|T).

variation of P, (AP?) = %.

the Heisenberg uncertainty product is, (AX2)(AP?) = %.

a Gaussian wave packet is called a minimum uncertainty wave packet.

R HEERG
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Phase diagram for EM waves

Electromagnetic waves can be represented by

E(t) = Eo[X; sin(wt) — X5 cos(wt)]

where
X; = amplitude quadrature
Xy = phase quadrature
" e &MY
—~ < |
v N
a \7 1
X2
p
%-'-."‘T' ﬂ] %2—
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Quadrature operators

9 the electric and magnetic fields become,
7 mj 1/274  —itw,t AT dwit] oo
Ey(z,t) = Z(—) [aje™"7" 4 a;e’™ 3] sin(k; 2),

= Z cjla1; cosw;t 4+ agj sinw;tju;(r),
J
note that 4 and a' are not hermitian operators, but (a7)T = a.
a1 = 3(a+a') and a2 = 5-(a — a') are two Hermitian (quadrature) operators.
the commutation relation for & and a' is [a, 4] = 1,

the commutation relation for ¢ and a' is [a1,a2] = %

O O VU vV

and (Aa?)(Aa2) > L.

R HEERG

Mational Tsing Hua University

IPT5340. Sprina '08 — p. 32/F



Phase diagram for coherent states

mean numba‘qﬂf photons i ,
< N >=< a|N|a >=< ald'd|la >= |a|?

phase of the field

EZ o =|a|exp(if)
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Coherent and Squeezed States

Uncertainty Principle: AX;AX, > 1.

1. Coherent states: AX; = AXy = 1, Im AX, «cAG
2. Amplitude squeezed states: AX; < 1, \ <
s _..‘f‘ xx_‘

CAX, o An

4. Quadrature squeezed states.

Re

/
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Vacuum, Coherent, and Squeezed states

vacuum sgueezed-vacuum
= 'a

— i &

= ] . s £

. - : £

S m 7! u

= y i ! 8

=3 & =)

]

o = =

Z L, . 5 ) ;
. i L ; n 59 ke ) 150 o 8] (8] 40 g 150 Fin bl
s i y - i £ Tirne [1ig] Thre [inz]

THme [my)]

TNodse Surterl [ao ]
Becdse carren] [4.0.]

o se curpent [au ]

Tiite [t e lmy

Tuee lios]

< E 5%@-;9u$ezed guad-squeezed
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Generations of Squeezed States

Nonlinear optics:

. second Harmonic Generation - Kerr Effect

- = F 3

El

Courtesy of P. K. Lam

TR S A T . S ' o S
aal A’%é A - Parametnc Oscillation Parametric Ampification
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Generation and Detection of Squeezed Vacuum

1. Balanced Sagnac Loop (to cancel the mean field),

I
Mational Teing Hua University M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66, 153(1991).
|
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Schrodinger equation

Postulate 5 : The time evolution of a state |V) is governed by the Schrddinger equation,
d .
th o [¥(t) = H@R)Y (),

where H (t) is the Hamiltonian which is a hermitian operator associated with the total
energy of the system.
The solution of the Schrédinger equation is,

w(e) = Texpl— - [ drit(e)]w(0)) = Us(t,to) (ko).

to

H
where ( T) is the time-ordering operator.

Schr édinger picture
= > ai(®)¢i(r))
7

sl - %é
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Time Evolution of a Minimum Uncertainty State

~ ~2
9 the Hamiltonian for a free particle, H = p—m, then

- 1 P
U=exp(———1t).
P( h 2m )
9 the Schrodinger wavefunction,
R o'e) i p2
V.t = @01PO) = [ dp(puip0)em(—+ 2,
5o m
1 q>

= . exp|—

(2m)1/4(Aq + iht/2mAq)1/? 4(Aq)? + 2757%15/777,]7

where Aq = h/2(p?)'/2, and (q|p) = \/;—hexp(“'%)-
9 even though the momentum uncertainty (Ap?) is preserved,

9 the position uncertainty increases as time develops,

CRIADLE (A1) = (Ad)* +
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Gaussian Optics

9 Wave equation: In free space, the vector potential, A, is defined as
A(r,t) = fp(z, y, z)el“t, which obeys the vector wave equation,

V2 + k% = 0.

9 The paraxial wave equation: v (x,y, z) = u(z,y, z)e~7¥%, one obtains

9
V2 — 2jk— =0,
0z

where Vo = &2 + g)a%.
9 This solution is proportional to the impulse response function (Fresnel kernel),

h(x,y)z) — )\ie—jk[(w2—|—y2)/22]7
i.e. VA h(z,y,z) — 2jk% = 0.

R HEERG
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Gaussian Optics

9 The solution of the scalar paraxial wave equation is,

L captiopean(—- S5 eapl— L (0 +47),

uoo(z,y,2) =

2 peam width w?(z) = 22(1 + 2 = w2[1 + (25)2],

2
2 2
k b Twy

9 radius of phase front R(lz) = T T TSI
z 7Tw0

z
Twd /N’

phasedelay tan ¢ = £ =

9 with the minimum beam radius wg = v 2bk.

20

10

-10

-20

R HEERG
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Helsenberg equation

9 The solution of the Schrodinger equation is,
< . A A
[U(t)) = Texp[—+ [, drH(7)]|W(0)) = Us(t, t0)[¥(to).

9 The quantities of physical interest are the expectation values of operators,
(W) AW () = (¥(to)|A®)|P(t0)),

where
A(t) = UL (t,t0) AUs (¢, to).

9 The time-dependent operator A(t) evolves according to the Heisenberg equation,

L d o S
ih A(t) = [A, H(1))

9 Schrodinger picture: time evolution of the states.

9 Heisenberg picture: time evolution of the operators.

sl - %é

al Tsing Hua Un

IPT5340. Sprina '08 — p. 42/F



Interaction picture

9 Consider a system described by |¥(¢)) evolving under the action of a hamiltonian

H(t) decomposable as,
I:I(t) = I:I() + ﬁl(t),

where ﬁo is time-independent.

2 Define
W (t)) = exp(iHot/R)|¥(t)),

then |W;(t)) evolves accords to

zh%m(t)) = Hy(t)|¥(1)),

where

A

9 The evolution is in the interaction picture generated by Ho.
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Hi(t) = exp(iHot/h)H1(t)exp(—iHot/h).
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Paradoxes of Quantum Theory

Geometric phase
Measurement theory
Schrodinger’s Cat paradox

Einstein-Podolosky-Rosen paradox

O Vv VvV O O

Local Hidden Variables theory
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Quantum Zeno effect (watchdog effect)

2 multi-time joint probability: P({|¢;),t;}), the probability that a system in a state
|po(to)) at to is found in the state |¢p;) att;, wherei =1,...,n,.

at t1: the state is Us(tl,to)|¢o(to)>.

projection on |¢1) is
[61(t1)) = |¢1)(¢1|Us (1, to)|¢o (to))-
9 the sate |61 (¢1)) then evolves till time ¢ to Ug(t2,t1)|¢1(t1)), with the projection,

p2(t2)) = |¢2)(¢2|Us(t2,t1)]|01(t1)).

2 continuing till time ¢,,,

P({l¢s),t:}) = | | [{0ilUs(ti, ti—1)1¢i—1)|>.
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Quantum Zeno effect (watchdog effect)

consider a time-independent hamiltonian, Ug (t;,t;) = exp[—iH (t; — t;)/Hh].
let the observation be spaced at equal time intervals, t; — t;—1 = t/n.

the probability that at each time ¢; the system is observed in its initial state |¢g) is,
P({|¢0), t:}) = [{¢olexp[—iHt/nh]|¢o)[*".

9 lett/n < 1,
‘<¢0\exp[—i1{1t/nh]|¢0>| ~1— ( )ZAHQ

where AH? = (¢o| H?|¢o) — (¢o|H |bo)>.
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Quantum Zeno effect (watchdog effect)

9 the joint probability for n equally spaced observations becomes,

P({l¢0),t:}) = [L = ()P AR

9 for unobserved in between, the probability is,

2 N
P({|go),t}) =1 — (;—Q)AHQ.

D the probability of finding the system in its initial state at a given time is increased if it
Is observed repeatedly at intermediate times.

2 forn>>1,
P({lé0),t:}) = [1 - ()P AR2" ~ expl—2 AT ui?),

the system under observation does not evolve.

T 2 9 é‘[lff'rs‘%ﬁect was invoked to predict the inhibition of decay of an unstable system.
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Time-dependent perturbation theory

9 \with the interaction picture, H = Ho + H;.

9 the state, U(r,t) = Cn(t)un(r)e”*“nt with the energy eigenvalue
Hotn (r) = hwnin (1).

9 the wavefunction has the initial value, ¥(r,0) = u;(r), i.e. C;(0) =1,Cp»; = 0.

the equation of motion for the probability amplitude C,, (?) is,

Y U & W
Cn(t) = —%Z(n|H1|m>e nmt O (1),

Cn ™M (#) = —ih— Y (n| Hy|d)eiwnit,

Q

D if fi; =V, time independent, we have

; it -1 & : in(wnit/2

Ch. 3 in "Elements of Quantum Optics,” by P. Meystre and M. Sargent Ill.
~ = =Ch, 5N 'Magern Quantum Mechanics,” by J. Sakurai.
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Rotational-Wave Approximation

D if A, = Vi cos vt, we have

i (wni+v)t _ 1 (wps—v)t _ 1
Cn(t) = Cn D (8) = i 22 [ e

B

where Vy,; = (n|Hi|i).

2 if near resonance wni ~ v, We can neglect the terms with w,,; + v. This is called

the rotational-wave approximation
9 making the rotational-wave approximation,

Vii|? sin?[(wn; — v)t/2]

(1) 2
Ch =
| | 4h? (wni — )2 /4

9 we have the same transition probability as the dc case, provided we substitute

Wni — V for wy,;.

R HEERG
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Fermi-Golden rule

9 the total transition probability from an initial state to the final state is,
Pr~ [ Dw)|cf P,

where D(w) is the density of state factor.

9 Fermi-Golden rule,

w)? 5 sin?[(wni — v)t/2]
pr = [ aui) SRS

9 consider resonance condition w = v,

Pe ~ 0wVl [, sm2[<wm ~ /2]
((wni — 0)t/2]2
_ _T 2
the %}ansnlon rate, T = 9Pr — _ 4100012 = _©_p(1)|V(v)|2, which is a constant

aiﬁ Iﬂ 3. ,%i i‘#:“rﬁe dt dt 2h2
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Casimir effect

important for micromechanical devices (MEMS)

torsional rod

Hendrik Casimir {1909-2000)

there s a force bebween AAAA
two metal slabs Fbrought Y VMM A VA
A

In close wonty

d

force is due to vacuum fuctuations of
the electromagnetic field

ja| B 5. K. Lamaoesacr:, “Demonstration of the Gasimir Forca m the 0.8 o & pm Aangs

Nationa Phys. Bev: Lett T8, 5-8 (1967) R s T
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