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Quantum correlations in soliton collisions
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We study quantum correlations and quantum noise in soliton collisions described by a general two-soliton
solution of the nonlinear Schrédinger equation by using the back-propagation method. Our results include the
standard case of sechshaped initial pulse analyzed earlier. We reveal that double-hump initial pulses can get
more squeezed and the squeezing ratio enhancement is due to the long collision period in which the pulses are
more stationary. These results offer promising possibilities of using higher-order solitons to generate strongly
squeezed states for the quantum information process and quantum computation.
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I. INTRODUCTION this idea, 7.1-dB photon-number squeezing has been demon-

Light squeezing is an important physical concept that conStrated by using spectral filtefs9].
tinues to attract attention of researchers due to its potential However, it is known that the basic model of the pulse
for implementing quantum information processing and quanPropagation in optical fibers described by the NLSE pos-
tum computing. As an alternative to single-photon schemessesses more generblsoliton solutions which can be ob-
demonstration of the Einstein, Podolsky, and RogeRR tained, for example, by applying the inverse scattering trans-
paradox and quantum teleportation with continuous variableform [20]. As was demonstrated, such higher-ordé¢
has been realized experimentally by using the entanglemenrt2,3, ..) solitons can be more squeezed since they contain
from squeezed stat¢$,2]. Moreover, experimental progress N? times the energy than the fundamental solitb4,21,22;
in the study of various quantum information processingsas an example, up to 8.4 dB enhancement was predicted for
with squeezed states generated from optical fibers has réhe N=2 soliton state$23].
cently been reportefB—6]. To increase the entanglement fi- It is important to mention that all previous studies of the
delity of continuous variables, enhancement of the squeezingpoliton quantum noise and quantum squeezing of higher-
effect becomes very vital. order solitons have employed a very special case of two-

Original proposals to generate squeezed states from optsoliton states generated by a simple sech-like input pulse.
cal fibers are based on the use of the fundamental solitortdowever, a general NLSE solution describing fiesoliton
supported by the Kerr nonlinearity of silica glass. Temporalstate is characterized by free parameters which can be
(pulse solitons in optical fibers are described by the nonlin-controlled independently. In this paper, we develop the
ear Schrodinger equation(NLSE) that can exhibit theory of quantum noise and quantum squeezing in the con-
guadrature-field squeezinf7—11], as well as amplitude text of the multisoliton states and apply it to study squeezing
squeezind 12,13, and both intrapulse and interpulse corre-of the generaN-soliton bound states of the NLSE. In par-
lations[14]. Besides the exact quantum soliton NLSE solu-ticular, we reveal that the conventional sech-like single-
tions constructed by using the Bethe anddifd|, the quan- hump pulses are not the most suitable pulses for generating
tum properties of temporal solitons are well described by thénighly squeezed states and, using the case of the general
linearization approachll] for an average photon number as two-parameter solution fok=2 solitons as an example, we
high as 18. Based on this linearization approach, many dif-show that an input double-hump soliton is better for gener-
ferent numerical methods have been developed during thating strongly squeezed states, even such solitons having the
past two decades in order to study the quantum noise asseame energy as the single-hump pulses. The enhancement of
ciated with nonlinear pulse propagation, including thethe squeezing effect is explained by the long collision period
positiveP representation[7,8], back-propagation method of a double-hump soliton; consequently, the pulse profile is
[15], and cumulant expansion techniglues]. more stationary for getting squeezed. Since these double-

Experimentally, the soliton squeezing from a Sagnac fibehump solitons have also been generated in fiber laser sys-
interferometer, 1.7 dB below the shot noise, was first obtems, more strongly squeezed states from optical fibers are
served in 1991 by Rosenbluh and She[dy]. Since that, expected to be realized with the current technology.
larger quadrature squeezing from fibers has been obtained
with a gigahertz erbium-doped fiber lasers that allow one to
suppress the guided acoustic-wave Brillouin scattering, and
6.1 dB noise reduction below the shot noise has been re- To describe the pulses propagating in optical fibers with
ported[18]. As an attempt to enhance the soliton squeezinghe anomalous dispersion and Kerr-type nonlinearity, one
effect, one may increase the energy of an optical soliton enemploys the NLSE model written for the normalized vari-
hancing the importance of nonlinear effects and, employingiblesz andt,

II. TWO-SOLITON BOUND STATES
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EEZ ™ EEE FIG. 1. (Color online The contour plots the
3F 08 3r 0% evolution of theN=2 solitons with(a) 7;: 7
N [ 0% N o =1:3 and(b) 7,:7,=1:2. Theinsets show the
2r 2r ' | initial soliton profiles atz=0. In all cases,7;
2 . i +7=2. The straight lines mark the propagation
1 % 1 1F 1/V\ distances shown in Fig. 3.
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dU(zt)  FPU(zY) of such a difference in the soliton profiles, the soliton energy,
= T 7 Uz bPu(zh =0, (1) defined as
WhereL_J(z,t) is the pul_se envelope. According to _the results sz U(z,0)|d,
of the inverse scattering transforf0], this equation pos-

sesses exact solutions describing the interactioiN @oli- remains the same for the full set of the=2 soliton
tons, which are characterized by a set of complex variableg Ut : _ _ : .

) tions—i.e.P=8 f + n,=2 and arbit tiag,/ n,.
{A;,C}, i=1,2,...N. The complex)\; and C; are the olutions—i.e.p=8 for ,+ ,=2 and arbitrary ratioy/ »,
“poles” and “residues” of the corresponding scattering data IIl. SOLITON SQUEEZING
[20]. In particular, such solutions describe the so-called

N-soliton bound stategalso called “breather$”when all ; A !
solitons have vanishing velocities at infinity, and their inter-{0NS May have different initial profiles when we change the

action leads to the formation of a spatially localized but"@l0 71/ 7, we apply theback-propagation methofl5] to

time-periodic state. The full set of such solutions for e calculate the quantum fluctuations of a full set of e2
=2 soliton bound states can be written[ad,25, soliton solutions. To evaluate the quantum fluctuations

around the bound solitons, we replace the classical function
(m+ 1) A(z,t)ezwzZ ) U(z,t) in Eqg. (1) by the quantum-field operator variable,
—_— 1 ~
|70 = 71| B(z,t) ’ @ U(z,1), which satisfies the equal-coordinate bosonic commu-

tation relations. Next, we substitute the expansidnU,

+{into Eq.(1) to linearize it around the classical solutibig
M P for the soliton containing a large number of photons. Then
A(z,t) = cosh27,t) + == cosh2n;t)e? 2777, (3) e calculate the quantum uncertainty of the output field by
n back-propagating the output field to the input field with the
assumption that the statistics of the input quantum-field op-

After knowing that the general solution for tiN=2 soli-

U(Z,t) = 4771

where

(7 + m)° 4m 2 erators obey the Poi distribution. | icul lcu-
B(zt) = coshi2( 1, — n)Z] + cod?2 y the Poisson distribution. In particular, we calcu
@ (72— m)? N2(m, = 2] (72— m)? 1207, late the squeezing ratio, defined below, of the output field
based on the homodyne detection sch 21,
- 2] + costi2(n, + ,)2]. (@ y €ae21]
The two free parameteng, and 7, are the imaginary parts of (L) = w, (5)
the poles in the scattering data—i.&;=iz—and the resi- vaif(f  (1)[G(0,1))]
dues are related to the poles by the relation where valr-] stands for the variance arfg(t) is the normal-
HN (i + 1) ized classical pulse solution in the output with an adjustable
2ol R phase shift,
i HN | _ ) .
e |7 Uo(L, )€’
. )= —dtle
When 7;: 7,=1:3, thesoliton solution az=0 has a specific, \/f dtjU(L,b)[2
sech-like single-hump initial profile, - o

which acts as a local oscillator. The optimahinimum)
u@.h = m' value of the squeezing ratig(z) can be chosen by varying
the parameted. When =0, the in-phase quadrature compo-
as shown in the inset of Fig(d). However, when the ratio of nent is detected, and wheix 7/ 2, the out-of-phase quadra-
n1/ 1, becomes larger than 1/3, the initial profile of tNe  ture component is detected.
=2 soliton solution becomes double humped, as shown in the Based on the formulation above, now we calculate the
inset of Fig. 1b) for the special case af;: 7,=1:2. Inspite  optimal quadrature squeezing ratios for a full set of khe
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squeezing ratio of thBl=2 soliton state changes periodically
due to the oscillating behavior of the breather, with the pe-
riod of theN=2 soliton[24],

a

- (72+ m) (2= )

(6)

Zp

However, if we compare the optimal squeezing ratios be-
tween theN=2 solitons with different ratiosy,/ 7,, we find
that solitons with largew,/ 7, are more squeezed, even all of
them have the same energy.

The reason that &l=2 soliton with a largern,/ 7, gets
more squeezed can be inducted from the comparison of the
optimal squeezing ratio with that of tié=1 soliton. When
the propagation distance is large enoughyond the propa-
gation range shown in the Fig),2here is a oscillating tail in
the optimal squeezing ratio of ti¢=1 soliton coming form
the continuum part of the noise due to the use of the same
pulse profile as the local oscillator. But basically the optimal

FIG. 2. (Color onling Optimal squeezing ratio vs propagation squeezing ratio of the fundamental soliton increases mono-
distance for theN=2 solitons with different values of the ratio of chromatically along the propagation distance due to the sta-
m/ 772, for ;1 +77,=2. The dashed line shows the optimal squeezingtionary characteristic of the pulses. On the contrary, the os-

ratio curve for the case of thd=1 soliton.

cillation nature ofN=2 solitons prevent the increase of the
optimal squeezing ratio after a certain degree. Sinbe=2

=2 soliton bound states in Fig. 2. Compared to the optimakoliton with larger ratio ofyp,/ 7, has a longer collision pe-

squeezing ratio of the fundamental solit@@ashed ling all

riod, as shown in Eq6), it is this longer collision period that

N=2 solitons get more squeezed in the beginning of theimakes the pulse to behave more stationary and more

propagation because they contain more enefi,22.
Moreover, after a certain propagation distance, the optimal

squeezed.
In addition, in Fig. 3 we present the results of our calcu-
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FIG. 3. (Color online Correlation spectra in the frequency domain for2 soliton bound state$a)—(c) An initial single-hump soliton
n1: m,=1:3 at diferent propagation distances 3.1, 3.9, and 4.7, respectieghff) An initial double-hump solitory;: 7,=1:2 at diferent

propagation distances 2.3, 3.5, and 4.7, respectively. Insets show the soliton Fourier components. In &l €gses,
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lations of the frequency-domain photon-number correlatiorprofile when the two solitons merge. And again, the correla-
spectra for theN=2 solitons with two valuesy,:7,=1:3  tion spectrum for a double-hump soliton returns to the same
and 7,: 7,=1:2. Thecorrelation coefficients, which are de- pattern after a collision period, as shown in Figéd)3and
fined through the normally ordered covariance 3(f). For double-hump solitons, there are significant differ-
ences in their correlation spectra patterns; see, e.g., F@s. 3

C. = (ARAR:) 7) and 3d). If we only look at the center part of the correlation
e JARZARZ spectra where the soliton Fourier components are dominated,
!

we can clearly see that there are strongly anticorrelated pat-
are calculated by means of the back-propagation methotérns for a double-hump soliton than in the case of a single-
[15]. In Eq. (7), Ay is the photon-number fluctuation in the hump soliton. This may be the reason that makes a double-
ith slot Aw; in the frequency domain, hump N=2 soliton states get more squeezed than a single-
hump one, although there are also some strongly
anticorrelated patterns for a single-hump soliton in the far
range where the soliton Fourier component almost vanish.
R And only stronglypositive correlated patterns occur in the
whereAU(z, w) is the perturbation of the quantum-field op- center parts of both solitons, when tNe=2 solitons merge
erator,U(z, ) is the classical unperturbed solution, and theinto a single pulse. Consequently, the optimal squeezing ratio
integral is taken over the given spectral slot. of N=2 solitons degrades.

First, we reproduce the results for the photon-number cor-
relation spectra of the initisdechlike single-hump solitons
at »,: 7,=1:3, reported earlier by Schmict al.[14,23. A We have demonstrated that a two-soliton bound state gets
cross pattern of the anti correlated components, correspondiore squeezed when it has a double-hump initial profile and
ing to the value<;; =-1, occurs when the solitons merge, asthis effect is associated with a longer soliton collision period.
shown in Fig. 8b). This is the reason why an efficient num- We also study the photon-number correlation spectra of the
ber squeezing of the NLSE solitons can be produced byN=2 solitons, which reveal the anticorrelated patterns which
spectral filtering that removes the noisy spectral componentsiake the soliton to get more squeezed. Since such double-
[12]. In between, the photon-number correlation spectrdiump two-soliton states have been generated in experiment,
change periodically as the classical soliton profiles Figswe do expect that our theoretical predictions can be readily
3(a)-3(c). It must be noted that there are some correlatedrerified experimentally by generating strongly squeezed
patterns outside the center part of the solitons, even thougstates for quantum information process and quantum compu-
the amplitude of the Fourier components there almost vantation.
ishing. These correlated components in the far fringes come

AR = f d{U(z, 0)AUT(z,0) + U* (2, 0)AU(Z, )],
Awj

IV. CONCLUSIONS

from the breathering dynamics of tiN=2 solitons.

Now we turn to the case of an initially double-hump pro-
file n,:7,=1:2 aspresented in Figs. (8)-3(f). As can be
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