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We study quantum correlations and quantum noise in soliton collisions described by a general two-soliton
solution of the nonlinear Schrödinger equation by using the back-propagation method. Our results include the
standard case of asech-shaped initial pulse analyzed earlier. We reveal that double-hump initial pulses can get
more squeezed and the squeezing ratio enhancement is due to the long collision period in which the pulses are
more stationary. These results offer promising possibilities of using higher-order solitons to generate strongly
squeezed states for the quantum information process and quantum computation.
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I. INTRODUCTION

Light squeezing is an important physical concept that con-
tinues to attract attention of researchers due to its potential
for implementing quantum information processing and quan-
tum computing. As an alternative to single-photon schemes,
demonstration of the Einstein, Podolsky, and RosensEPRd
paradox and quantum teleportation with continuous variables
has been realized experimentally by using the entanglement
from squeezed statesf1,2g. Moreover, experimental progress
in the study of various quantum information processings
with squeezed states generated from optical fibers has re-
cently been reportedf3–6g. To increase the entanglement fi-
delity of continuous variables, enhancement of the squeezing
effect becomes very vital.

Original proposals to generate squeezed states from opti-
cal fibers are based on the use of the fundamental solitons
supported by the Kerr nonlinearity of silica glass. Temporal
spulsed solitons in optical fibers are described by the nonlin-
ear Schrödinger equationsNLSEd that can exhibit
quadrature-field squeezingf7–11g, as well as amplitude
squeezingf12,13g, and both intrapulse and interpulse corre-
lations f14g. Besides the exact quantum soliton NLSE solu-
tions constructed by using the Bethe ansatzf10g, the quan-
tum properties of temporal solitons are well described by the
linearization approachf11g for an average photon number as
high as 109. Based on this linearization approach, many dif-
ferent numerical methods have been developed during the
past two decades in order to study the quantum noise asso-
ciated with nonlinear pulse propagation, including the
positive-P representationf7,8g, back-propagation method
f15g, and cumulant expansion techniquef16g.

Experimentally, the soliton squeezing from a Sagnac fiber
interferometer, 1.7 dB below the shot noise, was first ob-
served in 1991 by Rosenbluh and Shelbyf17g. Since that,
larger quadrature squeezing from fibers has been obtained
with a gigahertz erbium-doped fiber lasers that allow one to
suppress the guided acoustic-wave Brillouin scattering, and
6.1 dB noise reduction below the shot noise has been re-
portedf18g. As an attempt to enhance the soliton squeezing
effect, one may increase the energy of an optical soliton en-
hancing the importance of nonlinear effects and, employing

this idea, 7.1-dB photon-number squeezing has been demon-
strated by using spectral filtersf19g.

However, it is known that the basic model of the pulse
propagation in optical fibers described by the NLSE pos-
sesses more generalN-soliton solutions which can be ob-
tained, for example, by applying the inverse scattering trans-
form f20g. As was demonstrated, such higher-ordersN
=2,3, . . .d solitons can be more squeezed since they contain
N2 times the energy than the fundamental solitonf14,21,22g;
as an example, up to 8.4 dB enhancement was predicted for
the N=2 soliton statesf23g.

It is important to mention that all previous studies of the
soliton quantum noise and quantum squeezing of higher-
order solitons have employed a very special case of two-
soliton states generated by a simple sech-like input pulse.
However, a general NLSE solution describing theN-soliton
state is characterized byN free parameters which can be
controlled independently. In this paper, we develop the
theory of quantum noise and quantum squeezing in the con-
text of the multisoliton states and apply it to study squeezing
of the generalN-soliton bound states of the NLSE. In par-
ticular, we reveal that the conventional sech-like single-
hump pulses are not the most suitable pulses for generating
highly squeezed states and, using the case of the general
two-parameter solution forN=2 solitons as an example, we
show that an input double-hump soliton is better for gener-
ating strongly squeezed states, even such solitons having the
same energy as the single-hump pulses. The enhancement of
the squeezing effect is explained by the long collision period
of a double-hump soliton; consequently, the pulse profile is
more stationary for getting squeezed. Since these double-
hump solitons have also been generated in fiber laser sys-
tems, more strongly squeezed states from optical fibers are
expected to be realized with the current technology.

II. TWO-SOLITON BOUND STATES

To describe the pulses propagating in optical fibers with
the anomalous dispersion and Kerr-type nonlinearity, one
employs the NLSE model written for the normalized vari-
ablesz and t,
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]Usz,td

]z
+

]2Usz,td
]t2

+ uUsz,tdu2Usz,td = 0, s1d

whereUsz,td is the pulse envelope. According to the results
of the inverse scattering transformf20g, this equation pos-
sesses exact solutions describing the interaction ofN soli-
tons, which are characterized by a set of complex variables
hl j ,Cjj, j =1,2, . . . ,N. The complex l j and Cj are the
“poles” and “residues” of the corresponding scattering data
f20g. In particular, such solutions describe the so-called
N-soliton bound statessalso called “breathers”d when all
solitons have vanishing velocities at infinity, and their inter-
action leads to the formation of a spatially localized but
time-periodic state. The full set of such solutions for theN
=2 soliton bound states can be written asf24,25g,

Usz,td = 4h1
sh1 + h2d
uh2 − h1u

Asz,td
Bsz,td

e2ih1
2z, s2d

where

Asz,td = coshs2h2td +
h2

h1
coshs2h1tde2ish2

2−h1
2dz, s3d

Bsz,td =
sh1 + h2d2

sh2 − h1d2 coshf2sh2 − h1dzg +
4h1

sh2 − h1d2 cosf2sh2
2

− h1
2dzg + coshf2sh1 + h2dzg. s4d

The two free parametersh1 andh2 are the imaginary parts of
the poles in the scattering data—i.e.,l j = ih j—and the resi-
dues are related to the poles by the relation

Cj
2 =

pk=1

N
sh j + hkd

pk=1,kÞ j

N
uh j − hku

.

Whenh1:h2=1:3, thesoliton solution atz=0 has a specific,
sech-like single-hump initial profile,

Us0,td =
2

sechstd
,

as shown in the inset of Fig. 1sad. However, when the ratio of
h1/h2 becomes larger than 1/3, the initial profile of theN
=2 soliton solution becomes double humped, as shown in the
inset of Fig. 1sbd for the special case ofh1:h2=1:2. Inspite

of such a difference in the soliton profiles, the soliton energy,
defined as

P =E uUsz,tdudt2,

remains the same for the full set of theN=2 soliton
solutions—i.e.,P=8 for h1+h2=2 and arbitrary ratioh1/h2.

III. SOLITON SQUEEZING

After knowing that the general solution for theN=2 soli-
tons may have different initial profiles when we change the
ratio h1/h2, we apply theback-propagation methodf15g to
calculate the quantum fluctuations of a full set of theN=2
soliton solutions. To evaluate the quantum fluctuations
around the bound solitons, we replace the classical function
Usz,td in Eq. s1d by the quantum-field operator variable,

Ûsz,td, which satisfies the equal-coordinate bosonic commu-

tation relations. Next, we substitute the expansionÛ=U0
+ û into Eq.s1d to linearize it around the classical solutionU0
for the soliton containing a large number of photons. Then
we calculate the quantum uncertainty of the output field by
back-propagating the output field to the input field with the
assumption that the statistics of the input quantum-field op-
erators obey the Poisson distribution. In particular, we calcu-
late the squeezing ratio, defined below, of the output field
based on the homodyne detection schemef26,27g,

RsLd ;
varfkfLstduûsL,tdlg
varfkfLstduûs0,tdlg

, s5d

where varf·g stands for the variance andfLstd is the normal-
ized classical pulse solution in the output with an adjustable
phase shift,

fLstd =
U0sL,tdeiu

ÎE
−`

+`

dtuU0sL,tdu2
,

which acts as a local oscillator. The optimalsminimumd
value of the squeezing ratioRszd can be chosen by varying
the parameteru. Whenu=0, the in-phase quadrature compo-
nent is detected, and whenu=p /2, the out-of-phase quadra-
ture component is detected.

Based on the formulation above, now we calculate the
optimal quadrature squeezing ratios for a full set of theN

FIG. 1. sColor onlined The contour plots the
evolution of theN=2 solitons with sad h1:h2

=1:3 andsbd h1:h2=1:2. Theinsets show the
initial soliton profiles atz=0. In all cases,h1

+h=2. The straight lines mark the propagation
distances shown in Fig. 3.
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=2 soliton bound states in Fig. 2. Compared to the optimal
squeezing ratio of the fundamental solitonsdashed lined, all
N=2 solitons get more squeezed in the beginning of their
propagation because they contain more energyf14,22g.
Moreover, after a certain propagation distance, the optimal

squeezing ratio of theN=2 soliton state changes periodically
due to the oscillating behavior of the breather, with the pe-
riod of theN=2 solitonf24g,

Zp =
p

sh2 + h1dsh2 − h1d
. s6d

However, if we compare the optimal squeezing ratios be-
tween theN=2 solitons with different ratiosh1/h2, we find
that solitons with largerh1/h2 are more squeezed, even all of
them have the same energy.

The reason that aN=2 soliton with a largerh1/h2 gets
more squeezed can be inducted from the comparison of the
optimal squeezing ratio with that of theN=1 soliton. When
the propagation distance is large enoughsbeyond the propa-
gation range shown in the Fig. 2d, there is a oscillating tail in
the optimal squeezing ratio of theN=1 soliton coming form
the continuum part of the noise due to the use of the same
pulse profile as the local oscillator. But basically the optimal
squeezing ratio of the fundamental soliton increases mono-
chromatically along the propagation distance due to the sta-
tionary characteristic of the pulses. On the contrary, the os-
cillation nature ofN=2 solitons prevent the increase of the
optimal squeezing ratio after a certain degree. Since aN=2
soliton with larger ratio ofh1/h2 has a longer collision pe-
riod, as shown in Eq.s6d, it is this longer collision period that
makes the pulse to behave more stationary and more
squeezed.

In addition, in Fig. 3 we present the results of our calcu-

FIG. 2. sColor onlined Optimal squeezing ratio vs propagation
distance for theN=2 solitons with different values of the ratio of
h1/h2, for h1+h2=2. The dashed line shows the optimal squeezing
ratio curve for the case of theN=1 soliton.

FIG. 3. sColor onlined Correlation spectra in the frequency domain forN=2 soliton bound states.sad–scd An initial single-hump soliton
h1:h2=1:3 at different propagation distances 3.1, 3.9, and 4.7, respectively.sdd–sfd An initial double-hump solitonh1:h2=1:2 at different
propagation distances 2.3, 3.5, and 4.7, respectively. Insets show the soliton Fourier components. In all cases,h1+h=2.
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lations of the frequency-domain photon-number correlation
spectra for theN=2 solitons with two values,h1:h2=1:3
andh1:h2=1:2. Thecorrelation coefficients, which are de-
fined through the normally ordered covariance

Cij ;
k:Dn̂iDn̂j:l
ÎDn̂i

2Dn̂j
2

, s7d

are calculated by means of the back-propagation method
f15g. In Eq. s7d, Dn̂j is the photon-number fluctuation in the
ith slot Dvi in the frequency domain,

Dn̂i =E
Dvi

dtfUsz,vdDÛ†sz,vd + U*sz,vdDÛsz,vdg,

whereDÛsz,vd is the perturbation of the quantum-field op-
erator,Usz,vd is the classical unperturbed solution, and the
integral is taken over the given spectral slot.

First, we reproduce the results for the photon-number cor-
relation spectra of the initialsech-like single-hump solitons
at h1:h2=1:3, reported earlier by Schmidtet al. f14,23g. A
cross pattern of the anti correlated components, correspond-
ing to the valuesCij =−1, occurs when the solitons merge, as
shown in Fig. 3sbd. This is the reason why an efficient num-
ber squeezing of the NLSE solitons can be produced by
spectral filtering that removes the noisy spectral components
f12g. In between, the photon-number correlation spectra
change periodically as the classical soliton profiles Figs.
3sad–3scd. It must be noted that there are some correlated
patterns outside the center part of the solitons, even though
the amplitude of the Fourier components there almost van-
ishing. These correlated components in the far fringes come
from the breathering dynamics of theN=2 solitons.

Now we turn to the case of an initially double-hump pro-
file h1:h2=1:2 aspresented in Figs. 3sdd–3sfd. As can be
seen in Figs. 3sbd and 3sed, the spectra for a double-hump
pulse contains the same correlation patterns as that for a
single-hump soliton when all of them merge, atz=3.9, for
h1/h2=1:3, andz=3.7, for h1/h2=1:2. That is what one
expects for both of them having the same energy and same

profile when the two solitons merge. And again, the correla-
tion spectrum for a double-hump soliton returns to the same
pattern after a collision period, as shown in Figs. 3sdd and
3sfd. For double-hump solitons, there are significant differ-
ences in their correlation spectra patterns; see, e.g., Figs. 3sad
and 3sdd. If we only look at the center part of the correlation
spectra where the soliton Fourier components are dominated,
we can clearly see that there are strongly anticorrelated pat-
terns for a double-hump soliton than in the case of a single-
hump soliton. This may be the reason that makes a double-
hump N=2 soliton states get more squeezed than a single-
hump one, although there are also some strongly
anticorrelated patterns for a single-hump soliton in the far
range where the soliton Fourier component almost vanish.
And only stronglypositivecorrelated patterns occur in the
center parts of both solitons, when theN=2 solitons merge
into a single pulse. Consequently, the optimal squeezing ratio
of N=2 solitons degrades.

IV. CONCLUSIONS

We have demonstrated that a two-soliton bound state gets
more squeezed when it has a double-hump initial profile and
this effect is associated with a longer soliton collision period.
We also study the photon-number correlation spectra of the
N=2 solitons, which reveal the anticorrelated patterns which
make the soliton to get more squeezed. Since such double-
hump two-soliton states have been generated in experiment,
we do expect that our theoretical predictions can be readily
verified experimentally by generating strongly squeezed
states for quantum information process and quantum compu-
tation.
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