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Digital Secure-Communication Using Robust
Hyper-Chaotic Systems

Shih-Liang Chen, Shu-Ming Chang, TingTing Hwang, and Wen-Wei Lin

Abstract— In this paper, we propose a robust hyper-
chaotic system that is practically serviceable in digital secure-
communication. The system consists of many coupled robust
logistic maps that form a hyper-chaotic system. The system has
a very large parameter space which grows along with the system
precision. Moreover, it has higher degree of complexity than
traditional discrete-time secure-communication systems because
the former uses multiple coupled chaotic maps rather than a
single one. Hence, map re-construction of the system is not
feasible by current computation technology. The complexity
is also flexible depending upon application requirements. The
statistical analysis of the system shows that the system achieves
very high secure level. Moreover, the system with high precision
can be easily realized by low cost hardware.

Index Terms— Chaotic encryption, Digital communication, Lo-
gistic Map.

I. INTRODUCTION

THE chaotic orbit generated by a nonlinear system is
irregular, aperiodic, unpredictable and has sensitive de-

pendence on initial conditions. Together with the development
of chaotic synchronization between two nonlinear systems [1]–
[3], chaotic system has been studied to be used for secure
communication [4], [5].

In a chaotic secure-communication, the chaotic signals are
used as masking streams to carry information which can
be recovered by chaotic synchronization behavior between
transmitter and receiver. Pecora and Carrol [6] have shown
that a chaotic system (drive system) can be synchronized with
a separate chaotic system (response system) provided that the
conditional Lyapunov exponents of the difference equations
between drive and response systems are all negative.

Most of previous work [7] on chaotic secure-communication
was mainly developed for analog signals. Only a limited
number of researches focus on the secure communication
of digital signals. Among others, Matthews [8] proposed the
first secure-communication system based on the logistic map
implemented on a computer. At the same time, Wheeler [9]
commented Matthews’ system by saying that his system can
indeed generate unpredictable sequences. However, with short
precision, the system will have a small number of total states.
Hence, it can be easily attacked by enumerating the states.
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Later on, Fery [10] introduced a system using the left-circulate
function and feed-back loop with parameters to enhance the
strength of security. Unfortunately, Chambers [11] showed that
the system can be readily attacked under the assumption of
“chosen plaintext” .

On the other hand, many researches [12], [13] focus on
attacking chaotic secure-communication. Sobhy [12] attacked
the chaotic secure system by plotting the map with output
sequences. Because of the unique map pattern of each single-
chaotic system, it is easy to distinguish the chaotic systems
and to re-construct the equations.

To solve this problem, a lot of work focusing on enhancing
the complexity of output sequences has been proposed. It
can be classified into three major types. First, in order to
have unpredictable initials, another chaotic map is used to
generate the initials to a chaotic map [14]. Second, multiple
chaotic maps are used. At any time, application of a specific
map is selected by a predefined order [15] or a user defined
mechanism [16]. The third type is a combination of the two
types mentioned above [5]. It should be noted that these three
methods essentially use still a one-dimensional system with
only one positive Lyapunov exponent. This feature limits the
complexity of the chaotic dynamics.

Yet, one more issue is raised by Álvarez [13] who pointed
out that the usable region of parameter value is a weakness
of the discrete-time chaos synchronization system. The chaotic
behavior of the system is dependent on the parameters. Unfor-
tunately, all parameters are not equally strong. Some of them
will result in window. Note that here a window is defined as the
chaotic orbit of a nonlinear system visualized as periodic on
computers (see e.g. [17, p. 356]). The remaining parameter
space may easily be attacked by brute-force enumeration
method because the parameter space is so small.

From our review of previous work, we derive that to effec-
tively use chaotic maps in the digital encryption, a system must
meet the following three criteria. First, the length of digital
precision must be long enough to prevent the system from
being attacked by state enumeration. Second, the parameter
space must be large enough for practical use. Finally, the re-
construction of the chaotic system must be infeasible using
current computation technology.

To solve these problems, we propose a Robust Hyper-
Chaotic Encryption-Decryption System (RHCEDS) for secure
communication. RHCEDS consists of two Robust Hyper-
Chaotic Systems (RHCS) for transmitter and receiver, respec-
tively. An RHCS is constructed by coupling robust logistic
chaotic maps, one carrier map and several hidden maps, so
that it has more than one positive Lyapunov exponents. Thus,
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the RHCS has higher degree of complexity than traditional
discrete-time secure-communication systems because the for-
mer uses multiple coupled chaotic maps rather than a single
one [12]. The new proposed system RHCEDS has a large
parameter space which grows along with the system precision.
Hence, the re-construction of our system is not feasible by
current computation technology. Furthermore, the complexity
is also flexible depending upon application requirements. The
statistical analysis of RHCS shows that the system achieves
very high secure level. Moreover, the system with high preci-
sion can be easily realized by low cost hardware.

The rest of the paper is organized as follows. In Section 2,
the general secure-communication scheme is shown. In Sec-
tion 3, our target system RHCS and Encryption-Decryption
scheme RHCEDS will be presented. In Section 4, the crypt-
analysis will show that our system is practically serviceable in
secure communication. In Section 5, we present hardware im-
plementation to demonstrate our RHCEDS. Finally concluding
remarks are given in Section 6.

II. GENERAL SECURE-COMMUNICATION SCHEME

A general secure-communication scheme is shown in Fig-
ure II. In this scheme, information is transmitted by Trans-
mitter through channels after Source Encoding, Encryption
and Channel Encoding & Modulation. Receiver recovers the
information by reversing these steps.

In this research, we will develop a cryptograph for digital
data Encryption/Decryption. The input is from the step of
Source Encoding and the output is sent to the step of Channel
Encoding & Modulation.

III. ROBUST HYPER-CHAOTIC ENCRYPTION-DECRYPTION

SYSTEM

The crypto system is defined as the communication be-
tween Encryption layer and Decryption layer in a general
secure-communication scheme. An architecture of crypto sys-
tem is shown in Figure 2. Given an initial vector x(0) =
[x(0)

1 , . . . , x
(0)
n ]�, and parameters including an n-by-n sto-

chastic matrix C = [cij ] and a chaotic parameter vector
r = [γ1, . . . , γn]�, where x

(0)
i ∈ {

(0, 1)\{ 1
2}

}
, γi ≥ 4 for

i = 1, . . . , n and 0 < cij < 1 for i, j = 1, . . . , n., RHCEDS is
constructed by two RHCSs, named by F and G, respectively.
At the encryption end, masking sequence z (i) is generated by
the system F (r,x) and used for encrypting the plaintext p (i).
At the decryption end, receiver recovers the plaintext from
ciphertext c(i) by removing the mask z̃ (i) generated by the
system G(r,y).

A. Robust Logistic Map

Before introducing RHCS, we present a robust logistic map
which is developed from a classical logistic map.

A classical logistic map, L, is defined by

x(i + 1) = L(γ, x(i)) = γx(i) (1 − x(i)) , x(i) ∈ [0, 1].
(1)

where γ is a parameter and 0 ≤ γ ≤ 4. In equation (1),
when 3.57 < γ ≤ 4, the generated sequence is non-periodic
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Fig. 2. The architecture of RHCEDS.
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Fig. 3. The mapping of x vs. L(γ, x) with γ = 3.62 and 4.

and non-converging. However, the parameters γ that result in
windows of equation (1), for 3.57 < γ ≤ 4, is open and dense.
Moreover, the chaotic attractor is not distributed within the
range of 0 to 1 and its length is less than one. In this case, γ is
easily detected by measuring the length of chaotic attractors.
For example, in Figure 3(a), when γ = 3.62, the length of
attractor is 0.594. The only useful case of equation (1) is when
γ = 4 because its chaotic attractor is uniformly distributed
in the range of 0 to 1 as shown in Figure 3(b). Therefore,
selections of γ values are limited.

In order to increase the parameter space and to have
a uniformly distributed map, we propose a robust logistic
function as follows:

L(γ, x) =

{
γx(1 − x) (mod 1), x ∈ Iext,

γx(1−x) (mod 1)
γ
4 (mod 1) , x ∈ Iint,

(2)

where Iext ∈ (0, 1) \ Iint, Iint = [η1, η2], η1 = 1
2 −

√
1
4 − [ γ

4 ]

γ

and η2 = 1
2 +

√
1
4 − [ γ

4 ]

γ in which [w] is the greatest integer
less than or equal w. A robust logistic map is then defined by
x(i + 1) = L(γ, x(i)).

By this modification, we extend the γ range to a value more
than 4. When L(γ, x) is greater than 1, the first equation in
equation (2) is to shift the map value greater than 1 to the range
of 0 to 1. Figure 4 shows that modular one operation keeps
x invariant in [0,1]. However, when x in the range I int, the
mapping is not uniformly distributed, and results in window
of the map. Therefore, when L(γ, x) is less than 1, the second
equation in equation (2) is to scale the value to the range of
0 to 1. With both modular and scaling operations, Figure 5
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Fig. 1. General secure-communication scheme.
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(a) r = 7 (b) r = 31

Fig. 4. The mapping without normalization of x vs. L(γ, x) with γ = 7
and 31.
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Fig. 5. The mapping with normalization of x vs. L(γ, x) with γ = 7 and
31.

shows that two maps are uniformly distributed in the range of
0 to 1 with piecewise nonlinear map when γ = 7 and 31.

To understand if there are windows in our robust logistic
map when r ≥ 4, we analyze the map by numerical methods.
First, we compute the Lyapunov exponents by the method
by [18]. In Figure 6, Lyapunov exponents of equation (2) are
computed from γ = 0 to 16. It shows when γ ≥ 4, Lyapunov
exponents are all positive. Next, we compute the bifurcation
diagram of L(γ, x) from γ = 0 to 16. The result is shown
in Figure 7. It shows that, when γ ≥ 4, L(γ, x) is uniformly
distributed in the range of 0 to 1 and there is no window.
These numerical results indicate that the robust logistic map
is indeed chaotic with large parameter space when γ ≥ 4.
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Fig. 6. Lyapunov exponents vs. γ for γ ∈ [0, 16].

Fig. 7. Bifurcation diagram of L(γ, x) for γ ∈ [0, 16].

B. Construction of Robust Hyper-Chaotic System

Our robust hyper-chaotic system F is defined by

x(i) = F (r,x(i−1)) := CL(r,x(i−1)), (3)

where x(i) = [x(i)
1 , . . . , x

(i)
n ]�, L(r,x(i−1)) =[

L(γ1, x
(i−1)
1 ), . . . , L(γn, x

(i−1)
n )

]�
, in which L is the
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robust logistic map defined in equation (2), and

C =

⎡
⎢⎢⎢⎣

c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn

⎤
⎥⎥⎥⎦

is a positive stochastic coupling matrix with all elements 0 <
cij < 1 and

∑
j

cij = 1 for i, j = 1, . . . , n. The masking

sequence is defined by

z(i) = x
(i)
1 . (4)

The system G is also an RHCS defined by

y(i) = G(r,y(i−1)) := CL(r,y(i−1)), (5)

where y(i) = [y(i)
1 , . . . , y

(i)
n ]� for i > 0. The unmasking

sequence is defined by

z̃(i) = y
(i)
1 . (6)

Note that F and G are hyper-chaotic systems in x(i) and y(i),
respectively, with the same parameters of C and r.

RHCS (F or G) is constructed by n-coupled robust logistic
maps and each robust logistic map in the system has its own
positive Lyapunov exponent. To understand if the dimension of
the whole system in terms of the number of positive Lyapunov
exponents is indeed increased, we analyze the RHCS by
numerical method. Since the higher dimension of the system,
the more positive Lyapunov exponents the RHCS has. Hence,
we expect that the behavior of the output masking sequence
(z(i)) is more complex. The number of coupled robust logistic
maps being set to 2 (i.e., n = 2) is taken as our example. In
this case, there are two parameters γ1 and γ2 for two robust
logistic maps. In Figure 8(a), two Lyapunov exponents of 2-
coupled robust logistic map are plotted for γ1 = 0 to 16 with
the scale of 1

30 , and a fixed γ2 = 29.6668. The result shows
when γ1 ≥ 4, two Lyapunov exponents are both positive, that
is, the system is hyper-chaotic without window. Similarly, the
number of Lyapunov exponents for n = 3, 4 and 10, where
values of γi, 1 < i ≤ n are fixed, and the range of γ1 is from 0
to 16, are shown in Figure 8(b)(c)(d), respectively. We can see
that the number of positive Lyapunov exponents of the system
are increasing without window as n increased, provided that
all γi in the system are larger than 4.

In order to encrypt and decrypt information correctly, the
masking sequence z(i) must be identically synchronized to
the unmasking sequence z̃ (i). We first randomly create an
initial vector x(0) of transmitter, and then send it to receiver
by replacing its initial vector y(0) by x(0). After this step, it
holds that z(i) = z̃(i) for i > 0. Then RHCEDS is ready for
information transmission. On the other hand, if the bandwidth
of the channel is just only one component of x (0), then n
steps are required to send n elements of the initial vector to
receiver. Therefore, after n steps, the vector y (0) will be equal
to x(0).
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Fig. 8. Lyapunov exponents vs. γ for n = 2, 3, 4 and 10.

C. Encryption & Decryption

In our secure communication system, RHCEDS, the mask-
ing sequence of system F will be used as a mask to encrypt
plaintext. In other words, the cryptograph system is similar to
an one-time-pad block cipher. In this case, the randomness of
the masking sequence directly affects the secure level of the
system. To enhance the randomness of the masking sequence,
the � most significant digits is hidden in the communication,
that is, these � digits are dropped and not used in the
encryption. The more hidden digits are used, the more difficult
to analyze the encrypted information. However, the increased
security is at the expense of more computing resource. In our
experiment result, hiding two-digits is found to have good
randomness, which is examined by a random number testing
package, NIST SP 800-22 [19].

In summary, our secure communication system, RHCEDS,
is implemented as follows.
In Transmitter:
We use m digits to represent all real numbers in the system
F including parameters r and C, and the initial vector x (0).
Given d = m−� ∈ N, for i ≥ 1, the plaintext p is decomposed
into a sequence of {p(i)} with the length of each p(i) equal to
d digits. The encryption process is as follow:

z(i) =
⌊
x

(i)
1

⌋
�
,

c(i) = z(i) ⊕ p(i),

where ⊕ is an XOR operation, and �x�� means dropping the
first � digits from x.
In Receiver:
In receiver, the decrypted sequence, p̃, is as follow:

z̃(i) =
⌊
y
(i)
1

⌋
�
,

p̃(i) = z̃(i) ⊕ c(i).

Since systems F and G have the same initial vector and z (i) =
z̃(i), we can correctly decode ciphertext, that is, p̃ = p.
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From the above descriptions, the properties of RHCEDS can
be summarized as follows:

• There are n2 selections of parameters to form r and C.
The large parameter space makes the attacking by brute-
force enumeration infeasible.

• For the same plaintext, the crypto system can generate
different ciphertexts with different initial vectors.

• In-complete carrier map is transmitted in the public
channel. Therefore, it is hard to re-construct the map even
under the assumption of “chosen plaintext” attack.

IV. CRYPTANALYSIS OF RHCDES

The cryptanalysis of our system will be based on an example
where the precision of a number is 48-bits, and the number
of coupled robust maps is 2. With n = 2, the masking stream
generator F is shown in equation (7).{

x
(i)
1 = c11L(γ1, x

(i−1)
1 ) + (1 − c11)L(γ2, x

(i−1)
2 ),

x
(i)
2 = (1 − c22)L(γ1, x

(i−1)
1 ) + c22L(γ2, x

(i−1)
2 ).

(7)

A. Parameter Space

Attackers may construct a chaotic map by identifying its
unique orbit if the key space is small. Therefore, the parameter
space must be large enough for practical use.

According to the bifurcation diagram in Figure 7 and
Lyaponov exponents in Figure 6, we found that our robust
logistic map has no windows when γ ≥ 4.

Therefore, we can judiciously choose a stochastic matrix
C and r to create an n-dimensional system with at least two
positive Lyapunov exponents. That is, the system (3) has no
window, which guarantees that there is no scruple by picking
the parameters to construct a hyper-chaotic system. Further-
more, the parameter space of the system (3) is large enough
for any practical application. For example, in equation (7),
there are four parameters c11, c22, γ1 and γ2 and the total
number of parameters that can be selected is 24×48 = 2192.
This parameter space is much larger than 2100 which is the
suggested size for parameter selection in [13].

Moreover, one important property of the parameter is worth
noticing. That is, the generated masking sequence is very
sensitive dependence on the parameters. Without this property,
attackers can easily find the relationship between parameters
and their corresponding masking sequences.

To show this property, an experiment is conducted. First, the
masking stream generator F shown in equation (7) is taken as
an example. Next, a set of C and r parameters are selected as
base to generate a base masking sequence Sbase. Then, 200
γ1 are generated by varying the least significant bits of base
γ1. With different γ1 and the same γ2 and C, 200 masking
sequences are generated where Sbase±d×2−48 , d = 1, . . . , 100
denote the masking sequences. Finally, we compute bit error
rate (BER) between Sbase and Sbase±d×2−48 . The result is
shown in Figure 9. It can be seen that the generated sequences
are indeed different even with a small change by 2× 2−48 in
one parameter.
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Fig. 9. BER between Sbase and Sbase±d×2−48 .

B. Re-construction

Attackers may plot the map by analyzing output sequences
of a chaotic map. Unrolling a system is a method to compute
the values of unknown parameters. In our system, for exam-
ple, when i = 1, equation (7) has five unknown variables,
γ1, γ2, c11, c22 and x

(1)
2 . Unrolling the system to i = 4, attack-

ers will have eight equations with additional three unknown
variables, x

(2)
2 , x

(3)
2 and x

(4)
2 . Totally, eight equations are given

to solve eight unknown variables. However, in RHCS, it is
infeasible for an attacker to re-construct the map by unrolling
because of the following two features of our system. First,
the masking sequence z (i) is an in-complete output sequence
of the system F . The most significant � digits are dropped,
that is, z(i) �= x

(i)
1 . If there are four x

(i)
1 in the equations,

each of z(i) drops j bits, the possible combinations of four
x

(i)
1 are (2j)4. Second, mapping function is computed using

the modular one operation in our robust logistic map. The
piecewise non-linear map is not an one-to-one mapping. Given
an output of L map, there are � γ

4 � × 2 possible inputs. There
are eight L maps need to be solved in this example. The
combination of solutions are (� γ

4 � × 2)8. Assuming the γ
is less than 2,048, and j is 8, the attackers in total need
to try (28)4 × 1, 0248 possible combinations of equations to
solve the unknown variables taking the above two features into
account. If we use a computer with 1 THz (Tera Hertz) CPU
to run 1012 cases per second, then for the above example, it
requires near one million years to re-construct the system F .
It is obvious that re-construction of RHCS is infeasible using
current computation technology.

C. Statistical Analysis

To test the randomness of the output sequence, SP800-
22 testing package [19] is used in our analysis process. The
masking sequence of the system F is

⌊
x

(i)
1

⌋
2

where the most

significant 2 digits of the x1
(i) are dropped. Each test will

produce a “p-values” from SP800-22 testing package. The
higher p-value (a minimal default value is recommended by
0.01), the more random the test case. The test is conducted
by fixing γ2, c11, c22 and varying γ1. Three γ1 are selected.
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Fig. 10. The data flow of the mask generator.

For each γ1, 100 sequences of 106 bits are fed to the testing
package. In Table I, the second to fourth columns show the
yield of different values of γ1. As suggested by SP800-22,
for each statistical test, the minimum pass rate of a well
random source is 0.96 out of 100 binary sequences. Obviously,
the result shows our generated output sequences are indeed
random.

TABLE I

THE SP800-22 TEST RESULTS WITH

γ2 = 1709.FFD3, c11 = 0.C8, c22 = 0.CE

γ1(HEX) 100.80 2d49.ff 7b63.3b

Frequency 1.00 0.99 1.00
Block Frequence 0.99 0.98 0.99
Cumulative-sums 1.00 0.99 1.00
Run 0.99 0.99 0.99
Long Runs of Ones 1.00 1.00 1.00
Rank 1.00 1.00 1.00
Spectral DFT 1.00 0.99 0.97
Non-overlapping Template 0.99 0.99 0.99
Overlapping Templates 0.99 0.99 0.98
Universal 0.98 0.98 0.99
Approximate Entropy 0.99 0.99 1.00
Random Excursions 0.99 0.98 0.98
Random Excursions Variant 0.99 0.99 1.00
Lempel Ziv Complexity 1.00 0.97 0.98
Serial 0.99 1.00 1.00

V. SYSTEM DEMONSTRATION

A. Architecture of Encryption System

To demonstrate the effectiveness of the system F , we
implement it in hardware. The configuration of the system
is selected as follow. The number of coupled robust logistic
maps is 2. All real numbers in the system is represented by
m = 12 digits and the number of hidden digits, � is 2. Then,
in hexadecimal representation (one digit is 4 bits), the system
operates in 49 bits (1 bit for sign bit). With 2 hidden digits, the
length of one masking stream is 40 bits. Hence, the plaintext
sequence will be divided into segments of length 40 bits.

The data flow of system F is shown in Figure 10. In this
flow, 8 multiplications are required to generate one mask,
z(i). Inputs including x

(i)
1 , x

(i)
2 , γ1, γ2, c11 and c22 to the

multiplication operations are 49 bits. sca1 and sca2 denotes

two scaling factors, 1
γ1
4 (mod 1)

and 1
γ2
4 (mod 1)

, respectively,

for normalization operation. η1 = 1
2 −

√
1
4 − [

γ1
4 ]

γ1
, η2 =

1
2 +

√
1
4 − [

γ1
4 ]

γ1
, η3 = 1

2−
√

1
4 − [

γ2
4 ]

γ2
and η3 = 1

2 +
√

1
4 − [

γ2
4 ]

γ2

denote the four conditions to determine if a modular or scaling
operation is to be performed. Since γ1 and γ2 are given by
user and remain no change during operation, η 1, η2, η3, η4,
sca1 and sca2 are all input vectors to the system. When
η1 < xi−1

1 < η2 (η3 < xi−1
2 < η4), sca1 (sca2) is selected to

scale the values of maps. Otherwise, constant 1 is multiplied.
Figure 11 shows the block diagram of system F in

hardware. For area and performance efficiency, a two-stage
pipelined multiplier is implemented. Hence, it requires 8
cycles to generate one mask. Besides the 49-bits two-stage
multiplier, the system has two 49-bits registers,“RegA” and
“RegB”, for temporary data storage and four add/subtracters.
Block “NEG” computes NEG(x) = 1 − x and block
“IntCheck” is used to check if the input is in I int or not. The
circuit is implemented in verilog format and synthesized with
TSMC .13um process. Table II shows the simulation result. In
this demonstration, the transmitter F achieves an encryption
rate of 500 M bits per second based on the simulation of gate
level netlist.

TABLE II

THE SIMULATION RESULT OF ENCRYPTION SYSTEM

Item Result

Multiplier Architecture Two-Stage Pipelined
Gate Count 20k
Cycles Per Mask 8
Mask Length 40 bits
Cycle Frequency 100 Mhz
Encrypted bits of plaintext per second 500M bits

B. Example

We use the following parameters to demonstrate the system
F with n = 2.

x
(0)
1 = 0.26e7bf70710c

x
(0)
2 = 0.3cebe4e04ecb

γ1 = 15.0000000000
γ2 = 23.0000000000
c11 = 0.fe0000000000
c22 = 0.fa0000000000

Table III shows encryption result of the plaintext “The
Digital Encryption.” The plaintext is encoded into ASCII code
format, and the data sequence will be encrypted by masking
sequence which is generated by F with above parameters. The
result also shows receiver can recover the plaintext with the
same parameters.
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RegA
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NEG IntCheck
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1 1

49 49

49 49

49

49

40

MUX MUX

MUXMUX

MUXMUX

MUX2−stage

Fig. 11. The architecture of encryption system.

TABLE III

THE ENCRYPTION EXAMPLE.

Plaintext:
The Digital Encryption.

Plaintext in ASCII Code:
546865004469676974616c00456e6372797074696f6e2e

Ciphertext:
5477bc5de59b7f735bac76c8a022ebaa4a763c2ed41b9d

Decrypted plaintext:
The Digital Encryption.

VI. CONCLUSION

We have proposed a Robust Hyper-Chaotic Encryption-
Decryption System composed of two RHCSs that is practi-
cally serviceable in digital secure-communication. An RHCS
consists of n-coupled robust logistic maps and has a large
parameter space which grows along with the system precision.
Because multiple coupled robust chaotic maps rather than
a single one are used, map re-construction of the RHCS
system is not feasible by current computation technology.
The result shows that the generated masking sequence has
good randomness for stream cipher. Hardware demonstration
shows that RHCS can be easily realized in hardware. With
a two-stage pipelined architecture, RHCS encrypts plaintext
at a rate of 500 M bps. In the future, optimization of the
hardware architecture for RHCS and real chip verification will
be studied.
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