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Abstract

Hyperspectral remote sensing is a powerful technique to identify the materials and

their composition in an area by exploiting the spectral diversity of the observed

hyperspectral data. The analysis of hyperspectral images obtained for the purpose

of mineral identification and quantification is considered in this thesis. The limited

spatial resolution of the sensor used for hyperspectral imaging and the presence of

noise in the measured hyperspectral data demand an effective hyperspectral unmixing

(HU) scheme to extract the underlying endmember signatures and the associated

abundance maps distributed over a scene of interest.

Existing HU algorithms are basically devised under either of the two famous un-

mixing criteria, namely Winter’s criterion and Craig’s criterion. However, the pres-

ence of additive Gaussian noise in the observations expands the actual data cloud

and as a consequence, the endmember estimates obtained by applying either Win-

ter’s or Craig’s criterion based algorithms to the noisy data may no longer be in

close proximity to the true endmember signatures. Hence, we propose two robust al-

gorithms, they are Winter’s criterion based robust alternating volume maximization

(RAVMAX) algorithm and Craig’s criterion based robust minimum volume enclosing

simplex (RMVES) algorithm. The robust algorithms account for the noise effects in

the observations by employing chance constraints, and employ the notion of alter-

nating optimization to handle the resulting non-convex optimization problems. In

RAVMAX algorithm, the subproblems involved in each alternating optimization turn

out to be convex problems and they can be effectively solved using available con-

ii



vex optimization solvers. On the other hand, the subproblems involved in RMVES

algorithm are non-convex and are hence dealt using available sequential quadratic

programming solvers.

The HU results can be completely interpretable, only when the number of sub-

stances (or endmembers) present in that area is given a priori, which however is

unknown in practice. Considering the linear mixing model, we propose a hyper-

spectral data geometry based approach for estimating the number of endmembers

by utilizing a successive endmember extraction algorithm (EEA). The approach is

fulfilled by two novel algorithms, namely geometry based estimation of number of

endmembers - convex hull (GENE-CH) algorithm and affine hull (GENE-AH) al-

gorithm. The GENE-CH and GENE-AH algorithms are based on the fact that all

the observed pixel vectors lie in the convex hull and affine hull of the endmember

signatures, respectively. The proposed GENE algorithms estimate the number of

endmembers by using the Neyman-Pearson hypothesis testing over the endmember

estimates provided by a successive EEA until the estimate of the number of endmem-

bers is obtained. Since the estimation accuracies of the proposed GENE algorithms

depend on the performance of the EEA used, a reliable, reproducible, and successive

EEA, called p-norm based pure pixel identification (TRI-P) algorithm is then pro-

posed. Monte-Carlo simulations and real data experiments on AVIRIS hyperspectral

data obtained over the Cuprite mining site, Nevada are performed to demonstrate

the efficacy of the proposed RAVMAX, RMVES, GENE, and TRI-P algorithms.

We believe that the proposed chance constrained robust algorithms for hyper-

spectral unmixing, and data geometry based algorithms for estimating the number

of endmembers, will provide a new dimension in analyzing hyperspectral data where

noise is always present.
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Chapter 1

Introduction

Hyperspectral Imaging (HI) is a crucial technique to identify the materials and their

composition in an area by exploiting the spectral diversity of the observed hyper-

spectral data. Areas in which HI is employed are diverse and they include mineral

identification [1], space object identification [2], analytical chemistry [3], retinal analy-

sis [4], and many others. In this thesis the focus is on the analysis of HI taken with

the purpose of mineral identification and quantification, wherein a hyperspectral sen-

sor (usually located on an aircraft or satellite) records the electromagnetic scattering

patterns of materials present in an area, over hundreds of spectral bands that range

from visible to near-infrared wavelength region. The limited spatial resolution of the

sensor used for hyperspectral imaging and the presence of noise in the measured hy-

perspectral data demand an effective hyperspectral unmixing (HU) scheme to extract

the underlying endmember signatures (or simply endmembers) and the associated

abundance maps (or abundance fractions) distributed over a scene of interest. The

endmember signature corresponds to the reflection pattern of a mineral in different

wavelengths and the abundance fraction is the fractional distribution of a mineral

over the given scene. Assuming a prior knowledge of the number of endmembers, the

design of HU algorithms often (but not always) involves dimension reduction as the

1



preprocessing step. The dimension reduction algorithms are intended to reduce the

complexity of the unmixing algorithm that will be used in the sequel and to some

extent they also aid in mitigating the noise effects in the data cloud. Conventional di-

mension reduction algorithms for hyperspectral data typically include principal com-

ponent analysis (PCA) [5] and maximum noise fraction (MNF) [6]. A detailed survey

of various dimension reduction algorithms can be found in [7].

Conventional HU algorithms are based on linear mixing model (to be explained

later in Chapter 2) and can be classified into two main categories. Algorithms in

the first category are based on the existence of pure pixels (pixels that are fully con-

tributed by a single endmember) in the given hyperspectral observations, and those in

the second category may not require the existence of pure pixels. Figure 1.1 illustrates

the notion of pure pixels and mixed pixels in a hyperspectral imaging scenario. The

red pixel corresponds to a mixed pixel (contributed by land, vegetation and water)

and the blue pixel corresponds to a pure pixel (contributed by only water). Pure-pixel

based algorithms include pixel purity index (PPI) [8], N-finder (N-FINDR) [9], sim-

plex growing algorithm (SGA) [10] [11], vertex component analysis (VCA) [12], and

alternating volume maximization (AVMAX) [13] [14], to name a few. Among which

N-FINDR, SGA and AVMAX algorithms are based on Winter’s belief. Winter’s be-

lief states that the vertices of the maximum volume simplex inside the observation

constructed data cloud will yield high fidelity estimates of the endmember signatures.

All the pure-pixel based algorithms aim to find the pure pixels in the given observa-

tions, either directly or indirectly, and can identify only the endmember signatures.

Hence, the pure-pixel based algorithms are also called as endmember extraction algo-

rithms (EEAs). However, the fully constrained least squares (FCLS) algorithm [15]

can be used to estimate the abundance maps from the endmember estimates and the

observations, and thereby enabling HU via EEAs. Algorithms in the second category

include minimum volume transform (MVT) [16], iterated constrained endmembers
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Figure 1.1. Illustration of hyperspectral unmixing.

(ICE) [17], piecewise convex endmember (PCE) [18], alternating projected subgra-

dients (APS) [19], minimum volume constrained non-negative matrix factorization

(MVC-NMF) [20], minimum dispersion constrained non-negative matrix factoriza-

tion (MDC-NMF) [21], minimum volume simplex analysis (MVSA) [22] and mini-

mum volume enclosing simplex (MVES) [23], to name a few. The MVSA and MVES

algorithms are directly based on Craig’s criterion [16], which states that the vertices

of the minimum volume simplex enclosing the data cloud should yield high fidelity

estimates of its endmember signatures. Apart from the above mentioned algorithms,

there are certain other categories of algorithms that are based on spatial processing

and morphological operators [24] [25]. For a recent survey on the various existing

3



unmixing algorithms, please refer to [26].

Generally speaking, HU algorithms that do not require the existence of pure pix-

els in the data set are more computationally complicated than pure-pixel based al-

gorithms. On the other hand, the presence of pure pixels cannot be guaranteed for

real hyperspectral data that are acquired under poor spatial resolutions. Hence there

exists a tradeoff between the two categories of algorithms, in terms of computational

tractability and accuracy. Nevertheless, the performance of all the HU algorithms

degrades when the observations are noisy.

In recent years, several concurrent works on linear unmixing of noisy observations

have been reported. Those works include joint Bayesian algorithm (JBA) [27] and

simplex identification via split augmented Lagrangian (SISAL) [28]. The JBA [27] is

a statistical HU algorithm that assumes conjugate prior distributions for the abun-

dances and endmember parameters. The endmember signatures are estimated by

using a hierarchical Bayesian model, which generates the posterior distributions of

both the abundances and the endmember parameters. The SISAL algorithm [28]

is based on Craig’s criterion, and it employs variable splitting and augmented La-

grangian approach to estimate the minimum volume simplex. Further, it uses soft

constraints to mitigate the effects of the outlier pixels.

In this thesis we consider a noisy linear mixing model for the hyperspectral data,

where the noise is assumed to be uniform/non-uniform additive Gaussian. An existing

dimension reduction method, called affine set fitting [23], has been suitable modified

so as to account for the presence of uniform/non-uniform additive Gaussian noise.

The linear mixing model and the dimension reduction technique are presented in

Chapter 2.

In Chapter 3, we develop a robust version of the Winter’s criterion based AVMAX

algorithm [13] [14], namely robust AVMAX (RAVMAX) algorithm. The RAVMAX

algorithm accounts for the noise effects by employing chance constraints or probability
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constraints [29], with a design parameter η that controls the volume of the resulting

simplex. We first reformulate the AVMAX subproblems into equivalent problems to

which the chance constraints can be suitably applied, and then due to the appropriate

range of η, the problems become second-order cone programming (SOCP) problems.

Hence, the chance constrained problem can be efficiently solved by any available

convex optimization solvers such as SeDuMi [30] and CVX [31], in an alternating fashion.

Some Monte-Carlo simulations and real data experiments are shown to demonstrate

the efficacy of the proposed RAVMAX algorithm, in comparison with the conventional

pure-pixel based algorithms, including its predecessor AVMAX algorithm.

For hyperspectral data set, where pure pixels cannot be guaranteed for all end-

members, robust algorithm based on Craig’s criterion are preferred. Hence, in Chap-

ter 4, we propose a robust minimum volume enclosing simplex (RMVES) algorithm

derived from the Craig’s criterion based MVES algorithm [23]. Specifically, we formu-

late the RMVES problem by incorporating chance constraints [29] into Craig’s crite-

rion based MVES problem [23], so as to deal with the effect of random noise. Under

the Gaussian noise assumption, the chance constrained RMVES problem can be con-

veniently formulated into a deterministic non-linear program, where the pre-assigned

probability given in the chance constraints when coupled with the noise covariance,

controls the volume of Craig’s simplex. We then handle the resulting problem by

alternating optimization, where each subproblem involved therein is specifically han-

dled by readily available sequential quadratic programming (SQP) solver, namely

fmincon [32]. Some existing benchmark HU methods, including MVES algorithm,

are compared with the proposed RMVES algorithm through Monte-Carlo simula-

tions, so as to demonstrate its efficacy. The RMVES algorithm along with MVES

and VCA is applied to real hyperspectral data and some inferences regarding the

obtained endmember signatures and abundance maps are also discussed.

It should be mentioned that all the above mentioned HU algorithms including
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the proposed robust algorithms assume that the number of substances (or endmem-

bers) present in that area is given a priori, which however is unknown in practice.

Although a number of early efforts have been made in developing algorithms to esti-

mate the number of endmembers (also known as rank estimation [33] [34] or model

order selection [35] [36]), the problem of estimating the number of endmembers re-

mains one of the greatest challenges. The vast majority of the existing methods for

estimating the number of endmembers can be classified into two categories: informa-

tion theoretic criteria based methods and eigenvalue thresholding methods. Methods

falling into the group of information theoretic criteria includes Akaike’s information

criterion (AIC) [37], minimum description length (MDL) [38], and Bayesian infor-

mation criterion (BIC) [39] [40], to name a few. These criteria generally consist of

two additive terms: a negative data log-likelihood term and a penalty term. As the

number of endmembers increases, the value of the negative data log-likelihood term

decreases, whereas the value of the penalty term increases. The best estimate of the

number of endmembers is the one that yields the minimum value of the criteria. In

AIC, MDL and BIC, the data log-likelihoods in the criteria are identical, but how

each method penalizes the overestimation of the number of endmembers makes the

difference. Since the criteria require the prior knowledge of the mixture model or

likelihood function, the estimation results may suffer from model mismatch errors

resulting from incorrect prior information. It has been shown in [41] that the results

of AIC and MDL when applied to hyperspectral data are seriously overestimated due

to the invalid Gaussian distribution assumption made on the abundances [42].

Methods belonging to the group of eigenvalue thresholding (either explicitly or im-

plicitly) include principal component analysis (PCA) based approaches [43], Neyman-

Pearson detection theory based method [44] (also referred to as virtual dimensional-

ity (VD) in [41]), and hyperspectral signal subspace identification by minimum error

(HySiMe) [45], to name a few. PCA-based approaches aim to determine the cut-
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off threshold between the eigenvalues caused by signals and noise, but the variation

between the two adjacent eigenvalues may not be significant in a practical scenario,

thereby easily leading to estimation errors in number of endmembers estimation, as

demonstrated in [45]. The Neyman-Pearson detection theory based method was first

proposed by Harsanyi, Farrand, and Chang (HFC) in 1993, and is termed as HFC

method. The HFC method uses Neyman-Pearson detector for a binary hypothesis

testing problem, built on the differences in eigenvalues of the sample correlation and

sample covariance matrices. The HFC method was later revisited by incorporating

the concepts of VD and noise-prewhitening step [41]. HySiMe [45] utilizes a minimum

mean square error criterion to estimate the signal subspace in hyperspectral images.

It starts with estimating the signal and the noise correlation matrices, and then se-

lects the subset of eigenvectors that best represent the signal subspace in the least

squared error sense. In addition to the two aforementioned categories, a Markov chain

Monte Carlo (MCMC) based approach was also proposed to estimate the number of

endmembers [46]. While the applicability of the algorithm is restricted to the data

with a smaller number of endmembers/pixels due to high computational demand, it

provides Bayesian estimation of the number of endmembers, with theoretical basis.

In Chapter 5, we propose two hyperspectral data geometry based algorithms for

estimating the number of endmembers, namely geometry based estimation of number

of endmembers - convex hull (GENE-CH) algorithm and affine hull (GENE-AH) algo-

rithm. The proposed GENE algorithms (GENE-CH and GENE-AH) exploit succes-

sive estimation property of a pure-pixel based EEA, and aim to decide when the EEA

should stop estimating the next endmember signature. The GENE-CH and GENE-

AH algorithms are devised based on the data geometry fact that all the observed pixel

vectors should lie in the convex hull (CH) and affine hull (AH) of the endmember sig-

natures, respectively. Since the EEAs identify endmember estimates from the set of

observed pixel vectors, the fact pertaining to the data geometry also implies that the
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current endmember estimate should lie in the CH/AH of the previously found end-

members when the current endmember estimate is obtained for an overly estimated

number of endmembers. In the noisy scenario, the decision of whether the current

endmember estimate is in the CH/AH of the previously found endmembers can be for-

mulated as a binary hypothesis testing problem, which we solve by Neyman-Pearson

detection theory. The performances of the proposed GENE algorithms depend on the

accuracy of pure pixel indices identification of an EEA. However, EEAs that can be

used in conjunction with the GENE algorithms are preferred to have the following

properties for better estimation accuracy and efficiency:

• Reliability- The EEA can reliably find a set of true endmembers provided that

pure pixels exist in the hyperspectral data. Specifically, for the noiseless case,

its endmember identifiability can be guaranteed.

• Reproducibility- The EEA provides reproducible endmember estimates for a

given hyperspectral data set without need of any random initialization.

• Successive estimation- The EEA estimates the endmembers successively.

• Computational efficiency- The EEA has low computational complexity (as the

overall complexity of the GENE algorithms also depends on the complexity of

the EEA employed).

Therefore, we also propose a reliable, reproducible, and computationally efficient, suc-

cessive EEA, called p-norm based pure pixel identification (TRI-P, abbreviated for

Triple-P) algorithm. The TRI-P algorithm basically consists of two process: Firstly,

the data are projected onto a subspace orthogonal to already found endmember sig-

natures (affine transformation), and secondly, maximum p-norm of the observed pixel

vectors is used to identify a new pure pixel (one-dimensional pixel search). The per-

formances of the proposed TRI-P and GENE algorithms are demonstrated through
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Monte Carlo simulations for various scenarios and by real data experiments.

The dissertation is organized as follows. The linear mixing model and the dimen-

sion reduction technique are detailed in Chapter 2. The first of the proposed robust

algorithms, namely RAVMAX is introduced in Chapter 3. Then, in Chapter 4, the

craig’s criterion based RMVES algorithm is presented. The proposed hyperspectral

data geometry based approach for estimating the number of endmembers, and the

associated successive EEA, namely TRI-P algorithm are presented in Chapter 5. Fi-

nally, some conclusions and future directions are provided in Chapter 6.

9



Chapter 2

Linear Mixing Model for

Hyperspectral Data

The linear mixing model is the one in which each pixel vectors (or simply pixels, for

convenience) in the hyperspectral observations is obtained via single reflection of the

endmembers present in that location. Such a linear mixing model is conventionally

used in HU [1,9,12,13,47,48]. We consider a scenario in which a hyperspectral sensor

measures solar electromagnetic radiation from N distinct substances. Owing to low

spatial resolution, each observed pixel vector represents a mixture of multiple distinct

substances. Hence, each pixel vector of the hyperspectral images measured over M

spectral bands can be represented by the following M ×N linear mixing model

y[n] = x[n] + w[n], (2.1)

x[n] = As[n] =

N∑

i=1

si[n]ai, ∀n = 1, . . . , L. (2.2)

In (2.1), y[n] = [ y1[n], . . . , yM [n] ]T represents the nth observed pixel vector com-

prising M spectral bands, x[n] = [ x1[n], . . . , xM [n] ]T corresponds to its noise-

free counterpart, and w[n] = [ w1[n], . . . , wM [n] ]T is the noise vector. In (2.2),
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A = [ a1, . . . , aN ] ∈ R
M×N denotes the endmember signature matrix with the ith

column vector ai being the ith endmember signature, s[n] = [ s1[n], . . . , sN [n] ]T ∈ R
N

is the nth abundance vector comprising N fractional abundances from which the ith

abundance map can be defined as si = [ si[1], . . . , si[L] ]T , and L is the total num-

ber of observed pixels. The noise vector w[n] considered in the signal model (2.1) is

zero-mean, uniform/non-uniform additive Gaussian noise vector i.e., N (0,D), where

D = diag(σ2
1 , . . . , σ

2
M) ∈ R

M×M
+ and σ2

i denotes the noise variance in the ith spectral

band. If σ2
i = σ2

j , ∀i 6= j, then it is called uniform Gaussian noise, else it is called

non-uniform Gaussian noise. The additive Gaussian noise is a reasonable assumption

and is widely used in designing HU algorithms [1, 12, 27].

Assuming prior knowledge about the number of endmembers N , we aim to esti-

mate the endmember signature matrix A and the abundances s[1], . . . , s[L] from the

noisy pixels y[1], . . . ,y[L], under the following general assumptions [14] [48] associated

with (2.2):

(A1) (Non-negativity condition) si[n] ≥ 0 ∀i, n.

(A2) (Full additivity condition)
∑N

i=1 si[n] = 1 ∀n.

(A3) min{L,M} ≥ N and A is of full column rank.

(A4) (Pure pixel assumption) There exists at least an index set {l1, . . . , lN} such that

x[li] = ai, for i = 1, . . . , N .

(A1) and (A2) hold true in hyperspectral imaging because of the fact that the

abundances are nothing but fractional proportions of the endmembers [1], and hence

must be non-negative, and the proportions at every pixel location should sum to one.

In addition, for hyperspectral images, the number of pixels and that of spectral bands

involved are larger than the number of endmembers and the endmember signature of

each material is unique, which justifies that (A3) is naturally satisfied due to inherent
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characteristics of hyperspectral images and endmembers. Assumption (A4) implies

that there exists at least one (location unknown) pixel index for each endmember

such that the associated observed pixel vector will be fully contributed by that single

endmember, and it usually holds true for hyperspectral images taken with a reasonable

spatial resolution [49].

In the ensuing development, we employ two convex analysis concepts, namely

affine hull and convex hull [29]. While the affine hull is employed for dimension

reduction, the convex hull is used to infer the geometry of the observations. For ease

of later use, they are defined below:

• The affine hull of {a1, . . . , aN} ⊂ R
M is defined as

aff{a1, . . . , aN} =

{
x =

N∑

i=1

θiai

∣∣∣∣1
T
Nθ = 1, θ ∈ R

N

}
, (2.3)

where θ = [θ1, . . . , θN ]T . An affine hull can be represented as:

aff{a1, . . . , aN} = A(C,d) =
{
x = Cα + d

∣∣α ∈ R
P
}

(2.4)

for some (non-unique) d ∈ R
M and C ∈ R

M×P , where P ≤ N − 1 is the

affine dimension. If {a1, . . . , aN} is affinely independent (i.e., the vectors a1 −

aN , . . . , aN−1 − aN are linearly independent), then the affine dimension P =

N − 1.

• The convex hull of the vectors {a1, . . . , aN} ⊂ R
M is defined as

conv{a1, . . . , aN} =

{
x =

N∑

i=1

θiai

∣∣∣∣1
T
Nθ = 1, θ ∈ R

N
+

}
. (2.5)

A convex hull, conv{a1, . . . , aN} is called an N − 1 dimensional simplex in R
M

if {a1, . . . , aN} ⊂ R
M is affinely independent and is called a simplest simplex
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when M = N − 1. The simplex conv{a1, . . . , aN} has only N extreme points,

and they are a1, . . . , aN .

2.1 Data Preprocessing

In this section, the dimension reduction technique employed for the observations

corrupted by uniform and non-uniform Gaussian noise is discussed. For the noisy

scenario, we employ the dimension reduction by using a variant of affine set fitting

procedure introduced in [23]. To begin with, the affine set fitting procedure for noise-

free data is reviewed below for convenience.

It can be readily inferred from the signal model (2.2), (A2), and (A3) that

x[n] ∈ aff{a1, . . . , aN}. (2.6)

Further, it is shown in [23] that the affine hull of the observations is the same as the

affine hull of the endmember signatures, i.e.,

aff{a1, . . . , aN} = aff{x[1], . . . ,x[L]}, (2.7)

which in turn can be represented by the affine set fitting parameters C and d in (2.4).

Such representation aids in dimension reduction of the observed data. The dimension-

reduced pixel vector x̃[n] can be obtained by the following affine transformation of

x[n]:

x̃[n] = CT (x[n] − d) ∈ R
N−1, ∀n = 1, . . . , L, (2.8)

where (C,d) is an affine set fitting solution given by [23]
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d =
1

L

L∑

n=1

x[n], (2.9)

C = [ q1(UxU
T
x ), . . . , qN−1(UxU

T
x ) ], (2.10)

where

Ux = [ x[1] − d, . . . ,x[L] − d ] ∈ R
M×L, (2.11)

is the mean removed data matrix and qi(R) denotes the unit-norm eigenvector asso-

ciated with the ith principal eigenvalue of the matrix R.

It should be mentioned that under (A2) and (A3), the above dimension reduction

procedure is a lossless transformation in the absence of noise, and the dimension of

the data is reduced from M to N − 1. An illustration of dimension reduction via the

affine set fitting procedure is given in Figure 2.1, where N = 3.

0

Dimension Reduction

a1

a2

a3

c1

c2

d

x[n]

R
M

R
N−1

x̃[n]

α1

α2

α3

(0, 0)
x̃[n] = CT (x[n] − d)

C = [c1 c2], d =
1

L

L∑

n=1

x[n].

Figure 2.1. Illustration of dimension reduction by affine set fitting for N=3, where the
geometric center d of the data cloud x[n] in M -dimensional space maps to the origin in the
(N −1)-dimensional space which is also the geometric center of the dimension-reduced data
cloud x̃[n].

Since
∑N

j=1 sj [n] = 1 [(A2)], it follows by substituting the noise-free signal model
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(2.2) into (2.8) that

x̃[n] =
N∑

j=1

sj [n]αj, ∀n = 1, . . . , L, (2.12)

where

αj = CT (aj − d) ∈ R
N−1 (2.13)

is the jth dimension-reduced endmember signature. Moreover, due to si[n] ≥ 0 [(A1)],

it can be seen that

x̃[n] ∈ conv{α1, . . . ,αN} ⊂ R
N−1, ∀n (2.14)

and conv{α1, . . . ,αN} is a simplest simplex. This can be regarded as the outcome

of the fact that the affine transformation of a simplex is also a simplex, as one can

infer from (2.2) that for all n, x[n] ∈ conv{a1, . . . , aN}, and conv{a1, . . . , aN} ⊂ R
M

is itself a simplex [by (A3)]. The relation between the dimension-reduced endmember

αi and the true endmember ai is given by

ai = Cαi + d, i = 1, . . . , N. (2.15)

It is worth mentioning that from (2.12) and under (A4), we have

x̃[li] = αi, ∀i = 1, . . . , N. (2.16)

However, when the data are corrupted by noise, the observations can no longer

lie in a single specific affine set. Accordingly, for the noisy scenario, the approximate

affine set fitting parameters (Ĉ and d̂) can be obtained as explained below.

Similar to (2.11), by (2.1) the mean removed noisy data matrix is

Uy = [ y[1] − d, . . . ,y[L] − d ] = Ux + W ∈ R
M×L, (2.17)
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where W = [ w[1], . . . ,w[L] ]. Then,

UyU
T
y = UxU

T
x + UxW

T + WTUx + WWT

∼= UxU
T
x + WWT = UxU

T
x + LD̂, (2.18)

which is because the matrices UxW
T and WUT

x asymptotically approach zero matrix

for large L (since the noise is zero-mean and independent of the noise-free observa-

tions), and D̂ is defined as

D̂ =
1

L
WWT , (2.19)

which is actually an estimate of the noise covariance matrix D. Replacing x[n] with

y[n] in (2.9), and by replacing UxU
T
x with UyU

T
y − LD̂ (from (2.18)) in (2.10),

respectively, we have the following equations for Ĉ and d̂ as approximations for C

and d, respectively:

d̂ =
1

L

L∑

n=1

y[n] =
1

L

L∑

n=1

x[n] +
1

L

L∑

n=1

w[n] ∼= d, (2.20)

Ĉ = [ q1(UyU
T
y − LD̂), . . . , qN−1(UyU

T
y − LD̂) ] ∼= C. (2.21)

Note that, (2.20) and (2.21) hold since the noise is of zero mean such that 1
L

∑L
n=1 w[n]

asymptotically approaches zero vector for large L, and D̂ approaches the true D

for large L, respectively. In this work, the multiple regression analysis based noise

covariance estimation method reported in HySiMe [45] is employed to obtain D̂.

With the given D̂, the affine set fitting solution (Ĉ, d̂) of the noisy data (given by

(2.20) and (2.21)) serves as an approximation to the true (C,d) and it asymptotically

approaches the true (C,d) for large L.

The obtained Ĉ and d̂ are then used to obtain the dimension reduced noisy
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observations as given by

ỹ[n] = ĈT (y[n] − d̂) = ĈT (x[n] − d̂) + ĈTw[n]

∼= x̃[n] + w̃[n], (2.22)

where

w̃[n] = ĈTw[n], (2.23)

and the approximation in (2.22) is because the affine set fitting parameters (Ĉ, d̂)

for the noisy data serve as a good approximation to the true (C,d) (see (2.20) and

(2.21)). The dimension reduction technique introduced in this chapter will be used

in the ensuing developments.
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Chapter 3

Robust Alternating Volume

Maximization Algorithm

In this chapter, we propose a robust alternating volume maximization (RAVMAX)

algorithm based on our previously proposed AVMAX algorithm developed in [13].

The AVMAX algorithm is based on the Winter’s criterion which states that the

vertices of the maximum volume simplex inscribed within the data cloud should yield

high fidelity estimates of the endmembers. However, in the presence of noise, the

vertices of the maximum volume simplex could be far away from true endmembers.

Hence, application of Winter’s criterion based algorithms to noisy hyperspectral data

may result in inaccurate estimation of the endmembers. The proposed RAVMAX

algorithm accounts for the noise effects in the hyperspectral data by employing chance

constraints in its problem formulation. We first reformulate the AVMAX subproblems

into equivalent problems to which the chance constraint can be suitably applied, and

then reformulate them as second-order cone programming (SOCP) problems. Hence,

the chance constrained problem can be efficiently solved by any convex optimization

solvers in an alternating fashion. For ease of understanding the proposed RAVMAX

algorithm, let us begin by briefly reviewing the AVMAX algorithm.
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3.1 Brief review of AVMAX algorithm

The AVMAX algorithm is derived for the noise-free case and is based on the Winter’s

unmixing criterion [9], which states that under (A4) the vertices of the maximum

volume simplex inside the data cloud (observations) yield high fidelity estimates of

the endmember signatures. Based on Winter’s criterion, the unmixing problem [13]

can be written as:

max
ν1,...,νN∈R

N−1
V (ν1, . . . ,νN)

s.t. νi ∈ conv{x̃[1], . . . , x̃[L]}, ∀ i,
(3.1)

where x̃[n], ∀n = 1, . . . , L, is defined in (2.8), and V (ν1, . . . ,νN) is the volume of the

(N − 1)-dimensional simplex conv{ν1, . . . , νN} in R
N−1 and is given by [50],

V (ν1, . . . ,νN ) =
|det (∆(ν1, . . . ,νN))|

(N − 1)!
, (3.2)

where

∆(ν1, . . . ,νN) =




ν1 · · · νN

1 · · · 1



 .

By letting X̃ = [ x̃[1], . . . , x̃[L] ] ∈ R
(N−1)×L and by (2.5), problem (3.1) can be

expressed as

max
νi∈R

N−1

θ1,...,θN∈R
L

|det(∆(ν1, . . . ,νN))|

s.t. νi = X̃θi, θi � 0, 1T
Lθi = 1 ∀ i.

(3.3)

Though the constraints of (3.3) are convex, the non-convexity of the objective function

makes the problem difficult to solve. The problem may be handled in a convenient

manner by the idea of cofactor expansion and alternating optimization. The cofactor
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expansion of the objective function in (3.3) along the jth column is given by

det(∆(ν1, . . . ,νN )) = bT
j νj + (−1)N+jdet(VNj), (3.4)

where bj = [(−1)i+jdet(V ij)]
N−1
i=1 ∈ R

N−1 and the term V ij ∈ R
(N−1)×(N−1) is a

submatrix of ∆(ν1, . . . ,νN ) with the ith row and jth column removed. We then

consider the partial maximization of (3.3) with respect to νj and θj , while fixing νi

and θi for all i 6= j. The problem (3.3) then becomes

max
νj∈R

N−1,θj∈R
L

∣∣∣ bT
j νj + (−1)N+jdet(VNj)

∣∣∣

s.t. νj = X̃θj , θj � 0, 1T
Lθj = 1.

(3.5)

The partial maximization problem (3.5) can be decomposed into the following two

linear programs:

p? = max
νj∈R

N−1,θj∈R
L

bT
j νj + (−1)N+jdet(VNj)

s.t. νj = X̃θj , θj � 0, 1T
Lθj = 1,

(3.6)

q? = min
νj∈R

N−1,θj∈R
L

bT
j νj + (−1)N+jdet(VNj)

s.t. νj = X̃θj , θj � 0, 1T
Lθj = 1.

(3.7)

The optimal solution of (3.5) is that of (3.6) if |p?| > |q?|, and that of (3.7) if |q?| > |p?|.

This procedure of alternating optimization is performed for all the N columns (one

iteration) and the relative change in the volume of the updated ∆(ν1, . . . ,νN) is

compared with a given threshold. If it exceeds the threshold, we continue with the

next updating iteration, else we conclude that the current updated νjs are optimum.
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Once the optimal solution of (3.3), denoted by ν?
1 , . . . ,ν

?
N is obtained, the endmember

estimates can be recovered by using, âi = Cν?
i + d (by (2.15)), for all i. It should be

recalled that the Winter’s criterion based AVMAX algorithm is based on noise-free

data. However, when the data is corrupted by noise then the endmembers estimated

as extreme points of the Winter’s simplex, may be far away from the true endmembers,

as illustrated in Figure 3.1.

Winter's simplex

true simplex

noisy pixels 

Figure 3.1. Illustration of Winter’s simplex for noisy observations, where N = 3.

Therefore, we aim to make AVMAX more robust against noise effects by account-

ing for the randomness in the data, by using chance constraints.

3.2 Robust AVMAX Formulation and Algorithm

We first do some reformulation to (3.6) and (3.7) so that chance constraints can be

incorporated into the unmixing problem. Then, we move on to develop a robust

version of the AVMAX algorithm.
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3.2.1 Restructuring the AVMAX algorithm

Let B = diag(sign(bj)) and G = −B. Then, we can have GG = BB = IN−1,

bT
j B = |bj|T and bT

j G = −|bj |T . The subproblems (3.6) and (3.7) can then be

equivalently written as:

p? = max
νj∈R

N−1,θj∈R
L

bT
j BBνj + (−1)N+jdet(VNj)

s.t. Bνj = BX̃θj , θj � 0, 1T
Lθj = 1,

(3.8)

q? = min
νj∈R

N−1,θj∈R
L

bT
j GGνj + (−1)N+jdet(VNj)

s.t. Gνj = GX̃θj, θj � 0, 1T
Lθj = 1.

(3.9)

Then, by change of variables, we let

αj = Bνj (3.10)

and

βj = Gνj . (3.11)

To facilitate the application of chance constraints to the AVMAX problem, we relax

the first equality constraints of (3.8) and (3.9) and thus the corresponding subprob-

lems are given as below:

p? = max
αj∈R

N−1,θj∈R
L

|bj|T αj + (−1)N+jdet(VNj)

s.t. αj � BX̃θj , θj � 0, 1T
Lθj = 1,

(3.12)
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q? = min
βj∈R

N−1,θj∈R
L

− |bj |T βj + (−1)N+jdet(VNj)

s.t. βj � GX̃θj , θj � 0, 1T
Lθj = 1.

(3.13)

Although we relax the first constraints of the subproblems, we still can show that

the optimal solutions of (3.12) and (3.13) are equivalent to that of (3.6) and (3.7),

respectively, as proved in the following lemma:

Lemma 1. (Equivalence of subproblems) The subproblems (3.12) and (3.13) are

equivalent to (3.6) and (3.7), respectively.

Proof: Firstly, it is trivial to show that the objective function of (3.12) is equivalent to

that of (3.6) as αj = Bνj, bT
j B = |bj |T and BB = I. Next, consider the subproblem

(3.12) (after ignoring the constant term in the objective function) and let S denote

the constraint set of (3.12). Then we have

max
αj∈S

|bj|T αj = |bj |Tkj,

where kj = [maxSi
[αj]i]

N−1
i=1 in which Si = {[αj]i ≤ [BX̃θj]i}, implying that an

optimal solution, denoted by (α?
j , θ

?
j ) will make the equality in αj � BX̃θj hold

(i.e., the constraint will be active). In other words, the optimal solution (α?
j , θ

?
j )

belongs to the set {(αj, θj) | αj = BX̃θj, θj � 0, 1T
Lθj = 1}, which is equivalent to

the constraint set of (3.6). Hence we can conclude that the subproblems (3.12) and

(3.6) are equivalent. By a similar argument the equivalence of (3.13) and (3.7) can

be proved. �
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3.2.2 Robust AVMAX Algorithm

Now, we move on to consider the unmixing problem with noisy observations given by

(2.1). The corresponding dimension reduced observations are given by (2.22) as

ỹ[n] ∼= x̃[n] + ĈTw[n], (3.14)

where ĈTw[n] is a random vector following N (0, ĈTDĈ). In matrix form (considering

all the pixels, n = 1, . . . , L), we can write the above equation as: Ỹ = X̃ + ĈTW,

where Ỹ = [ỹ[1], . . . , ỹ[L]], X̃ = [x̃[1], . . . , x̃[L]], and W = [w[1], . . . ,w[L]]. The first

inequality constraint in (3.12) now becomes:

αj � B(Ỹ − ĈTW)θj = BỸθj + zj, (3.15)

where zj , −BĈT Wθj ∈ R
N−1 with the distribution N (0,BĈTDĈBT‖θj‖2

2).

Since the noise-induced vector zj is random and unknown, our approach is to

consider using chance constraints for (3.15), as shown below

Pr{[αj]i − [B]i,:Ỹθj ≤ [zj]i} ≥ η, ∀ i = 1, . . . , N − 1, (3.16)

where 0 < η < 1 is a design parameter. A similar equation can be written for the

first inequality constraint of (3.13), i.e.,

Pr{[βj]i − [G]i,:Ỹθj ≤ [zj ]i} ≥ η, ∀ i = 1, . . . , N − 1. (3.17)

The second-order cone equivalence of a chance constraint has been discussed in

[29]. Specifically, for a random variable ε ∼ N (µ, δ2) and t ∈ R, one can show that

Pr(ε ≤ t) ≥ η is true as t ≥ δΦ−1(η) + µ, where Φ−1 is the inverse of the cumulative

distribution function (cdf) of the standard normal random variable.

24



By letting Q = BĈTDĈBT ∈ R
(N−1)×(N−1) and applying the above mentioned

chance constraint procedure to (3.16) and (3.17), we have

√
Qi‖θj‖2Φ

−1(1 − η) ≥ [αj]i − [B]i,:Ỹθj, (3.18)

and
√
Qi‖θj‖2Φ

−1(1 − η) ≥ [βj]i − [G]i,:Ỹθj . (3.19)

for all i = 1, . . . , N − 1. By replacing the first constraints of (3.12) and (3.13) with

(3.18) and (3.19), respectively, the robust AVMAX problem can then be written as:

p? = max
αj∈R

N−1,θj∈R
L

|bT
j |αj + (−1)N+jdet(VNj)

s.t.
√
Qi‖θj‖2Φ

−1(1 − η) ≥ [αj]i − [B]i,:Ỹθj,

θj � 0, 1T
Lθj = 1, ∀ i = 1, 2, . . . , N − 1.

(3.20)

q? = min
βj∈R

N−1,θj∈R
L

− |bT
j |βj + (−1)N+jdet(VNj)

s.t.
√
Qi‖θj‖2Φ

−1(1 − η) ≥ [βj ]i − [G]i,:Ỹθj,

θj � 0, 1T
Lθj = 1, ∀ i = 1, 2, . . . , N − 1.

(3.21)

The values of η affect the feasible sets of (3.20) and (3.21); specifically, their

convexity. The following are the three possible cases: When η > 0.5 (i.e., Φ−1(1−η) <

0), the first constraints of both subproblems are second-order cone constraints and

hence subproblems (3.20) and (3.21) are convex. If η = 0.5 (i.e., Φ−1(1− η) = 0), the

first constraints of both subproblems reduce to those of the original AVMAX problem

(as in (3.6) and (3.7)), i.e., the constraints become linear (convex). Finally, if η < 0.5

(i.e., Φ−1(1 − η) > 0), the constraints become non-convex.
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To infer the appropriate range of η, let F1(η) and F2(η) be the constraint sets

of (3.20) and (3.21), respectively. Since Φ−1(1 − η) is a monotonically decreasing

function of η, it can be easily seen that Fi(η1) ⊂ Fi(η2), i = 1, 2, where η1 > η2,

and therefore |det(∆(ν1, . . . ,νN))| ∝ 1/η. This along with the discussion above for

η = 0.5 confirms that to get a smaller simplex than the simplex estimated by Winter’s

criterion, the appropriate η should be greater than 0.5. The effect of η is illustrated in

Figure 3.2. From our extensive numerical experiences we found that for satisfactory

performance, the η value should lie between 0.9 and 1, in which case the subproblems

(3.20) and (3.21) are convex. Some more technical aspects are discussed as follows.

Figure 3.2. Illustration of the effect of η in RAVMAX for N = 3.

The subproblems (3.20) and (3.21) are solved in an alternating fashion, similar to

the original AVMAX explained in Section 3.1, except for the following difference:

after each execution of the subproblems, the corresponding νj = Bαj (by (3.10)) is

obtained if |p?| > |q?|, else νj = Gβj (by (3.11)) is obtained. The proposed RAVMAX

algorithm uses any N pixel vectors in X̃ for its initialization. As the subproblems

are convex (for our desired choice, η > 0.5), they can be solved effectively by using
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available convex optimization solvers [31] and [30]. The pseudocode for the RAVMAX

algorithm is given in Table 3.1.

3.3 Simulations

This section demonstrates the efficacy of the proposed RAVMAX through comparison

with other pure-pixel based HU algorithms. The algorithms considered are N-FINDR

[9], VCA [12], and AVMAX [13]. In all these algorithms, FCLS [15] is used to get

the abundance maps. The performance of the algorithms under test is evaluated by

performing 50 Monte Carlo runs for various purity levels (ρ) and SNRs [23]. A data

set with purity level ρ implies the purity factor 1/
√
N ≤ ρn = ‖s[n]‖2 ≤ ρ [23] for

each of its abundance vectors s[n]. The value of ρn defines the quantitative dominance

of an endmember ai in the observed pixel vector x[n] =
∑N

i=1 si[n]ai, ∀n. The SNR

of a data set is defined as

SNR =
L∑

n=1

‖x[n]‖2
2/MLσ2, (3.22)

where σ2 is the noise variance. The simulation settings are L = 1000 (number of

pixels), N = 6 (number of endmembers) and M = 224 (number of observations). In

each run, 1000 noise-free observed pixel vectors were synthetically generated following

the signal model in (2.2), and the 6 endmembers (i.e., Alunite, Buddingtonite, Calcite,

Goethite, Kaolinite, and Muscovite) with 224 bands are selected from USGS library

[51], and the abundance vectors s[n] were generated following Dirichlet distribution

D(s[n],µ) with µ = 1N/N [12], for purity levels ρ = 0.7, 0.85, 1. In our simulations,

the noise covariance matrix is estimated from the observations, using the multiple

regression procedure elaborated in HySiMe [45]. The root-mean-square (rms) spectral

angles, denoted as φen (φab) between the true endmembers (abundance maps) and
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Table 3.1. Pseudocode for RAVMAX Algorithm.

Given The noisy observed data y[n], the number of endmembers N , a
design parameter η > 0.5, and a convergence tolerance ε > 0.

Step 1. Estimate the noise covariance matrix (denoted by D̂) using mul-
tiple regression analysis [45].

Step 2. Dimension reduction: Obtain the dimension-reduced pixels:
ỹ[n] = ĈT (y[n]−d̂) for all n, with the affine set fitting parameters

(Ĉ, d̂) given by (2.21) and (2.20).

Step 3. Initialization: Randomly choose any N dimension reduced pixel
vectors as ν1, . . . ,νN and frame the initial matrix

∆(ν1, . . . ,νN) =

[
ν1 · · · νN

1 · · · 1

]
.

Set j := 1 and % := | det(∆(ν1, . . . ,νN ))|.

Step 4. Obtain bj = [(−1)i+jdet(V ij)]
N−1
i=1 ∈ R

N−1, where V ij ∈
R

(N−1)×(N−1) is a submatrix of ∆(ν1, . . . ,νN ) with the ith row
and jth column removed.

Step 5. Find B = diag(sign(bj)) and let G = −B. Define Q =

BĈTDĈBT = GĈTDĈGT .

Step 6. Solve the SOCPs (3.20) and (3.21) and obtain their optimal so-
lutions, denoted by (αj, θ̄j) and (βj , θj), respectively. Let p? and
q? be the optimal values of (3.20) and (3.21), respectively.

Step 7. If |p?| > |q?|, then update νj = Bαj. Otherwise, update νj =
Gβj.

Step 8. If (i modulo (N)) 6= 0, then j := j + 1, and go to Step 4,
else

If |max{|p?|, |q?|} − %|/% < ε, then ∆(ν̂1, . . . , ν̂N) =
∆(ν1, . . . ,νN ).

Otherwise, set % := max{|p?|, |q?|}, j := 1, and go to Step 4.

Step 9. Calculate the actual endmember estimates: âi = Ĉν̂i + d̂ for
i = 1, ..., N .

Step 10. Estimate the abundance vectors ŝ[1], . . . , ŝ[L] using FCLS [15].
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estimated endmembers (abundance maps) (which have been widely used in HU [1,

12, 23]) are used as the performance indices, which are defined as follows:.

φen = min
π∈ΠN

√√√√ 1

N

N∑

i=1

[
arccos

(
aT

i âπi

‖ai‖‖âπi
‖

)]2

(3.23)

φab = min
π∈ΠN

√√√√ 1

N

N∑

i=1

[
arccos

(
sT

i ŝπi

‖si‖‖ŝπi
‖

)]2

, (3.24)

where âi denotes the estimated endmember signature, ŝi = [ ŝi[1], . . . , ŝi[L] ]T denotes

the estimated ith abundance map, π = (π1, . . . , πN)T , and ΠN = {π ∈ R
N | πi ∈

{1, 2, . . . , N}, πi 6= πj for i 6= j} is the set of all the permutations of {1, 2, ..., N}.

In addition, the overall average computation time of an algorithm (averaged over all

the scenarios) T (in secs) when implemented in Matlab R2008a and running in a

desktop computer equipped with Core i7 − 930 CPU with speed 2.80 GHz, and 12

GB memory, is considered as the computational complexity measure.

3.3.1 Uniform Gaussian noise case

The synthetic data for different SNRs were obtained by adding independent and iden-

tically distributed zero-mean Gaussian noise to the noise-free data generated, as per

(2.1). The average φen, φab, and average computation time T , of the unmixing algo-

rithms over SNR = 20, 25, ..., 40 dB and ρ = 0.7, 0.85, 1 are shown in Table 3.2, where

each bold-faced number denotes the minimum rms spectral angle associated with a

specific pair of (ρ, SNR) over all the algorithms. One can readily infer from Table 3.2

that the proposed RAVMAX algorithm generally yields the best performance for all

the values of ρ and SNRs.
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Table 3.2. Average φen (degrees), φab (degrees), and average computation time T (secs),
over the various unmixing algorithms for different purity levels (ρ) and SNRs- Uniform
Gaussian noise case.

Methods ρ
φen φab

SNR (dB) SNR (dB)
20 25 30 35 40 20 25 30 35 40 T

N-FINDR
0.7 5.45 5.31 5.24 5.11 5.16 22.54 21.86 21.63 19.76 19.82
0.85 2.65 2.67 2.66 2.65 2.61 9.60 8.37 8.03 7.93 7.77 1.28
1 1.15 0.58 0.33 0.18 0.10 6.14 3.59 2.13 1.24 0.72

VCA
0.7 5.77 5.56 5.64 5.56 5.50 31.57 29.97 29.71 28.54 28.38
0.85 2.79 2.70 2.67 2.71 2.61 10.83 9.45 9.00 8.89 8.82 1.44
1 1.12 0.61 0.32 0.18 0.11 6.00 3.45 2.05 1.23 0.76

AVMAX
0.7 5.50 5.36 5.39 5.13 5.10 24.60 21.94 20.95 18.77 16.48

0.85 2.77 2.64 2.65 2.69 2.65 9.15 7.96 7.10 6.70 6.48 3.56
1 1.14 0.61 0.33 0.18 0.10 6.39 3.66 2.13 1.22 0.70

0.7 4.87 4.87 4.88 4.83 4.90 18.95 18.15 18.13 17.83 17.94
RAVMAX 0.85 2.54 2.48 2.56 2.52 2.51 8.56 7.68 7.44 7.39 7.34 27.97

(0.9 < η < 1) 1 0.79 0.43 0.24 0.14 0.08 4.34 2.60 1.56 0.98 0.59

3.3.2 Non-uniform Gaussian noise case

For the non-uniform Gaussian noise case, the noise variances σ2
i of the M spectral

bands, following a Gaussian shape centered at the (M/2)th band, as used in [12] [23],

are given by

σ2
i = σ2 exp(− (i−M/2)2

2τ2 )
∑M

j=1 exp(− (j−M/2)2

2τ2 )
, ∀i = 1, . . . ,M, (3.25)

where τ controls the variance of the Gaussian shape among σ2
1, . . . , σ

2
M . It corresponds

to uniform Gaussian noise for τ = ∞, and one-band noise for τ = 0. Table 3.3 shows

the average rms spectral angles for SNR from 15 dB to 40 dB and the average compu-

tation time of all the algorithms under test, and the purity level in this case is fixed as

1. Again, it can be inferred that the the proposed RAVMAX algorithm outperforms

all the algorithm under test, including its predecessor AVMAX algorithm. In both

the noisy scenarios, the increment in the computational complexity of RAVMAX al-

gorithm is the price to be paid for the betterment in the estimation accuracy of the

robust algorithm.
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Table 3.3. Average φen (degrees), φab (degrees), and average computation time T (secs),
over the various unmixing algorithms for different τ values and SNRs, with ρ = 1- Non-
uniform Gaussian noise case.

Methods τ
φen φab

SNR (dB) SNR (dB)
20 25 30 35 40 20 25 30 35 40 T

N-FINDR
∞ 1.13 0.60 0.33 0.18 0.09 5.12 3.12 1.89 1.33 0.67
18 1.34 0.63 0.32 0.17 0.09 5.14 2.77 1.62 0.96 0.56 1.21
9 2.11 0.65 0.31 0.17 0.09 7.85 2.82 1.56 0.91 0.52

VCA
∞ 1.15 0.67 0.36 0.21 0.13 5.12 2.94 1.82 1.13 0.71
18 1.26 0.66 0.37 0.19 0.11 5.23 2.70 1.59 0.99 0.57 1.51
9 2.13 0.71 0.35 0.17 0.09 9.43 2.83 1.60 0.89 0.53

AVMAX
∞ 1.14 0.60 0.33 0.18 0.10 5.21 3.14 1.90 1.13 0.67
18 1.32 0.63 0.34 0.18 0.10 5.13 2.82 1.66 0.98 0.58 2.84
9 2.03 0.64 0.32 0.16 0.09 7.74 2.81 1.56 0.91 0.53

RAVMAX
∞ 0.78 0.45 0.24 0.15 0.08 3.24 2.11 1.37 0.89 0.57

(0.9 < η < 1)
18 0.95 0.49 0.27 0.15 0.09 3.08 1.94 1.23 0.78 0.50 18.21
9 1.19 0.49 0.26 0.15 0.08 3.42 1.93 1.19 0.77 0.48

3.4 Real data experiments

In this section, the RAVMAX, AVMAX and VCA algorithms are applied to AVIRIS

real hyperspectral data obtained over the Cuprite Nevada site [52], and the results

are compared. The AVIRIS data is well studied in the recent years [12, 23] and the

availability of a structured library of endmember signature [51, 53] aids in identifica-

tion of the mineral maps. The static nature of the Cuprite Nevada site over the recent

years, together with the availability of a standard library of minerals makes the data

appropriate for conducting real data experiments, so as to validate the algorithms

under test. The hyperspectral data over the Cuprite Nevada contains 224 bands with

better SNRs in most of the bands [54]. Among the 224 bands, bands 1-2, 104-113,

148-167, and 221-224 were removed due to strong noise or dense water-vapor content

in those bands. In our experiment, we considered a 200 × 200 sub-image (region of

interest) of the hyperspectral data, with 188 bands (after removing the bands with

poor information). Estimation of the number of endmembers present in a given scene

of interest is an important issue (it will be addressed later in Chapter 5), because

both the dimension reduction algorithm and the HU algorithm are in need of this
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number. To begin with, the eigenvalue distribution (signal energies distribution) of

the ROI’s data covariance matrix shows that the number of sources according to the

principal eigenvalues is approximately 4 (N = 4). Obviously, it is an under estimate

of N , as the ground truth [51] reports more than 4 endmembers in the ROI. Applying

HySiMe [45] to the ROI data yields N = 18. On the other hand, for a very similar

ROI, it is reported in [12] and [23] that Virtual Dimensionality (VD) [41] estimates

the number of endmembers as 14. Also Miao et al. reported in their work [20] that

for a similar ROI, N = 9 and they further claimed that the over estimation of N by

other methods can be attributed to the non-linear mixing of the observations in a

real scenario. However, for the sake of consistency with our previous work [23], here

we consider N = 14.

In order to remove some pixels corresponding to inactive constraints and thereby

speed up the algorithms, data subsampling is needed. Since the pixels at the periphery

(the pixels associated with active constraints) of the dimension-reduced data cloud

determines the simplex volume, we first perform some subsampling of the dimension-

reduced hyperspectral data ỹ[i] by using the following convex projection procedure:

We consider solving the following optimization problem for all i = 1, . . . , L,

min
θ∈RL−1

‖ỹ[i] − Ỹiθ‖2 (3.26)

s.t. 1T
L−1θ = 1, θ � 0,

where Ỹi = [ ỹ[1], ỹ[2], . . . , ỹ[i − 1], ỹ[i + 1], . . . , ỹ[L] ]. Problem (3.26) is a convex

problem and can be solved using available convex optimization solvers, such as SeDuMi

[30] and CVX [31]. The idea is to check each and every pixel in the dimension-reduced

data cloud for the case whether it belongs to the convex hull of all the other remaining

pixels (i.e., if the optimal value of (3.26) is zero), or not. If yes, the pixel is discarded,

if not it is retained (as they correspond to a peripheral pixel). In spite of its initial cost,
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this procedure of data subsampling significantly aids in speeding up the algorithm

under test. By doing so, we were able to identify 17,965 peripheral pixels out of the

40,000 pixels in the ROI, and we have used them as input for RAVMAX algorithm.

Finally, it should be mentioned that the complete hyperspectral data set (without

subsampling) is used for the estimation of the abundance maps. When applied to

real hyperspectral data, the computational time for RAVMAX, AVMAX (both with

subsampled data) and VCA (with full data) are around 70 minutes, 42 minutes, and 4

minutes, respectively. The endmember signatures obtained via RAVMAX (with η =

0.9), AVMAX, and VCA algorithms, along with the corresponding library signatures

are shown in Figure 3.3. The minerals were identified by the visual comparison of

the obtained abundance maps with the ones available in [20] [23], [51], [55], and [56].

The abundance maps obtained by the RAVMAX, AVMAX, and VCA algorithms

are shown in Figure 3.4, Figure 3.4, and Figure 3.4, respectively. The materials

identified are arranged in alphabetical order for ease of visual comparison. It should

be mentioned that the difference in the materials identified by the three algorithms

could possibly be due to the working nature of the respective algorithms and their

sensitivity to initializations. The mean removed spectral angle between the estimated

signature aest and the corresponding library signature alib [23] [55] defined as

φ = arccos

(
(aest − m(aest))

T (alib − m(alib))

‖aest − m(aest)‖ · ‖alib −m(alib)‖

)
, (3.27)

was used as the performance measure, where m(a) = (1T
Ma)1M(1/M) for any vector

a ∈ R
M . The value of φ for the various minerals identified by the algorithms under

test are given in Table 3.4. Again, the least φ value for an endmember is highlighted

as a bold-faced number and the number in parenthesis is the φ value for the repeatedly

identified endmember. It can be seen from Table 3.4 that for the materials identified,

the proposed RAVMAX algorithm performs best (with the minimum average φ), and
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further, it mostly yields better endmember estimates (minimum φ) than the AVMAX

and VCA algorithms.

Since the available AVIRIS real data have a relatively good SNR (roughly around

30 dB), we have also tried the HU algorithms for real data with artificially added

noise. However, the majority of the so obtained abundance maps were inconclusive

when compared with available groundtruths [20] [23], [51], [55], [56], and hence the

mineral identification and quantification could not be performed for the endmember

and abundance estimates of the noise added AVIRIS real data.
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Figure 3.3. Endmember signatures taken from library, and the ones estimated by VCA,
RAVMAX, and AVMAX algorithms.
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Figure 3.4. Abundance maps obtained by RAVMAX algorithm.

3.5 Summary

To account for the noise effects in an HU framework, we have presented a robust HU

algorithm, i.e., RAVMAX. Here, we reformulated the original AVMAX problem with

deterministic constraints into the one with chance constraints. The RAVMAX prob-

lem can be efficiently solved by using available SOCP solvers. The simulation results

and real data experiments demonstrate the superior performance of RAVMAX algo-

rithm over some existing benchmark HU algorithms including the original AVMAX

algorithm.
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Figure 3.5. Abundance maps obtained by AVMAX algorithm.
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Figure 3.6. Abundance maps obtained by VCA algorithm.
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Table 3.4. Mean-removed spectral angles φ (degrees) for VCA, RAVMAX (η = 0.9) and
AVMAX algorithms.

VCA RAVMAX AVMAX
Andradite 18.49 22.06 —
Alunite 17.74 21.68 23.70

Buddingtonite 27.25 24.64 24.22
Chalcedony 31.9 19.53 —

Desert Vanish 12.12 16.09 12.04
Dumortierite 31.95 (32.01) 25.03 (31.40) 27.07 (31.49)

Kaolinite 30.33 24.16 34.08
Montmorillonite1 18.06 17.86 18.53
Montmorillonite2 — — 28.42

Muscovite 32.7 39.05 39.82
Nontronite 1 24.66 23.45 23.32
Nontronite 2 21.51 17.16 18.30
Paragonite 35.91 31.34 33.88 (36.60)

Pyrope 25.59 23.04 27.24
Average φ 25.73 24.03 28.40
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Chapter 4

Robust Minimum Volume

Enclosing Simplex Algorithm

For hyperspectral data set, where pure pixels cannot be guaranteed for all endmem-

bers (i.e., when (A4) does not hold true), robust algorithm based on Craig’s criterion

are preferred. The Craig’s criterion states that the vertices of the minimum volume

simplex enclosing the data cloud serve as high fidelity estimates of the endmember

signatures. In this chapter, we propose a robust minimum volume enclosing sim-

plex (RMVES) algorithm, which is derived from the Craig’s criterion based minimum

volume enclosing simplex (MVES) algorithm. A toy example shown in Figure 4.1

demonstrates how Craig’s criterion may yield inaccurate endmember estimates for

the noisy observations (shown as dots).

Clearly, the random noise expands the data cloud, and consequently the volume

(vertices) of the simplex formed by Craig’s criterion (shown in dashed line) is larger

than (far from) that of the true simplex (shown in solid line). Therefore, for the

hyperspectral data with noise, the aim is to fit a simplex for the observed data,

whose volume is less than that of the simplex volume obtained by Craig’s criterion,

so that the resultant simplex will be close to the true simplex. Motivated by this,
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Craig's simplex

  True simplex

Noisy observed pixels

Figure 4.1. Illustration of Craig’s simplex for noisy observations, where N = 3.

we formulate the RMVES problem by incorporating probability constraints or chance

constraints [29] into Craig’s criterion based MVES problem [23], so as to deal with the

effect of random noise. Under the Gaussian noise assumption, the chance constrained

RMVES problem can be conveniently formulated into a deterministic non-linear pro-

gram, where the pre-assigned probability given in the chance constraints when coupled

with the noise covariance, controls the volume of Craig’s simplex. We then handle

the resulting problem by alternating optimization, where each subproblem involved

therein is specifically handled by readily available sequential quadratic programming

solvers. First, let us present a brief review of the existing MVES algorithm and then

move on to propose the robust version.
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4.1 Brief review of MVES Algorithm

The MVES algorithm is derived for noise-free case and it aims to solve the following

optimization problem [13] [23]:

min
β1,...,βN∈R

N−1
V (β1, . . . ,βN)

s.t. x̃[n] ∈ conv{β1, . . . ,βN}, ∀n.
(4.1)

Here, x̃[n] is the dimension-reduced noise-free observation (given by (2.8)), β1, . . . ,βN

correspond to the dimension reduced endmember signatures, and V (β1, . . . ,βN) is the

volume of the simplex conv{β1, . . . , βN}, defined as

V (β1, . . . ,βN) =
|det(B)|
(N − 1)!

, (4.2)

where (N − 1)! represents factorial of N − 1 and

B = [ β1 − βN , . . . ,βN−1 − βN ] ∈ R
(N−1)×(N−1). (4.3)

By (4.3) and (2.5), the constraints of (4.1) can be expressed as

x̃[n] =

N∑

i=1

si[n]βi = Bs′[n] + βN , ∀n, (4.4)

where

s′[n] =[s1[n], . . . , sN−1[n]]T ∈ R
N−1
+ , (4.5a)

sN [n] =1 − 1T
N−1s

′[n] ≥ 0, (4.5b)

are the abundance fractions of the nth pixel in the observations. Note that (4.5a)

and (4.5b) jointly enforce the non-negativity and full-additivity constraints on the
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abundances. Equation (4.4) can be rewritten as

s′[n] = B−1(x̃[n] − βN) = Hx̃[n] − g, ∀n, (4.6)

where

H =B−1, (4.7a)

g =B−1βN . (4.7b)

Substituting (4.6) into (4.5) gives rise to the following equivalent constraints

si[n] = hT
i x̃[n] − gi ≥ 0, ∀i = 1, . . . , N − 1, n = 1, . . . , L, (4.8a)

sN [n] = 1 − 1T
N−1(Hx̃[n] − g) ≥ 0, ∀n = 1, . . . , L, (4.8b)

where hT
i is the ith row vector of H, gi is the ith element of g. Hence, the minimization

problem in (4.1) is equivalent to the following maximization problem

max
H∈R

(N−1)×(N−1) ,
g∈R

N−1

|det(H)| (4.9a)

s.t. hT
i x̃[n] − gi ≥ 0, ∀i, n, (4.9b)

1 − 1T
N−1(Hx̃[n] − g) ≥ 0, ∀n. (4.9c)

After some simplifications, the non-convex optimization problem (4.9) is then handled

via alternating optimization, where each and every subproblem is convex (in fact,

linear program) and can be solved by using available convex optimization solvers

such as SeDuMi [30] and CVX [31]. Let us emphasize that the MVES algorithm in [23]

considers a noise-free scenario, and hence for noisy hyperspectral data, the solution,

i.e., the simplex conv{β1, . . . ,βN}, obtained by MVES may be far from the true one.
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4.2 Robust MVES Formulation and Algorithm

In this section, we develop a robust HU algorithm that aims to accounts for the

presence of noise in the observations. The presence of noise in the observations

expands the data cloud (even after dimension reduction). Hence, for noisy data, the

minimum volume simplex estimated by (4.9) will be larger than the true simplex

and therefore its vertices (endmember signatures) will be away from those of the true

simplex (as illustrated in Figure 4.1). Given the noisy observations, our aim now is to

find a minimum volume simplex that can be closer to the true simplex. This means

that we allow some pixels in the noisy data cloud to be outside the estimated simplex.

From (2.22), we have x̃[n] ∼= ỹ[n] − w̃[n]. Substituting this for x̃[n] in (4.9), we

have

max
H∈R

(N−1)×(N−1) ,
g∈R

N−1

|det(H)| (4.10a)

s.t. hT
i (ỹ[n] − w̃[n]) − gi ≥ 0, ∀i, n, (4.10b)

1 − 1T
N−1H(ỹ[n] − w̃[n]) + 1T

N−1g ≥ 0, ∀n. (4.10c)

However, w̃[n] = ĈTw[n] is an unknown random vector. We therefore need to con-

sider this uncertainty in the constraints of (4.10). In the ensuing development, we

will make use of chance constraints or probabilistic constraints [29] that can account

for the randomness in the observations. A chance constrained counterpart of problem

(4.10) is proposed as follows:

max
H∈R

(N−1)×(N−1) ,
g∈R

N−1

|det(H)| (4.11a)

s.t. Pr(ui[n] ≤ hT
i ỹ[n] − gi) ≥ η, ∀i, n, (4.11b)

Pr(z[n] ≤ 1 − 1T
N−1Hỹ[n] + 1T

N−1g) ≥ η, ∀n, (4.11c)
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where Pr(·) represents probability, ui[n] , hT
i ĈTw[n] is a random variable with

the distribution N (0,hT
i ĈTDĈhi), i = 1, . . . , N − 1, z[n] , −1T

N−1HĈTw[n] is a

random variable with the distribution N (0, 1T
N−1HĈTDĈHT1N−1), and η ∈ (0, 1) is

a design parameter. Note that in (4.11), the hard constraints in (4.10), i.e., (4.10b)

and (4.10c) are replaced by the soft constraints (4.11b) and (4.11c), respectively.

Specifically, in (4.11), we only require that the constraints (4.10b) and (4.10c) hold

true with probability no less than η.

The chance constraints in (4.11) can be further simplified by normalizing the

random variables involved [29]. Recall from Section 3.2.2 that for a random variable

ε ∼ N (µ, δ2) and t ∈ R, Pr(ε ≤ t) ≥ η is true as t ≥ δΦ−1(η) + µ, where Φ(·) is the

cumulative distribution function of the standard normal random variable (Gaussian

random variable with zero mean and unit variance), and Φ−1(·) is the inverse of Φ(·).

Applying this procedure to the constraints of (4.11), we have the following RMVES

problem:

max
H∈R

(N−1)×(N−1) ,
g∈R

N−1

|det(H)| (4.12a)

s.t. Φ−1(η)
√
Qi ≤ hT

i ỹ[n] − gi, ∀i, n, (4.12b)

Φ−1(η)
√

1T
N−1Q1N−1 ≤ 1 − 1T

N−1Hỹ[n] + 1T
N−1g, ∀n, (4.12c)

where Q = HĈTDĈHT , and Qi = hT
i ĈTDĈhi. Let the constraint set of (4.12) be

F(η) =

{
(H, g) | Φ−1(η)

√
Qi ≤ hT

i ỹ[n] − gi, ∀i, n,

Φ−1(η)
√

1T
N−1Q1N−1 ≤ 1 − 1T

N−1Hỹ[n] + 1T
N−1g, ∀n

}
. (4.13)
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As Φ−1(η) is a monotone increasing function of η, one can infer that

F(η1) ⊆ F(η2), ∀η1 ≥ η2. (4.14)

Thus, the optimal |det(H)| will be larger for smaller η. Also note from (4.7a) that an

increased value of |det(H)| corresponds to a decreased value of |det(B)| = 1/|det(H)|

(i.e., a smaller simplex). It can be readily seen that, when η = 0.5, the constraint

set F(0.5) of (4.12) is identical to that of (4.9) (as Φ−1(η = 0.5) = 0) with x̃[n]

replaced by ỹ[n]. Simply speaking, for noisy observations our aim is to find a simplex

whose volume is minimized further when compared to that of the simplex obtained by

Craig’s criterion based MVES algorithm (see Figure 4.1). This, together with (4.14),

confirms that the appropriate range of η for robust design should be between 0 and

0.5. It is also worthwhile to mention that when η = 0, |det(H)| becomes unbounded

as F(0) = R
(N−1)×(N−1) × R

N−1 and hence |det(B)| becomes zero, and for the other

extreme case of η = 1, problem (4.12) becomes infeasible (as could be inferred from

(4.13)), since F(1) is an empty set.

Note that the values of η affect the feasible set of (4.12). When η > 0.5 (i.e.,

Φ−1(η) > 0), the constraints (4.12b) and (4.12c) are second-order cone constraints

(convex). These constraints ensure that the corresponding abundances of each noisy

observation are positive, rendering all the observations to be inside the estimated

simplex. However, from (4.14), one can infer that the estimated simplex when η > 0.5

will be larger than the one estimated when η = 0.5 (simplex estimated by MVES).

On the other hand, if η < 0.5 (i.e., Φ−1(η) < 0), the constraints (4.12b) and (4.12c)

become non-convex in (H, g). However, these constraints allow some negativity in

the abundance fractions, by means of which some noisy pixels can be left out of the

estimated simplex. Recall that for the robust design, some noisy pixels must be left

out of the simplex such that the estimated simplex can be close to the true simplex
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(as could be inferred from Figure 4.1). Thus we again conclude that the apt range of

the design parameter η should be between 0 and 0.5.

Figure 4.2 illustrates a scatter plot (for N = 3) of the dimension-reduced noisy

observations and optimal simplexes, conv{α1,α2,α3} of the RMVES problem (4.12)

for different values of η. As elaborately discussed above, one can see from Figure

4.2 that when η < 0.5, the solution of RMVES problem indeed approaches the true

simplex (as some of the noisy pixels are left outside the simplex). When η = 0.5 the

minimum volume simplex tightly encloses all the observations, and when η > 0.5, the

simplex expands, but still encloses all the observations. Note that for η ≥ 0.5, the

estimated simplex is away from the true simplex.

η > 0.5

η = 0.5 (MVES)

η < 0.5

true simplex

noisy pixels

Figure 4.2. Scatter plot of the dimension-reduced pixels for N = 3, illustrating the
solutions of RMVES for different values of η.

While the feasible set of (4.12) could be convex or non-convex (depending on

η), the objective function of (4.12) is always non-convex. Inspired by our previous

works [23], [57], [58], and [59], we utilize the alternating optimization methodology,

by virtue of which we form subproblems that are hopefully “less non-convex” than

(4.12). We consider the cofactor expansion for det(H) along the ith row of H:
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det(H) =

N−1∑

j=1

(−1)i+jhijdet(Hij), (4.15)

where Hij is the submatrix of H with the ith row and jth column removed. One can

observe from (4.15) that det(H) is linear in each hT
i , which enables us to update hT

i

and gi while fixing the other rows of H and the other entries of g. Then the partial

maximization of (4.12) with respect to hT
i and gi can be formulated as

max
hT

i ,gi

∣∣∣
N−1∑

j=1

(−1)i+jhijdet(Hij)
∣∣∣ (4.16a)

s.t. Φ−1(η)
√
Qi ≤ hT

i ỹ[n] − gi, ∀n, (4.16b)

Φ−1(η)
√

1T
N−1Q1N−1 ≤ 1 − 1T

N−1Hỹ[n] + 1T
N−1g, ∀n. (4.16c)

The objective function in (4.16) is still non-convex, but can be handled by breaking

it into the following two optimization problems

p? = max
hT

i ,gi

N−1∑

j=1

(−1)i+jhijdet(Hij) (4.17a)

s.t. Φ−1(η)
√
Qi ≤ hT

i ỹ[n] − gi, ∀n,

Φ−1(η)
√

1T
N−1Q1N−1 ≤ 1 − 1T

N−1Hỹ[n] + 1T
N−1g, ∀n,

q? = min
hT

i ,gi

N−1∑

j=1

(−1)i+jhijdet(Hij) (4.17b)

s.t. Φ−1(η)
√
Qi ≤ hT

i ỹ[n] − gi, ∀n,

Φ−1(η)
√

1T
N−1Q1N−1 ≤ 1 − 1T

N−1Hỹ[n] + 1T
N−1g, ∀n.

As discussed earlier, the apt range of the design parameter is η < 0.5, and hence

unlike in [23], [57], and [59], the subproblems here, (4.17a) and (4.17b) are non-convex,

which make problem (4.12) yet difficult to solve. Sequential quadratic programming

(SQP) [60] is a well-known method to handle non-convex problems, and here we
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employ the available MATLAB based SQP solver, namely fmincon [32] to handle the

subproblems (4.17a) and (4.17b). It should be noted that though the subproblems

(4.17a) and (4.17b) are non-convex, the objective functions are now linear (convex).

From our simulation experience, we found that this strategy substantially aids in

mitigating the local optimality issue associated with the problem (4.12) (this issue

will be addressed later in Section 4.3.3). The optimal solution of (4.16), denoted

by (h?
i
T ,g?

i ), is chosen as an optimal solution of the maximization problem (4.17a) if

|p?| > |q?|, and that of the minimization problem (4.17b) if |q?| > |p?|. This row-wise

maximization is conducted cyclically (i.e., i := (i modulo (N − 1)) + 1 via each row

update of H). We define one iteration as one full update of the matrix H and the

vector g. At each iteration, if the relative change in |det(H)| between the current

and the previous iterations exceeds a given threshold, then we continue with the next

updating iteration, else the updated H and g are the obtained estimates.

Suppose that a solution (H?, g?) is obtained by the above mentioned alternating

maximization method. From (2.15), (4.7a), (4.7b), the endmember signatures can

then be recovered by âi = Cα̂i + d for i = 1, . . . , N , where

α̂N = (H?)−1g?, (4.18)

[α̂1, ..., α̂N−1] = α̂N1T
N−1 + (H?)−1. (4.19)

Since some abundance fractions si[n] can be negative for those pixels outside the sim-

plex conv{α̂1, . . . , α̂N}, the abundance estimates ŝ[1], . . . , ŝ[L] are therefore obtained

by using the FCLS algorithm [15], which can ensure the non-negativity and full ad-

ditivity of the estimated abundances. The above illustrated procedure is collectively

termed as the robust minimum volume enclosing simplex (RMVES) algorithm.

The proposed RMVES algorithm uses the well known VCA [12] for the initializa-

tion of (4.16) [47]. The endmember estimates obtained by VCA are first expanded
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until all the dimension-reduced data are well within the simplex formed by the ex-

panded endmember estimates. The expanded endmember estimates are then used to

get the initial estimates of H (by (4.7a)) and g (by (4.7b)). The pseudocode for the

expanded VCA, that is used for RMVES initialization [22] is given in Table 4.1. The

pseudocode for the proposed RMVES algorithm is given in Table 4.2.

We conclude this section by summarizing key distinctions between the MVES

algorithm [23] and the proposed RMVES algorithm. In contrast to the MVES algo-

rithm that only considers hard constraints assuming the absence of noise, the RMVES

algorithm employs soft constraints (chance constraints) to account for the presence

of noise in the observed data. In addition, the RMVES algorithm uses the chance

constraint parameter η to control the volume of the estimated simplex such that some

noisy dimension reduced data ỹ[n] naturally fall outside the estimated simplex for

η < 0.5, and it yields the same endmember estimates with the MVES algorithm for

η = 0.5. While both algorithms employ the alternating optimization approach, the

RMVES algorithm resorts to a series of non-linear and non-convex programs (handled

via SQP) to obtain the desired endmember estimates, while the MVES algorithm

solves a series of linear programs. Finally, in RMVES algorithm the endmember

estimates along with the hyperspectral data are used to estimate the abundances

via FCLS algorithm, whereas the MVES algorithm yields endmember estimates and

abundance estimates simultaneously.

4.3 Simulations

In this section, the efficacy of the proposed RMVES algorithm is demonstrated. The

results shown in this section are averaged over 50 Monte Carlo runs for each considered

scenario. To show the robustness of the proposed algorithm, two different noisy

scenarios are considered. The first scenario is for the observations corrupted with
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Table 4.1. Pseudocode for expanded VCA initialization.

Given The affine set fitting parameters (Ĉ, d̂) and the endmember ma-
trix estimated by VCA [12], say A0.

Step 1. Obtain the dimension-reduced VCA endmember estimates E0 =
ĈT (A0 − d̂1T

N).

Step 2. Subtract the mean vector µE0 = E01N(1/N) from E0, i.e., Ē =
E0 − µE01

T
N .

Step 3. Repeat E0 := E0 + kĒ until all the elements of E†
0y[n] are non-

negative for all n = 1, . . . , L, where k is a constant (say k = 5).

Step 4. The output E0 , [β
(0)
1 , . . . ,β

(0)
N ] can then be used to obtain the

initial H(0) = [β
(0)
1 −β

(0)
N , . . . ,β

(0)
N−1 −β

(0)
N ]−1 and g(0) = H(0)β

(0)
N .

uniform Gaussian noise (Section 4.3.1). The performance is studied under different

purity levels and for different signal-to-noise ratios (SNRs). The second scenario is

that the observations are corrupted by non-uniform Gaussian noise (Section 4.3.2). In

this case, we fix the purity level and evaluate the performance of the algorithms under

test for different distributions of the non-uniform Gaussian noise variance over various

SNR levels. Finally, in Section 4.3.3, we study the local optimality issue associated

with handling the non-convex problems (4.12) and (4.16) (via RMVES algorithm), to

show the substantial performance improvement of the latter over the former. Several

existing algorithms are used to compare the performance of the proposed RMVES

algorithm. The pure-pixel based methods used are N-FINDR [9], SGA [10], and

VCA [12], and then FCLS [15] is used to find the abundances associated with the

obtained endmember estimates. The other methods used are ICE [17], APS [19],

MVC-NMF [20], MVSA [22], SISAL [28] and MVES [23]. The parameter settings and

algorithmic details of the algorithms under test are summarized in Table 4.3 (for other

parameters of the algorithms not listed in the table, their default values mentioned
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Table 4.2. Pseudocode for RMVES Algorithm.

Given The noisy observed data y[n], the number of endmembers N , a
design parameter η, and a convergence tolerance ε > 0.

Step 1. Estimate the noise covariance matrix (denoted by D̂) using mul-
tiple regression analysis [45].

Step 2. Dimension reduction: Obtain the dimension-reduced pixels:
ỹ[n] = ĈT (y[n]−d̂) for all n, with the affine set fitting parameters

(Ĉ, d̂) given by (2.20) and (2.21).

Step 3. Initialization: Let H = H(0) and g = g(0), where H(0) and g(0)

are given by the expanded VCA (as explained in Table 4.1). Set
i := 1 and % := | det(H)|.

Step 4. Define Q = HĈT D̂ĈHT and let Hij ∈ R
(N−1)×(N−1) denote the

submatrix of H with the ith row and jth column removed. Then,
handle (4.17a) and (4.17b) using SQP and obtain their solutions,
denoted by (h̄T

i , ḡi) and (h̆T
i , ği), respectively. Let p? and q? be

the optimal values of (4.17a) and (4.17b), respectively.

Step 5. If |p?| > |q?|, update (hT
i , gi) := (h̄T

i , ḡi), otherwise (hT
i , gi) :=

(h̆T
i , ği).

Step 6. If (i modulo (N − 1)) 6= 0, then i := i+ 1, and go to Step 4,
else

If |max{|p?|, |q?|} − %|/% < ε, then H? = H and g? = g.

Otherwise, set % := max{|p?|, |q?|}, i := 1, and go to Step 4.

Step 7. Calculate the dimension reduced endmember estimates: α̂N =
(H?)−1g? and [α̂1, ..., α̂N−1] = α̂N1T

N−1 + (H?)−1.

Step 8. Calculate the actual endmember estimates: âi = Ĉα̂i + d̂ for
i = 1, ..., N .

Step 9. Estimate the abundance vectors ŝ[1], . . . , ŝ[L] by using the FCLS
algorithm [15].
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in their respective references are used). The root-mean-square (rms) spectral angles,

denoted as φen (φab) between the true endmembers (abundance maps) and estimated

endmembers (abundance maps) (which are defined in (3.23) and (3.24), respectively)

are used as the performance indices. The average computation time (averaged over

all the scenarios and over all independent runs) of all the algorithms (i.e., the average

time required to estimate both the endmember signatures and the abundances), when

implemented in Matlab R2008a and running in a desktop computer equipped with

Core i7 − 930 CPU with speed 2.80 GHz, and 12 GB memory, is considered as the

computational complexity measure.

Table 4.3. Implementation details for the algorithms under test.

Algorithm Algorithmic details

NFINDR
Dimension reduction: PCA; Initialization: Randomly selected data points;
Abundance estimation: FCLS.

SGA
Dimension reduction: variable PCA; Initialization: Randomly selected target pixel;
Abundance estimation: FCLS.

VCA Dimension reduction: SVD/PCA; Abundance estimation: FCLS.

ICE
Dimension reduction: None; Initialization: VCA and FCLS;
Convergence tolerance: 10−5; Maximum iterations: 1000
Regularization parameter: 0.01.

APS
Dimension reduction: None; Initialization: VCA and FCLS;
Convergence tolerance: 2 × 10−4; Maximum iterations: 500;
Number of subgradient updates: 20; Regularization parameter: 0.001.

MVC-NMF
Dimension reduction: SVD; Initialization: VCA and FCLS;
Convergence tolerance: 10−6; Regularization parameter: 0.001.

MVSA
Dimension reduction: PCA; Initialization: Expanded VCA;
Regularization parameter: 10−6.

SISAL
Dimension reduction: PCA; Initialization: Expanded VCA;
Regularization parameter: 0.010 to 0.035 (depending on SNR).

MVES
Dimension reduction: Affine set fitting; Initialization: Solving feasibility problem;
Convergence tolerance: 10−8.

RMVES
Dimension reduction: Modified affine set fitting; Initialization: Expanded VCA;
Convergence tolerance: 10−6; Design parameter η: 0.001.

In the simulations, 8 endmembers, Alunite, Andradite, Buddingtonite, Calcite,

Chalcedony, Chlorite, Desert Varnish, and Halloysite with 224 spectral bands selected

from USGS library [51, 53] are used to generate the synthetic observations. The

abundance vectors were generated by following the Dirichlet distribution [12] [23],
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which can ensure the assumptions on the abundance vectors (i.e., (A1) and (A2)).

The purity levels considered in our simulations are ρ = 0.6, 0.8, 1.

As previously inferred for the RMVES algorithm, the apt value of η must be less

than 0.5, and from our extensive simulation experience we found that η should lie in

the range of 0.01 to 0.0001. Therefore, in each simulation and real data experiment

(see Section 4.4), the η value for the RMVES algorithm is set to 0.001 (constant) for

all SNRs. The reasons behind fixing a η value can be explained by scrutinizing the

constraints of problem (4.16), where Qi and Q in (4.16b) and (4.16c), respectively

are functions of the noise covariance matrix D. This implies, for a fixed η value, the

noise covariance matrix indirectly determines the lower bound of the abundances,

which in turn controls the volume of the estimated simplex. Further, since (4.16) is

non-convex, for each given data set (under a given scenario), the RMVES algorithm

is executed 10 times with 10 different expanded VCA initializations (since each time

VCA yields different endmember estimates for noisy observations), and the endmem-

ber signature and abundance fractions associated with the largest |det(H)| is chosen

as the optimal endmember and abundance estimates for the data under consideration.

Such a technique has been applied before in handling non-convex problems, e.g., [61].

4.3.1 Uniform Gaussian noise case

For the uniform Gaussian noise case, the noisy data were obtained by adding inde-

pendent and identically distributed (i.i.d.) zero-mean Gaussian noise vector to the

noise-free data for different SNRs (defined in (3.22)). To maintain non-negativity of

the observed pixels, we artificially set the negative values of the noisy pixels to zero.

Table 4.4 shows the rms endmember spectral angle φen (in degrees), rms abundance

spectral angle φab (in degrees), and the overall average computation time (over all the

scenarios) T (in secs) of all the algorithms under test, for the observations corrupted
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Table 4.4. Average φen (degrees), φab (degrees), and average computation time T (secs),
over the various unmixing algorithms for different purity levels (ρ) and SNRs- Uniform
Gaussian noise case.

Methods ρ

φen φab

SNR (dB) SNR (dB)
15 20 25 30 35 40 15 20 25 30 35 40 T

N-FINDR

0.6 9.35 8.98 8.83 9.21 9.13 8.93 50.79 48.38 47.02 47.40 47.79 47.40
0.8 7.22 6.08 5.45 5.00 4.97 4.87 39.41 29.38 21.81 19.64 19.33 18.28 1.49
1 5.37 2.31 1.48 1.06 0.51 0.32 31.84 13.38 8.18 5.77 2.93 1.78

SGA

0.6 8.99 8.62 8.76 8.59 8.70 8.58 51.77 48.05 47.48 47.40 47.23 47.28
0.8 6.76 4.73 4.23 4.16 3.95 3.93 41.76 28.36 21.98 20.56 19.09 18.83 1.35
1 5.28 2.13 1.22 0.72 0.52 0.40 32.01 13.93 8.27 5.11 3.42 2.44

VCA

0.6 9.35 8.97 8.33 8.05 8.06 7.82 51.41 47.64 45.98 44.93 45.10 44.69
0.8 7.16 5.86 5.38 4.63 4.30 4.30 41.91 30.53 29.25 24.14 20.30 18.90 1.50
1 5.29 2.39 3.02 1.17 0.57 0.39 34.28 15.28 16.24 6.81 3.49 1.99

ICE

0.6 8.70 8.19 8.10 8.41 8.14 8.22 39.98 33.57 32.12 30.16 30.11 30.03
0.8 5.33 3.96 3.83 3.74 3.73 3.71 28.77 19.40 16.62 14.48 14.50 12.68 420.61
1 4.17 2.53 2.22 2.02 1.96 1.95 23.65 14.71 10.96 9.11 8.47 8.28

APS

0.6 10.67 8.99 9.26 9.77 9.81 10.28 44.45 37.67 34.61 30.71 28.75 26.50
0.8 9.00 5.09 7.21 6.46 5.75 5.65 36.33 23.65 24.00 17.52 15.21 14.69 16.76
1 7.11 1.96 5.08 0.59 0.70 0.55 32.49 13.29 14.43 4.60 3.51 2.31

MVC-NMF

0.6 11.88 10.69 10.91 10.25 9.89 9.72 45.25 36.07 34.96 33.41 32.11 32.04
0.8 11.06 6.04 6.69 4.89 3.69 5.35 37.32 22.93 23.70 14.70 10.41 9.93 72.25
1 10.27 4.50 4.64 1.12 0.39 0.16 30.47 14.17 12.12 4.82 2.58 1.50

MVSA

0.6 14.35 13.18 10.59 8.01 5.40 3.51 45.63 36.31 24.33 15.98 10.17 5.81
0.8 14.22 12.72 10.39 7.78 5.02 3.62 40.85 29.42 21.02 13.79 8.56 5.68 3.04
1 14.47 12.30 10.63 8.06 5.14 3.44 38.49 27.04 19.51 13.08 8.04 4.82

SISAL

0.6 8.10 7.33 6.11 5.25 3.82 2.67 46.93 38.75 26.38 20.21 13.68 8.49
0.8 6.48 3.53 1.54 0.80 0.58 0.41 36.56 20.06 9.80 5.20 3.22 2.13 1.91
1 5.15 2.41 1.77 1.19 0.72 0.42 29.51 13.54 7.89 4.76 2.82 1.68

MVES

0.6 15.01 12.37 9.70 7.44 5.18 3.53 42.33 33.07 21.90 14.76 9.46 5.76
0.8 14.20 12.36 10.25 7.68 5.16 3.68 43.28 32.14 22.41 15.00 9.55 5.72 46.44
1 14.63 12.59 10.30 7.72 5.28 3.65 44.05 32.90 23.19 15.41 10.15 6.46

RMVES

0.6 9.14 5.72 3.26 2.31 1.58 1.09 41.49 26.82 13.13 7.90 4.73 2.84

0.8 8.72 5.13 3.42 2.43 1.68 1.11 35.63 18.48 10.30 6.49 4.18 2.66 118.97
1 8.74 5.63 4.41 3.55 2.59 1.77 32.94 16.83 10.85 7.73 6.10 3.61

by uniform Gaussian noise, with SNRs between 15 dB and 40 dB, and ρ = 0.6, 0.8,

and 1. For each scenario, the best (minimum φen and φab) out of all the algorithms

is highlighted as a bold-faced number. As one can infer from Table 4.4, the proposed

RMVES algorithm achieves the best performance for the highly mixed case (ρ = 0.6)

when SNR≥ 20 dB, and for all the values of ρ the RMVES algorithm performs better

than its predecessor, MVES algorithm. For the moderately mixed case (ρ = 0.8),

SISAL shows best performance for SNR≥ 20 dB, followed by RMVES for SNR≥ 25

dB. As expected, when pure pixels exist in the data (ρ = 1), the performances of

the pure-pixel based algorithms such as N-FINDR, VCA and SGA are comparable

with each other, and in some scenarios ICE and APS perform well. As far as the
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Table 4.5. Average φen (degrees), φab (degrees), and average computation time T (secs),
over the various unmixing algorithms for different τ values and SNRs, with ρ = 0.7- Non-
uniform Gaussian noise case.

Methods τ

φen φab

SNR (dB) SNR (dB)
15 20 25 30 35 40 15 20 25 30 35 40 T

N-FINDR
∞ 8.14 7.77 7.43 7.23 7.38 7.34 46.89 41.50 37.13 35.12 36.99 34.41
18 10.08 8.41 7.19 7.41 7.25 7.28 53.02 47.10 41.89 36.13 33.72 33.62 1.34
9 11.27 8.96 7.71 7.66 7.60 7.43 56.13 50.63 44.96 40.66 35.64 34.21

SGA
∞ 8.06 6.98 6.50 6.43 6.45 6.45 47.86 40.82 37.96 37.27 37.10 36.73
18 10.04 8.02 7.30 6.55 6.47 6.59 53.53 49.58 42.08 37.58 37.26 36.00 1.41
9 11.37 8.72 7.83 6.85 6.57 6.54 57.33 51.34 46.95 41.95 37.14 35.89

VCA
∞ 8.38 7.68 6.54 6.38 6.62 6.29 47.76 40.46 38.97 36.26 36.61 36.54
18 9.89 8.22 6.85 6.49 6.34 6.17 56.48 49.81 41.35 39.59 36.69 35.69 1.43
9 10.91 8.68 7.56 6.78 6.41 6.37 59.34 53.39 46.54 40.46 36.58 36.36

ICE
∞ 6.02 4.89 4.93 4.62 4.56 4.76 31.60 22.25 19.54 17.26 15.99 17.87
18 10.95 6.65 4.83 4.71 4.70 4.78 47.79 37.31 19.12 17.97 17.71 17.47 470.17
9 14.05 8.95 5.22 4.67 4.92 4.65 51.20 44.73 26.00 16.75 18.77 17.43

APS
∞ 10.37 8.33 9.08 9.22 9.81 9.57 39.78 32.09 27.98 25.33 25.06 23.47
18 17.40 11.71 10.42 9.47 9.15 9.67 50.20 41.77 32.22 26.72 25.01 23.03 24.36
9 20.64 15.06 12.76 9.82 9.68 9.97 53.21 46.37 37.55 28.35 25.50 24.03

MVC-NMF
∞ 11.94 9.79 9.61 9.31 7.98 7.85 40.63 32.54 32.96 26.58 23.13 21.75
18 11.19 11.75 13.05 9.55 9.11 8.20 51.33 40.48 33.32 29.39 25.23 23.91 44.62
9 13.05 11.44 17.72 10.83 8.58 8.69 54.36 47.72 39.38 29.93 26.40 23.53

MVSA
∞ 14.37 12.87 10.38 7.56 4.90 3.43 44.05 32.82 22.60 14.14 8.72 5.57
18 15.54 14.62 13.27 8.71 5.54 3.74 59.47 50.44 33.29 17.00 9.44 5.55 2.96
9 15.35 14.42 12.93 11.91 6.41 4.20 61.96 56.46 45.67 28.32 11.02 6.38

SISAL
∞ 7.37 5.84 3.87 2.17 1.83 1.91 41.23 30.66 17.97 8.84 6.79 5.52
18 9.76 8.13 5.92 2.94 1.38 1.59 52.81 43.75 30.08 12.16 6.07 4.49 2.41
9 10.68 8.93 7.28 4.90 1.50 1.39 58.75 49.39 38.27 23.55 6.27 4.70

MVES
∞ 14.26 12.15 10.17 7.46 5.15 3.42 42.90 32.38 22.26 14.80 9.33 5.66
18 14.98 14.31 13.08 8.30 5.30 3.77 52.34 44.75 32.05 16.42 9.43 5.56 38.58
9 15.92 15.17 12.55 11.17 6.35 4.25 53.70 49.77 40.40 26.81 11.64 6.83

RMVES

∞ 8.52 4.85 3.23 2.44 1.48 1.17 37.45 20.63 11.44 6.99 4.23 2.63

18 10.44 7.89 4.17 2.97 1.63 1.08 52.07 32.96 14.57 8.13 4.11 2.56 159.44
9 11.73 9.07 6.57 3.13 2.24 1.44 63.06 45.89 25.71 8.97 5.33 3.23

average computation time of the algorithms is concerned, Table 4.4 confirms that the

values of the average computation time for pure-pixel based algorithms (N-FINDR,

VCA and SGA) are less than those of other algorithms. Among the other algorithms,

SISAL costs the least average computation time and the average computation time

of RMVES algorithm is less than that of ICE algorithm. As can be seen from Table

4.4, the computational complexity of RMVES algorithm is the price for the accuracy,

especially when the hyperspectral data are highly mixed.
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4.3.2 Non-uniform Gaussian noise case

For the non-uniform Gaussian noise case, the noise variances σ2
i of the M spectral

bands, following a Gaussian shape centered at the (M/2)th band, as explained in

Section 3.3.2. Table 4.5 shows the average rms spectral angles and the average com-

putation time of all the algorithms under test, for SNR from 15 dB to 40 dB, ρ = 0.7,

and τ = ∞, 18, and 9. For the non-uniform Gaussian noise case, in most of the sce-

narios under consideration, RMVES performs best followed by SISAL and ICE. It is

worth mentioning that for τ = 9 some performance drop of RMVES may be due to

the estimation of the noise covariance matrices in such scenarios. Here again, in all

the scenarios, the RMVES algorithm performs better than its predecessor, MVES al-

gorithm. The observations on the average computation time of the algorithms under

test for the uniform Gaussian noise case in Section 4.3.1 also apply to the non-uniform

Gaussian noise case here.

4.3.3 Local optimality issues

In this subsection, let us investigate the local optimality issues while attempting to

solve the non-convex problems (4.12) and (4.16) (via RMVES algorithm). Table 4.6

shows the average φen and φab for the uniform Gaussian noise case, and the avearge

computation time T (in seconds), when (4.12) is directly handled using SQP. Here

again the η value used is 0.001 and (4.12) is executed 10 times with 10 different VCA

initializations (as in Table 4.1). The estimates associated with the maximum value of

|det(H)| is chosen as the solution for (4.12). As one can infer by comparing Table 4.4

and Table 4.6, attempting to solve (4.16) in a cyclic optimization fashion (RMVES

algorithm) significantly improves the performance of the algorithm. Numerical re-

sults from these tables indicate that cyclic optimization is not as susceptible to local

optimality issues as attempting to solve (4.12) directly by SQP.
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Table 4.6. Average φen (degrees), φab (degrees), and average computation time T (secs),
while directly applying SQP to (4.12), for different ρ and SNRs- Uniform Gaussian noise
case.

Method ρ

φen φab

SNR (dB) SNR (dB)
15 20 25 30 35 40 15 20 25 30 35 40 T

Applying
0.6 21.02 20.34 20.86 20.48 20.75 20.14 48.69 46.00 45.95 43.48 43.34 41.90

SQP to (4.12)
0.8 19.41 20.10 20.47 17.89 16.98 17.11 52.88 49.61 48.48 44.49 40.90 41.10 5.64
1 18.86 18.91 16.56 15.49 15.39 15.44 55.46 52.25 46.09 44.16 44.18 44.23

Another interesting observation is the variation in the average endmember spectral

angle when handling (4.16) (via RMVES algorithm) with one VCA initialization (as

in Table 4.1) and with ten different VCA initializations. In Figure 4.3, the asterisks

correspond to the average endmember spectral angle (averaged over 50 independent

runs) obtained by executing the RMVES algorithm with a single VCA initialization

in each of the 50 independent runs, for ρ = 0.6 and SNR (uniform Gaussian noise)

varying from 15 dB to 40 dB with the step size of 5 dB. The triangles in the fig-

ure represent the average endmember spectral angles associated with the RMVES

algorithm for the same scenarios, but with ten VCA initializations in each of the

50 independent runs, and choosing the spectral angle associated with the maximum

|det(H)| (i.e., those φens shown in Table 4.4). As one can infer, the differences be-

tween the average endmember spectral angles obtained by RMVES with one VCA

initialization and by RMVES with ten VCA initializations, for all the scenarios are

within two degrees. This indicates that the local optimality issue associated with

(4.16) is not severe, but still exists (even after linearizing the objective function of

(4.12) via cofactor expansion), since the constraints sets are non-convex.

Analyzing the local optimality issue of the existing HU algorithms in a fair fashion

is non-trivial due to their distinct characteristics and can be a separate research topic.

However, to illustrate the existence of local optimality in other HU methods, we pro-

ceed with the following simulations. A total of 50 data sets have been independently
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Figure 4.3. Average endmember spectral angles obtained by the RMVES algorithm for
ρ = 0.6 with one VCA initialization, and with ten VCA initializations and choosing the
spectral angle associated with the maximum |det(H)|.

generated with ρ = 0.6, under uniform Gaussian noise case with SNR 25 dB, and

the HU algorithms were applied 10 times (each time with a different initialization)

to each of the data set. Then, for the ith data set, the variance and mean of φen

(over the 10 executions of each algorithm on the ith data set), denoted by var{φen}i

and mean{φen}i, respectively are noted and the average variance and mean over 50

independent runs are computed respectively as,

var{φen} =
1

50

50∑

i=1

var{φen}i,

and

mean{φen} =
1

50

50∑

i=1

mean{φen}i.

Table 4.7 shows the var{φen} and mean{φen} of the various algorithms under

test. The mean{φen} values in Table 4.7 are comparable with the corresponding

values shown in Table 4.4, where the average values of φen are over 50 independent

runs without using 10 different initializations for each independent run. As can be
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seen from Table 4.7, in addition to SGA [10] and APS [19], the var{φen} for MVES

algorithm is also zero because the MVES algorithm is initialized by solving the fea-

sibility problem [23] (that is inherent in the MVES algorithm), which being convex

always yields the same initial estimates for each data set (i.e., the same initialization

is yielded for the same data set).

Table 4.7. var{φen} and mean{φen} of various HU algorithms, when ρ = 0.6 and SNR=25
dB, for 50 independent data sets. For each data set the algorithm is applied 10 times, each
time with its inherent initialization.

Algorithm var{φen} (in degrees2) mean{φen} (in degrees)
NFINDR 1.16 9.06

SGA 0 8.52
VCA 1.23 8.17
ICE 1.64 8.38
APS 0 9.26

MVC-NMF 5.04 10.69
MVSA 3.02 10.81
SISAL 2.38 6.74
MVES 0 9.71

RMVES 3.77 4.29

4.4 Real data experiments

In this section, we demonstrate the performance of the proposed RMVES algorithm

using the AVIRIS data taken over the Cuprite Nevada site [52], the details of which

are provided in Chapter 3 Section 3.4. The AVIRIS data are challenging because of

two reasons. One reason is that the spatial resolution is not so high (about 17 m

per pixel) and the other reason is that the true total number of endmembers and the

associated minerals are yet to be accurately identified. Based on our the discussions

in Section 3.4, the number of endmembers in this real data experiment is set to be

14.
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Two existing algorithms, namely MVES and VCA were also tested with the same

real data, and compared with the proposed RMVES algorithm. It should be noted

that the non-pure pixel based algorithms are sensitive to initialization and hence their

performances vary with the initialization. In order to have a fair comparison with

our RMVES algorithm, the MVES algorithm was applied to the hyperspectral data

with 10 different expanded VCA initializations (which are also feasible initializations

for MVES) and the estimates associated with the least simplex volume is chosen as

the results of MVES algorithm.

The subsampled real data discussed in Section 3.4 is used as input for RMVES and

MVES algorithms, and the complete hyperspectral data set (without subsampling) is

used for the estimation of the abundance maps. When applied to real hyperspectral

data, the computational time for RMVES, MVES (both with subsampled data) and

VCA (with full data) are around 145 minutes (which is around 8 hours on average for

the complete data), 119 minutes and 4 minutes, respectively. The endmember signa-

tures obtained via RMVES, MVES and VCA, along with the corresponding library

signatures are shown in Figure 4.4. The minerals were identified by the visual com-

parison of the obtained abundance maps with the ones available in [20] [23] [51] [55]

and [56]. The materials identified are arranged in alphabetical order for ease of visual

comparison and the abundance maps obtained by the RMVES, MVES, and VCA al-

gorithms are shown in Figure 4.5, Figure 4.6, and Figure 4.7, respectively. It should

be mentioned that the difference in the materials identified by the three algorithms

could possibly be due to the working nature of the respective algorithms and their

sensitivity to initializations. The mean removed spectral angle between the estimated

signature aest and the corresponding library signature alib (defined in (3.27)) is used

as the performance measure. The value of φ for the various minerals identified by

the algorithms under test are given in Table 4.8. Again, the least φ value for an

endmember is highlighted as a bold-faced number and the number in parenthesis is
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the φ value for the repeatedly identified endmember. It can be seen from Table 4.8

that for the materials identified, the proposed RMVES algorithm performs best (with

the minimum average φ), and further, it mostly yields better endmember estimates

(minimum φ) than its predecessor MVES algorithm and the pure-pixel based VCA

algorithm. Note that few of the mean removed spectral angles for endmembers (e.g.,

Buddingtonite, Kaolinite#1) identified by RMVES algorithm are marginally higher

than that of the ones obtained by MVES. This could be attributed to some orien-

tation of the simplex obtained by RMVES, with respect to the simplex of the true

endmembers. In our simulations and real data experiments, HySiMe [45] was used

to estimate the noise covariance matrix. Better estimation of the noise covariance

matrix should further enhance the performance of the RMVES algorithm.

As mentioned in Section 3.4, we have also tried the HU algorithms for real data

with artificially added noise. However, the majority of the so obtained abundance

maps were inconclusive when compared with available groundtruths [20] [23], [51],

[55], [56], and hence the mineral identification and quantification could not be per-

formed for the endmember and abundance estimates obtained for the noise added

AVIRIS real data.

4.5 Summary

We have presented a robust HU algorithm, namely RMVES (as shown in Table 4.2),

for effective unmixing of mixed hyperspectral data corrupted by uniform or non-

uniform Gaussian noise. The dimension reduction via affine set fitting procedure has

been suitably modified for noisy hyperspectral observations. The randomness caused

by noise has been dealt by incorporating chance constraints in the unmixing problem

formulation with a design parameter η. A detailed analysis on the role of η has been

presented, and it was concluded that η must be less than 0.5, which along with the
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Figure 4.4. Endmember signatures taken from library, and the ones estimated by RMVES,
MVES, and VCA algorithms.

objective function results in a non-convex optimization problem. To minimize the

effect of non-convexity of the objective function, an alternating optimization concept

has been utilized. The partial maximization problems involved are handled by us-

ing available sequential quadratic programming (SQP) solvers. Finally, Monte-Carlo

simulations and real data experiments presented in Sections 4.3 and 4.4, respectively,

demonstrate the superior performance of the proposed RMVES algorithm over several

existing benchmark methods, including its predecessor, the MVES algorithm.
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Andradite 1 Andradite 2 Alunite 1 Buddingtonite

Chalcedony Desert Varnish 1 Dumortierite Goethite

Kaolinite 1 Montmorillonite 1 MuscoviteMontmorillonite 2

Nontronite 1 Smectite

Figure 4.5. Abundance maps obtained by the RMVES algorithm.
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Muscovite

Chalcedony

Montmorillonite 2

Desert Varnish 2

Alunite 1 Buddingtonite

Nontronite 2

Dumortierite

Kaolinite 2Goethite

Andradite 1

Desert Varnish 1

Alunite 2

Kaolinite 1

Figure 4.6. Abundance maps obtained by the MVES algorithm.
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Muscovite

Chalcedony

Montmorillonite 1

Desert Varnish 1

Alunite 1 Buddingtonite

Nontronite 1 Nontronite 2

Dumortierite Dumortierite Kaolinite 2

Pyrope

Andradite 2

Paragonite

Figure 4.7. Abundance maps obtained by the VCA algorithm.
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Table 4.8. Mean-removed spectral angles φ (degrees) between library spectra and end-
members estimated by RMVES, MVES, and VCA algorithms.

RMVES MVES VCA
Andradite#1 9.36 25.61 -
Andradite#2 24.52 - 18.49
Alunite#1 15.92 21.85 17.74
Alunite#2 - 17.72 -

Buddingtonite 23.54 22.98 27.25
Chalcedony 27.74 38.25 31.9

Desert Varnish#1 20.99 18.64 12.12
Desert Varnish#2 - 43.04 -

Dumortierite 20.77 29.32 31.95 (32.01)
Goethite 17.71 19.05 -

Kaolinite#1 27.25 26.50 -
Kaolinite#2 - 21.09 32.49

Montmorillonite#1 22.99 - 18.06
Montmorillonite#2 24.34 26.00 -

Muscovite 39.63 44.19 32.7
Nontronite#1 22.95 - 24.66
Nontronite#2 - 28.83 21.51

Paragonite - - 35.91
Pyrope - - 25.59
Smectite 22.53 - -

Average φ 22.87 27.11 25.73

66



Chapter 5

Estimation of Number of

Endmembers Using p−norm Based

Pure Pixel Identification Algorithm

The robust HU algorithms presented in Chapter 3 and Chapter 4, and the existing HU

algorithms assume that the number of endmembers in the hyperspectral data is known

a priori, which, however is not possible in practical scenarios. Hence, in this chapter,

we propose a data geometry based approach to estimate the number of endmembers.

Since, the dimension reduction technique introduced in Chapter 2 assumes that the

number of endmembers N is known before hand, we first present the dimension

reduction procedure for an unknown N . The geometric properties associated with

the dimension-reduced hyperspectral data are then discussed. Based on the geometric

properties we then move on propose two novel algorithms, namely geometry based

estimation of number of endmembers - convex hull (GENE-CH) algorithm and affine

hull (GENE-AH) algorithm. Since the estimation accuracies of the proposed GENE

algorithms depend on the performance of the EEA used, a reliable, reproducible,

and successive EEA (SEEA), called p-norm based pure pixel identification (TRI-P)
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algorithm is then proposed. The performance of the proposed TRI-P algorithm, and

the estimation accuracies of the GENE algorithms are demonstrated through Monte

Carlo simulations and real data experiments.

5.1 Dimension reduction-revisited

To explain the dimension reduction technique with unknown N, let us first consider

the noise-free scenario (i.e., y[n] = x[n], ∀n, and Uy = Ux). Recall from (2.4), (2.6),

and (2.7) that

y[n] ∈ aff{a1, . . . , aN} = aff{y[1], . . . ,y[L]} = A(C,d). (5.1)

When N is known, an optimal solution for the affine-set fitting parameter (C,d) ∈

R
M×(N−1) × R

M is given by (2.9) and (2.10) (with Ux = Uy). However, in practice,

the number of endmembers N is unknown and ought to be estimated. Therefore,

by assuming Nmax to be a maximum bound on the number of endmembers, where

N ≤ Nmax ≤M , similar to the one in [23], we can obtain an affine set fitting parameter

(C,d) ∈ R
M×(Nmax−1) × R

M , as below:

C = [ q1(UyU
T
y ), . . . , qNmax−1(UyU

T
y ) ], (5.2)

and d is defined in (2.9). From (2.10) and (5.2), it can be easily verified that

y[n] ∈ A(C,d) ⊆ A(C,d). (5.3)

Then, by virtue of (2.4), and since C given by (5.2) is semi-unitary, the dimension-

reduced pixel vectors ỹ[n] can be obtained by the following affine transformation of
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y[n]

ỹ[n] =C
T (y[n] − d) ∈ R

Nmax−1. (5.4)

For the noisy scenario, similar to (2.20) and (2.21), the approximate affine set fitting

parameter (Ĉ, d̂) can be obtained as

d̂ =
1

L

L∑

n=1

y[n] =
1

L

L∑

n=1

x[n] +
1

L

L∑

n=1

w[n] ∼= d, (5.5)

Ĉ = [ q1(UyU
T
y − LD̂), . . . , qNmax−1(UyU

T
y − LD̂) ] ∼= C, (5.6)

where D̂ is defined as

D̂ =
1

L
WWT , (5.7)

is an estimate of the noise covariance matrix. As shown in [62], for given D̂, the

affine set fitting solution (Ĉ, d̂) (given by (2.20) and (2.21)) can be shown to be an

approximation to the true (C,d) and it asymptotically approaches the true (C,d) for

large L. In practical situations, the multiple regression analysis based noise covariance

estimation method reported in HySiMe [45] can be used to estimate D̂. Thus, in the

noisy scenario, the dimension reduced observations can be represented as

ỹ[n] =Ĉ
T
(y[n] − d̂) ∈ R

Nmax−1, (5.8)

in which d̂ and Ĉ, are given by (5.5) and (5.6), respectively. Further, due to (2.1),

(2.2), and (A2), we have

ỹ[n] = x̃[n] + w̃[n], n = 1, . . . , L, (5.9)
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where

x̃[n] =

N∑

i=1

si[n]αi, n = 1, . . . , L, (5.10)

in which

αi = Ĉ
T
(ai − d̂) ∈ R

Nmax−1, i = 1, . . . , N (5.11)

is the ith dimension-reduced endmember, and w̃[n] , Ĉ
T
w[n] ∼ N (0,Σ), in which

Σ = Ĉ
T
DĈ ∈ R

(Nmax−1)×(Nmax−1). (5.12)

Note that the dimension-reduced endmember defined in (5.11) is different from the

one defined in earlier chapters as the dimension now is R
Nmax−1 instead of R

N−1. The

relation between the dimension-reduced endmember αi and the true endmember ai

is then given by

ai = Ĉαi + d̂, i = 1, . . . , N. (5.13)

It is worth mentioning that under (A4), from (5.9) and (5.10), we have

ỹ[li] = αi + w̃[li], ∀i = 1, . . . , N, (5.14)

which is essential in the development of the proposed GENE algorithms in Section

5.2.

5.1.1 Convex geometry of the hyperspectral data

In this subsection we will present the convex geometry of the noise-free dimension-

reduced hyperspectral data given by (5.10). The convex geometry will lay a solid

platform for the ensuing sections, though the presence of noise will be taken into
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account therein. Based on (5.10), we have the following facts:

(F1) In the noise-free case, by (A1)-(A4), any dimension-reduced pixel vectors x̃[n]

lie in the convex hull of the dimension-reduced endmember signatures, and

conv{x̃[1], . . . , x̃[L]} = conv{α1, . . . ,αN}, (5.15)

in which conv{α1, . . . ,αN} is a simplex withN extreme points being α1, . . . ,αN .

A more general case of (F1) can be obtained by relaxing (A1) and (A4), as stated

next.

(F2) In the noise-free case, by (A2) and (A3), any dimension-reduced pixel vectors

x̃[n] lie in the affine hull of the dimension-reduced endmember signatures, and

aff{x̃[1], . . . , x̃[L]} = aff{α1, . . . ,αN}, (5.16)

with the affine dimension equal to N − 1.

A simple illustration of (F1) and (F2), for N = 3 case is shown in Figure 5.1. These

geometrical properties of the observed hyperspectral data play a significant role in

the proposed algorithms for estimating the number of endmembers, which will be

presented in the next section.

5.2 Geometry based estimation of number of end-

members (GENE)

In this section, we make use of the key geometric characteristics of the observed

dimension-reduced hyperspectral data, i.e (F1) and (F2) to systematically estimate

the number of endmembers present in the hyperspectral data. Thus the proposed
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0

α1

α2

α3

x̃[n]

R
Nmax−1

aff{α1,α2,α3} = aff{x̃[1], . . . , x̃[L]}

conv{α1,α2,α3} = conv{x̃[1], . . . , x̃[L]}

Figure 5.1. Illustration of (F1) and (F2), for N = 3 case.

algorithms are aptly named as geometry based estimation of number of endmembers

(GENE) algorithms. In the first subsection, we propose the GENE-CH algorithm

based on the convex hull geometry (F1), provided that (A4) holds true. However,

for data with (A4) violated, the GENE-AH algorithm is proposed in the subsequent

subsection. GENE-AH is based on (F2) and it turns out to be more robust than

the GENE-CH algorithm against absence of pure pixels in the data (which will be

confirmed by the simulations in Section 5.4).

5.2.1 GENE-Convex Hull (GENE-CH) Algorithm

In this subsection we assume that (A4) holds true. Suppose that a reliable, SEEA

has found the pixel indices l1, . . . , lN , lN+1, . . . , lk−1, lk, in which l1, . . . , lN are pure

pixel indices. Here, lk is the current pixel index estimate and {l1, l2, . . . , lk−1} are the

previously found pixel index estimates, and k ≤ Nmax. Then by (5.9) and (5.14), it

can be readily inferred that

ỹ[li] = x̃[li] + w̃[li], i = 1, . . . , k, (5.17)
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where

x̃[li] =






αi, i = 1, . . . , N,

∑N
j=1 sj[li]αj, i = N + 1, . . . , k.

(5.18)

To explain the idea behind GENE-CH, let us first consider the noise-free scenario,

i.e., w̃[li] = 0, ∀i = 1, . . . , k, in (5.17). Recall from (F1) that the total number of

extreme points in conv{x̃[1], . . . , x̃[L]} is N. That is to say, if ỹ[lk] = x̃[lk] cannot

contribute a new extreme point to the conv{ỹ[l1], . . . , ỹ[lk−1], ỹ[lk]}, i.e.,

conv{ỹ[l1], . . . , ỹ[lk−1], ỹ[lk]} = conv{ỹ[l1], . . . , ỹ[lk−1]} = conv{x̃[l1], . . . , x̃[lk−1]},

(5.19)

or in other words, if x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}, then it can be inferred by (5.18)

that all the endmembers are already found, that is k ≥ N + 1. Therefore, the

smallest k such that x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}, must take the value of N + 1,

and thus N can be estimated as k − 1, provided that the smallest k can be reliably

estimated. However, in a real scenario, since only noisy ỹ[l1], . . . , ỹ[lk] are available

(rather than x̃[l1], . . . , x̃[lk]), in the process of estimating the number of endmembers,

the presence of noise in the ỹ[l1], . . . , ỹ[lk] must be taken into account. To this end,

we propose a Neyman-Pearson hypothesis [63] testing based method to determine

whether x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}, or not, based on noisy ỹ[l1], . . . , ỹ[lk]. The

idea is to find the smallest k for which ỹ[lk] is closest to conv{ỹ[l1], . . . , ỹ[lk−1]}.

Let us consider the following constrained least squares problem:

θ? = arg min
θ�0,1T

k−1θ=1
‖ỹ[lk] − Âk−1θ‖2

2, (5.20)
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where

Âk−1 = [ỹ[l1], . . . , ỹ[lk−1]] ∈ R
(Nmax−1)×(k−1). (5.21)

The optimization problem in (5.20) is convex and can be solved by using available

convex optimization solvers such as SeDuMi [30] and CVX [31]. We define the fitting

error vector e as below:

e = ỹ[lk] − Âk−1θ
? (5.22)

= µk +

(
w̃[lk] −

k−1∑

i=1

θ?
i w̃[li]

)
∈ R

Nmax−1, (by (5.17)) (5.23)

where

µk = x̃[lk] −
k−1∑

i=1

θ?
i x̃[li]. (5.24)

Then the following can be observed from (5.23):

• If x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}, then it implies that x̃[lk] −
∑k−1

i=1 θ
′

ix̃[li] = 0,

for some θ
′

= [θ
′

1, . . . , θ
′

k−1]
T � 0, 1T

k−1θ
′

= 1. Since θ? ' θ
′

makes µk ' 0 (due

to µk = 0 for the noise-free case), then e can be approximated as a zero-mean

Gaussian random vector, i.e., e ∼ N (0, ξ?Σ) , where

ξ? = 1 + θ?2
1 + θ?2

2 + · · ·+ θ?2
k−1, (5.25)

and Σ is given by (5.12).

• If x̃[lk] 6∈ conv{x̃[l1], . . . , x̃[lk−1]}, then e ∼ N (µk, ξ
?Σ) is a non-zero mean

Gaussian random vector.
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Now define

r = eT (ξ?Σ)−1e. (5.26)

When x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}, it is easy to see that r can be approximated

as a central Chi-square distributed random variable, and otherwise r is a non-central

Chi-square distributed random variable [64]. In both cases, the degrees of freedom is

Nmax − 1. Hence, we consider the following two hypotheses:

H0 (x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}) : r ∼ fχ2(x,Nmax − 1) (5.27a)

H1 (x̃[lk] 6∈ conv{x̃[l1], . . . , x̃[lk−1]}) : r ∼ fNχ2(x,Nmax − 1, ‖µk‖2
2). (5.27b)

Here, fχ2(x,Nmax−1) is the pdf of central Chi-square distribution and is given by [64]

fχ2(x, k) =






1
2k/2Γ(k/2)

x(k/2)−1e−x/2, x ≥ 0

0, otherwise,
(5.28)

where Γ(k/2) denotes the Gamma function. However, the non-central Chi-square pdf

fNχ2(x,Nmax − 1, ‖µk‖2
2) is unknown, as µk is unknown. Therefore, we use Neyman-

Pearson classifier rule for the hypothesis testing problem:

Decide H0 if r < κ (5.29a)

Decide H1 if r > κ, (5.29b)

where κ can be found by minimizing the P (H0|H1) subject to P (H1|H0) ≤ PFA, in

which PFA is the preassigned acceptable false alarm rate. Obviously, the optimal
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value of κ should satisfy [63]

∫ ∞

κ

fχ2(x,Nmax − 1)dx = PFA.

Hence the decision rules in (5.29) can be equivalently written as

Decide H0 if

∫ ∞

r

fχ2(x,Nmax − 1)dx >

∫ ∞

κ

fχ2(x,Nmax − 1)dx = PFA, (5.30a)

Decide H1 if

∫ ∞

r

fχ2(x,Nmax − 1)dx < PFA. (5.30b)

The integral in (5.30) can be easily computed as follows:

∫ ∞

r

fχ2(x,Nmax − 1)dx = 1 − γ(r/2, (Nmax − 1)/2)

Γ((Nmax − 1)/2)
, (5.31)

where γ(x/2, (Nmax − 1)/2) is the lower incomplete Gamma function [65]. Once the

integral is evaluated, one of the hypotheses should be true, based on (5.30). The

entire procedure for GENE-CH is summarized in Table 5.1. The working strategy

of GENE-CH algorithm in synchronization with a suitable SEEA is demonstrated in

Figure 5.2.

5.2.2 GENE-Affine Hull (GENE-AH) Algorithm

Recall that the GENE-CH algorithm is based on the assumption that the pure pixels

are present in the data (i.e., (A4) holds true). However, for practical hyperspectral

data the presence of pure pixels cannot be guaranteed. In this case, the dimension-

reduced endmembers estimated by an EEA can be expressed in general as in (5.17),
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Table 5.1. Pseudocode for GENE-CH and GENE-AH algorithms.

Given noisy hyperspectral data y[n], sufficiently large maximum
number of endmembers N ≤ Nmax ≤ M , false alarm
probability PFA, and estimate of noise covariance matrix
D̂.

Step 1. Compute (Ĉ, d̂) given by (5.5) and (5.6).

Step 2. Obtain the first pixel index l1 by a SEEA and compute

ỹ[l1] = Ĉ
T
(y[l1] − d̂) ∈ R

Nmax−1. Set k = 2.

Step 3. Obtain the kth pixel index lk using the SEEA and com-

pute ỹ[lk] = Ĉ
T
(y[lk] − d̂) ∈ R

Nmax−1 and form Âk−1 =
[ỹ[l1], . . . , ỹ[lk−1]] ∈ R

(Nmax−1)×(k−1).

Step 4. Solve the following:

GENE−CH : θ? = arg min
θ�0,1T

k−1θ=1
‖ỹ[lk] − Âk−1θ‖2

2,

GENE−AH : θ? = arg min
1T

k−1θ=1
‖ỹ[lk] − Âk−1θ‖2

2,

and calculate e = ỹ[lk] − Âk−1θ
?.

Step 5. Compute r = eT (ξ?Σ)−1e, where ξ? = 1 + θ?T θ? and

Σ = Ĉ
T
DĈ.

Step 6. Calculate ψ =
∫ ∞

r
fχ2(x,Nmax − 1)dx by (5.31).

Step 7. If ψ > PFA, then output k−1 as the estimate for number
of endmembers, else k := k + 1 and if k ≤ Nmax go to
Step 3.

where

x̃[li] =

N∑

j=1

sj[li]αj, ∀i = 1, . . . , k. (5.32)
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For such hyperspectral data, GENE-CH may not provide an accurate estimate of the

number of endmembers. A pictorial illustration is given in Figure 5.3, where N = 3

endmembers (α1,α2,α3) are not present in the noise-free hyperspectral data. For

this case, the endmember estimates, denoted by x̃[li], i = 1, ..., Nmax = 6, obtained by

an EEA are shown in Figure 5.3(a) and can be expressed as

x̃[li] =

3∑

j=1

sj [li]αj, i = 1, . . . , Nmax = 6, (by (5.17) and (5.32)) (5.33)

where l1, . . . , l6 are the pixel indices provided by the EEA under consideration. Then,

as can be inferred from Figure 5.3(a), for the conv{x̃[l1], . . . , x̃[l6]}, there can be more

than 3 extreme points which in fact is 6 in this case. In other words,

x̃[lk] 6∈ conv{x̃[l1], . . . , x̃[lk−1]}, k = 2, 3, 4, 5, 6, (5.34)

which means that the hypothesis H1 given by (5.27b) will be true even for k > N = 3.

Hence, using the fact (F1) will obviously result in an overestimation of the number

of endmembers for this case. However, from Figure 5.3(b), it can be readily inferred

that

x̃[lk] 6∈ aff{x̃[l1], . . . , x̃[lk−1]}, k = 2, 3, and

x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]}, k = 4, 5, 6.

Motivated by the above illustration, we next propose the GENE-AH algorithm.

The GENE-AH algorithm uses the fact (F2), which states that in the noise-free

case, the affine dimension of aff{x̃[1], . . . , x̃[L]} is N − 1. This implies that in the

noise-free case, if ỹ[lk] = x̃[lk] cannot contribute an increment to the affine dimension
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of aff{ỹ[l1], . . . , ỹ[lk−1], ỹ[lk]}, i.e.,

aff{ỹ[l1], . . . , ỹ[lk−1], ỹ[lk]} = aff{ỹ[l1], . . . , ỹ[lk−1]} = aff{x̃[l1], . . . , x̃[lk−1]}, (5.35)

or in other words, if x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]}, then k ≥ N + 1. Therefore, the

smallest k such that x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]}, must take the value of N + 1, and

thus N can be estimated as k−1. As presented in Section 5.2.1, again we use Neyman-

Pearson hypothesis [63] testing to determine whether x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]}, or

not, based on noisy ỹ[l1], . . . , ỹ[lk]. The idea is to find the smallest k for which ỹ[lk]

is closest to aff{ỹ[l1], . . . , ỹ[lk−1]}. The details are as follows:

As in (5.20), we consider solving the following constrained least squares problem:

θ? = arg min
1T

k−1θ=1
‖ỹ[lk] − Âk−1θ‖2

2, (5.36)

where Âk−1 is defined in (5.21). Again, since (5.36) is convex, θ? can be obtained by

available convex optimization solvers [30, 31]. By defining the fitting error vector e

as in (5.22), we have the following inferences:

• if x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]}, then it can be approximated that e ∼ N (0, ξ?Σ).

• if x̃[lk] 6∈ aff{x̃[l1], . . . , x̃[lk−1]}, then e ∼ N (µk, ξ
?Σ),

where µk, ξ
?, and Σ are defined in (5.24), (5.25), and (5.12), respectively. Defining

the random variable r as in (5.26), a similar Neyman-Pearson hypothesis testing

procedure can be devised for GENE-AH to estimate the number of endmembers

present in the data. As will be seen from the simulations (see Section 5.4), the

GENE-AH algorithm yields better performance demonstrating its robustness against

the absence of pure pixels in the data. The procedure for GENE-AH is similar to the

one in Table 5.1, except that in Step 4, the optimal θ? is obtained by solving (5.36).
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Some conceptual distinctions between the the proposed GENE algorithms and

some existing benchmark algorithms are worth discussion here. Most of the available

algorithms for the estimation of number of endmembers, such as HySiMe [45] and

orthogonal subspace projection (OSP) [66], are directly or indirectly based on the

projection power on the most apt range space of the hyperspectral data, which in

turn is based only on (A3). In other words those methods consider the following fact:

x̃[li] ∈ range(G), (5.37)

where G = [α1, . . . ,αN ]. However, GENE-CH and GENE-AH involve convex hull

and affine hull i.e.,

x̃[li] ∈ conv{α1, . . . ,αN} ⊂ aff{α1, . . . ,αN} ⊂ range(G), (5.38)

as they not only make use of (A3), but also (A1) for GENE-AH algorithm, and (A1)

and (A2) for GENE-CH algorithm. The advantage of considering the assumptions on

abundances will be more evident in the simulation and real data experiment sections

(i.e., Section 5.4 and Section 5.5, respectively).

It should be noted that the estimation accuracies of both the GENE-CH and

GENE-AH algorithms depend on the performance of the EEA used. Hence, in the

next section, we propose a reliable (with theoretical support for endmember identifi-

ability), reproducible (without any initialization), and SEEA, namely p-norm based

pure pixel identification (TRI-P) algorithm.
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5.3 p-norm based Pure Pixel Identification (TRI-

P) Algorithm

The proposed TRI-P algorithm aims to find the pure pixel indices (and thereby the

endmembers) from the hyperspectral observations. Throughout the derivation of the

TRI-P algorithm, we focus on a dimension-reduced noise-free signal model (given by

(5.4)) by means of which the endmember identifiability of the TRI-P algorithm can

be theoretically proved (noisy scenarios will be considered in simulations in Section

5.4.1). We begin by incorporating the assumption (A2) in (5.9) so that we have the

following augmented dimension-reduced data:

x̄[n] =




x̃[n]

1



 =

N∑

i=1

si[n]ᾱi ∈ R
Nmax, (5.39)

where

ᾱi = [αT
i 1]T , i = 1, . . . , N, (5.40)

are the augmented dimension-reduced endmembers.

We now find the first dimension-reduced endmember by p-norm maximization

procedure as follows: Considering the p-norm of all the pixel vectors in the augmented

dimension-reduced data cloud X̄ = [ x̄[1], . . . , x̄[L] ], by the triangle inequality, (A1),

and (A2), one can infer from (5.39) that for all n,

‖x̄[n]‖p ≤
N∑

i=1

si[n] · ‖ᾱi‖p ≤ max
i=1,...,N

{‖ᾱi‖p}, (5.41)

where p ≥ 1. The equality in (5.41) holds if and only if n = li (by (A4)) for any

i ∈ arg maxk=1,...,N{‖ᾱk‖p}. Thus, a dimension-reduced endmember can be identified
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by

α1 = x̃[l1] for any l1 ∈ arg maxn=1,...,L{‖x̄[n]‖p}. (5.42)

Once the first endmember is found, the other endmembers α2, . . . ,αN can be ob-

tained successively by the following general procedure: Suppose that the augmented

dimension-reduced endmembers (given by (5.40)) ᾱ1, . . . , ᾱk−1 (where k − 1 < N)

are already identified. Let

Q = [ᾱ1, . . . , ᾱk−1] ∈ R
Nmax×(k−1). (5.43)

To find a new endmember different from ᾱ1, . . . , ᾱk−1, we consider the following

orthogonal complement subspace projection:

P⊥
Qx̄[n] =

N∑

i=k

si[n]P⊥
Qᾱi, ∀n, (by (5.39)) (5.44)

where P⊥
Q = INmax − Q(QTQ)−1QT is the orthogonal complement projector of Q.

Again, by the triangle inequality, (A1), (A2), and (5.44), we have

‖P⊥
Qx̄[n]‖p ≤

N∑

i=k

si[n] · ‖P⊥
Qᾱi‖p ≤ max

i=k,...,N
{‖P⊥

Qᾱi‖p}. (5.45)

The equality in (5.45) holds if and only if n = lj (by (A4)) for any j ∈ arg maxi=k,...,N{‖P⊥
Qᾱi‖p}.

Therefore, one can find a new dimension-reduced endmember as

αj = x̃[lj ] for any lj ∈ arg maxn=1,...,L{‖P⊥
Qx̄[n]‖p}, (5.46)

and αj = x̃[lj ] 6∈ {α1, . . . ,αk−1}.

The above endmember estimation methodology is called the TRI-P algorithm,

and it can identify all the dimension-reduced endmembers, as stated in the following
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lemma.

Lemma 2. Under (A1)-(A4), with N known, and in the absence of noise, TRI-P al-

gorithm yields {α1, . . . ,αN} such that the simplex conv{α1, . . . ,αN} = conv{x̃[1], . . . , x̃[L]}.

Once the dimension-reduced endmembers are found, the corresponding endmem-

bers can be obtained by (5.13).

At this juncture, it is worthwhile to point out some characteristics of the proposed

TRI-P algorithm.

• Lemma 1 is valid only if (A4) is satisfied and the number of endmembers N

is perfectly known. However, if (A4) is satisfied and N is unknown (which is

the case in the proposed GENE-CH algorithm), then Nmax pixel indices can be

obtained by TRI-P algorithm, where the first N pixel indices will be a set of

pure pixel indices. In this case, an interesting question is: What will be the pixel

index lk obtained by TRI-P algorithm when k > N? It can be shown from (5.9)

and (A3) that in the noiseless case x̄[n] ∈ range(Ḡ), where Ḡ = [ᾱ1, . . . , ᾱN ].

Therefore, under (A1)-(A4), when finding αk for k > N, we have by (5.43) that

‖P⊥
Qx̄[n]‖p = 0, ∀n. Equation (5.46) will therefore yield a pixel index lk for

which

x̃[lk] =
N∑

j=1

sj [lk]αj, ∀k > N, (5.47)

can be any pixel in the data cloud.

• On the other hand, if (A4) is not satisfied and N is perfectly known. Then the

set of pixel indices {l1, . . . , lN} corresponds to a set of so-called “purest pixels”

available in the data cloud.

• Finally, if both (A4) is not satisfied and N is unknown (which is the case in the
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proposed GENE-AH algorithm), then still Nmax pixel indices can be obtained,

where the first N pixel indices will be indices corresponding to a set of so-called

“purest pixels” in the data cloud, whereas pixel index lk when k > N can be

any pixel in the data cloud. That is,

x̃[lk] =

N∑

j=1

sj [lk]αj, ∀k > N. (5.48)

• While other existing pure-pixel based EEAs such as pixel purity index (PPI) [8],

vertex component analysis (VCA) [12], N-FINDR [9] [67] [68] [69], and simplex

growing algorithm (SGA) [10] require initializations (though the outcome of

SGA is insensitive to initialization [10]), TRI-P does not require initialization

of any form, and hence the solution is unique for a given hyperspectral data.

Therefore, the endmember estimates of the TRI-P algorithms are reproducible

even in the presence of noise, i.e., they always yield the same endmember esti-

mates for a given hyperspectral data.

• It can be easily shown that both SVMAX algorithm [14] which is developed

based on Winter’s unmixing criterion, and ATGP algorithm [70] which is based

on target detection are the special cases of the pixel search based TRI-P algo-

rithm with p = 2.

The entire TRI-P algorithm is summarized in Table 5.2. Though the TRI-P

algorithm in Table 5.2 alone can yield a set of pixel indices {l1, . . . , lNmax}, if used in

conjunction with the GENE algorithms (presented in Table 5.1), the pixel index l1

needed in Step 2 of Table 5.1 is provided by Step 1 of Table 5.2, while lk needed in

Step 3 of Table 5.1 for any 1 < k ≤ Nmax is successively provided by Step 2 of Table

5.2, for each k > 1. In other words, TRI-P algorithm with the above characteristics

serves as a good candidate for successively providing the pixel indices to feed the

84



proposed GENE algorithms in a synchronous fashion.

Table 5.2. Pseudocode for p-norm based pure pixel (TRI-P) algorithm.

Given dimension-reduced observations x̃[n], x̄[n] given by (5.39),
and maximum number of endmembers Nmax.

Step 1. Set k = 1. Obtain ᾱ1 = x̄[l1] for any l1 ∈
arg maxn{‖x̄[n]‖p}. Let Q = ᾱ1.

Step 2. Update k := k + 1 and obtain ᾱk = x̄[lk] for any lk ∈
arg maxn{‖P⊥

Qx̄[n]‖p}.

Step 3. Update Q := [Q ᾱk] ∈ R
Nmax×k and go to Step 2 until

k = Nmax − 1.

Output the pixel indices {l1, . . . , lNmax}

5.4 Simulations

In this section various Monte Carlo simulations are performed to analyze the per-

formances of the proposed algorithms, namely TRI-P, GENE-CH and GENE-AH

algorithms. In the first subsection, the effectiveness of the proposed TRI-P (for

p = 1, 2, and ∞) algorithm is studied. Algorithms that are considered for comparison

with TRI-P algorithm are VCA [12], iterative N-FINDR (I-N-FINDR) [67], successive

N-FINDR (SC-N-FINDR), sequential N-FINDR (SQ-N-FINDR) [68], SGA [10], and

alternating volume maximization (AVMAX) [14]. The algorithmic details for those

EEAs under test are as follows: Affine set fitting [23] is employed for dimension re-

duction in I-N-FINDR, SC-N-FINDR, SQ-N-FINDR, and AVMAX, while VCA uses

either singular value decomposition (SVD) or PCA based on the signal-to-noise ratio

(SNR). To have fair complexity comparison with other methods, VCA is supplied
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with the SNR value (instead of letting the VCA algorithm estimate the SNR value).

The convergence tolerance for I-N-FINDR, SQ-N-FINDR, and AVMAX is set to 10−6.

In the second subsection, simulations are performed to study the effectiveness

of GENE-CH and GENE-AH algorithms in various scenarios. Algorithms that are

considered for comparison are HySiMe [45], HFC, NWHFC [41], ATGP-NPD [71],

and MINMAX-SVD [34]. The GENE algorithms, HFC, NWHFC, and ATGP-NPD

are evaluated for the following false alarm probability: 10−3, 10−4, 10−5 and 10−6, and

for GENE, NWHFC, and ATGP-NPD algorithms, the true noise covariance matrix

is supplied for each simulated data.

In both subsections, for all the scenarios under consideration, 100 Monte Carlo

runs are performed. The average root-mean-square (rms) spectral angle given in

(3.23) between the true and the estimated endmember signatures is used as the perfor-

mance index for evaluating the performances of the EEAs under test. Lower spectral

angle φ corresponds to better performance of the EEA. For performance comparison

of the algorithms under test for estimating the number of endmembers, the mean and

standard deviation of the estimated number of endmembers are calculated.

In the simulations, the endmembers are chosen from the USGS library [53]. The

endmembers considered in our simulations are from the following pool: Alunite, An-

dradite, Buddingtonite, Chalcedony, Desert varnish, Goethite, Halloysite, Kaolinite,

Montmorillonite, Muscovite, Nontronite, Pyrope, Ammonium smectite, Calcite, Dick-

tite, Dumortierite, Hematite, Jarosite, Opal, and Paragonite, with M = 224. The

abundance vectors s[n], n = 1, . . . , L are generated by following the Dirichlet distri-

bution [12] [23], which ensures that the assumptions (i.e., (A1) and (A2)) hold true

for the simulated hyperspectral data. In addition to the number of endmembers N ,

and the number of pixels L, the other parameters that define a particular scenario

are purity level ρ of the data set (defined in Section 3.3) and SNR (defined in (3.22)).
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5.4.1 Evaluation of TRI-P algorithm

Here, the first 8 endmembers are considered (N = 8) from the above mentioned

pool and additive white Gaussian noise is added to the noise-free data and the noisy

observations are generated as per (2.1). The noise in each band is assumed to be

independent and identically distributed Gaussian with zero mean and variance σ2.

The EEAs are tested for different purity levels and for different SNRs. The average

rms spectral angles φen (defined in (3.23)) for the EEAs under test for SNRs ranging

from 10 dB to 40 dB, and for no noise case (SNR =∞), with ρ = 0.8, 0.9, 1, and

L = 1000 pixels are shown in Table 5.3. Though the EEAs are designed for ρ = 1,

we consider cases with different purity levels so as to study the performances of the

algorithms when the pure pixel assumption is violated. The bold-faced numbers in

Table 5.3 correspond to the minimum average rms spectral angle for a specific pair of

(ρ, SNR), over all the algorithms under test. It can be observed from Table 5.3 that

for ρ = 1, and 0.9, TRI-P (p = 2) wins in almost all situations, for ρ = 0.8 (highly

mixed case), TRI-P (p = 1) performs well in many cases. The average computation

time T (over all the scenarios under consideration) of each algorithm implemented

in Matlab R2008a and running in a desktop computer equipped with Core i7 − 930

CPU with speed 2.80 GHz, and 12 GB memory, is also shown Table 5.3. It can be

observed from Table 5.3 that, the TRI-P algorithm, besides better performance, also

offers the highest computational efficiency.

5.4.2 Evaluation of GENE-CH and GENE-AH algorithms

The GENE-CH and GENE-AH algorithms introduced in Section 5.2 are tested on the

simulated hyperspectral data. Since, out of all the EEAs considered in Section 5.4.1,

TRI-P (with p = 2) offered the best performance, the pure pixel indices required for

GENE-CH and GENE-AH (see Table 5.1) are obtained from the TRI-P (with p = 2)
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Table 5.3. Average φen (degrees) and average computation time T (secs) over the various
EEAs for different purity levels (ρ) and SNRs (uniform Gaussian noise case), L =1000,
N =8.

Methods ρ

φen (degrees)
T (secs)SNR (dB)

10 15 20 25 30 35 40 ∞

VCA
0.8 9.34 6.85 5.28 4.98 4.55 4.26 4.39 4.03
0.9 8.88 5.43 3.65 3.14 2.66 2.60 2.47 2.03 0.0413
1 8.65 4.28 2.15 1.57 0.84 0.53 0.32 0.02

I-N-FINDR
0.8 9.24 6.40 4.93 4.70 4.54 4.54 4.60 4.50
0.9 8.69 4.88 3.32 2.81 2.66 2.68 2.62 2.49 0.1212
1 8.39 3.87 1.91 1.06 0.60 0.35 0.23 0.12

SC-N-FINDR
0.8 9.57 7.14 5.94 5.44 5.27 5.04 4.94 4.80
0.9 9.11 5.84 3.76 3.14 2.98 2.86 2.79 2.79 0.0552
1 8.55 4.32 2.07 1.23 0.71 0.38 0.31 0.12

SQ-N-FINDR
0.8 9.25 6.37 4.88 4.70 4.50 4.51 4.63 4.51
0.9 8.98 4.94 3.32 2.81 2.66 2.68 2.62 2.49 0.1361
1 8.23 3.97 1.91 1.06 0.60 0.35 0.23 0.12

SGA
0.8 8.71 6.31 5.03 4.59 4.61 4.56 4.43 4.25
0.9 8.51 5.01 3.10 2.66 2.40 2.39 2.37 2.12 0.1886
1 7.96 3.76 1.78 0.99 0.57 0.34 0.22 0.01

AVMAX
0.8 9.34 6.52 5.13 4.77 4.60 4.62 4.55 4.17
0.9 8.91 5.26 3.34 2.82 2.67 2.68 2.66 2.36 0.0207
1 8.56 4.00 1.90 1.06 0.60 0.35 0.23 0.01

TRI-P
0.8 9.46 6.25 4.59 4.22 4.05 3.94 4.01 4.02

(p = 1)
0.9 9.07 4.93 3.16 2.54 2.29 2.18 2.19 1.97 0.0166

1 8.64 3.95 1.88 1.00 0.56 0.34 0.22 0.01

TRI-P
0.8 9.02 6.22 4.63 4.35 4.30 4.25 4.19 3.95

(p = 2)
0.9 8.59 4.54 2.64 2.17 2.03 2.04 2.04 1.97 0.0170
1 8.10 3.74 1.75 0.95 0.55 0.33 0.21 0.01

TRI-P
0.8 8.48 6.28 4.98 4.72 4.63 4.62 4.57 4.30

(p = ∞)
0.9 8.36 4.87 3.11 2.64 2.41 2.39 2.37 2.13 0.0172
1 8.04 3.92 1.80 0.99 0.56 0.33 0.22 0.01

algorithm. There are totally four scenarios under consideration.

Scenario 1: The endmembers used are the same as used in the previous subsection

(N = 8, M = 224) with 5000 pixels and Nmax = 25. As in Section 5.4.1, uniform

Gaussian noise was added to produce noisy hyperspectral data for SNRs 15, 25, 35 and

45 dB. The mean and the standard deviation of the estimated number of endmembers

over 100 independent runs, for the algorithms under test are shown in Table 5.4. From

Table 5.4, it can be readily observed that for this scenario, the estimation accuracies
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of the proposed algorithms (GENE-CH in particular) are the best for low SNR (15

dB), and for other SNRs, GENE-CH and GENE-AH with PFA = 10−6 perform well

and so does HySiMe. It should be noted that for SNR ≥ 25 dB, as the PFA decreases,

the standard deviations reduce to zero. The performances of the other algorithms

under test are below par, and that of HFC (for SNR ≥ 25 dB) and NWHFC (for all

SNRs) are independent of SNR.

Scenario 2: We study the performances of the algorithms under test in the case

when the data are corrupted by non-uniform Gaussian noise, while maintaining the

other parameters for data generation used in the first scenario. The noise in each

band is considered to be uncorrelated, but with different variances in each band. The

noise variances σ2
i in each of the M spectral bands follow a Gaussian shape that is

centered at the (M/2)th band and are given by (3.25). The τ value in the simulations

is set to 36 and the purity level ρ is fixed to be 1. Values of mean±standard deviation

of the number of endmembers estimated by the algorithms under test are also shown

in Table 5.5. Here again, for low SNR (15 dB), the proposed GENE algorithms

fares well. For other SNRs, GENE-AH with PFA = 10−6 and HySiMe yield the best

performance. It is worthwhile to mention that contrary to the GENE algorithms, the

performance of HySiMe algorithm is almost independent of the noise types (uniform

or non-uniform Gaussian noise).

Scenario 3: The purity level ρ of the hyperspectral data is allowed to vary while

maintaining N = 8. The data are corrupted by uniform Gaussian noise with SNR =

30 dB. For the case with N = 8, M = 224, L = 5000, and Nmax = 25, values of

mean±standard deviation of the number of endmembers estimated by the algorithms

under test are tabulated in Table 5.6. It can be readily seen from Table 5.6 that when

purity level is smaller, GENE-CH overestimates the number of endmembers which

is consistent with the discussions in Section 5.2.2 and the illustration in Figure 5.3.

On the other hand, GENE-AH with PFA = 10−6 and HySiMe correctly estimates the
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number of endmembers.

Scenario 4: Finally, the number of endmember N is allowed to vary as 8, 12, 16

and 20, while maintaining ρ = 1,M = 224, and L = 5000. Here again, the data is

corrupted by uniform Gaussian noise with SNR = 30 dB. Values of mean±standard

deviation of the number of endmembers estimated by the algorithms under test,

are also tabulated in Table 5.7. It can be observed from Table 5.7 that for higher

number of endmember N = 16, 20 GENE-CH yields the best performance followed

by GENE-AH. For N = 8, 12 both GENE-AH with PFA = 10−6 and HySiMe yield

the best performance.

Thus, it can be concluded from the above simulation results that the GENE-CH

algorithm is more suitable for data with pure pixels (i.e., for data with (A4) satisfied)

and larger number of endmembers, while the GENE-AH algorithm is the better choice

for a general hyperspectral data without any such prior information.

5.5 Real data experiments

In this section, the proposed GENE-CH and GENE-AH algorithms using TRI-P

(p = 2), and some other algorithms for estimating the number of endmembers, are

tested with AVIRIS real hyperspectral data obtained over the Cuprite Nevada site

[52]. The details of the AVIRIS data used in this experiment is presented in Section

3.4. The algorithms under test are GENE-CH, GENE-AH, HySiMe, HFC, NWHFC,

ATGP-NPD and MINMAX-SVD. The estimated number of endmembers obtained

by the algorithms under test are given in Table 5.8. For the GENE algorithms Nmax

is set to 100 and for all the algorithms PFA is set to 10−8, wherever applicable, in

order to get a reliable estimate. The noise covariance matrix for this real data is

estimated by multiple regression analysis [45] and is supplied for GENE, NWHFC,

and ATGP-NPD algorithms. As can be seen from Table 5.8, the estimated numbers
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Table 5.4. Mean±standard deviation of the estimated number of endmembers for various
algorithms over 100 independent runs, with different false alarm probabilities PFA (whenever
applicable) and SNRs- Uniform Gaussian noise case. Nmax = 25, true N = 8, L = 5000,
M = 224, and ρ = 1.

Methods PFA

Uniform Gaussian noise
SNR (dB)

15 25 35 45

GENE-CH
10−3 8.26±1.07 8.27±0.56 8.16±0.36 8.16±0.41

(TRI-P, p = 2)
10−4 7.56±0.67 8.01±0.09 8.02±0.17 8.05±0.21
10−5 7.21±0.51 8.00±0 8.00±0 8.01±0.09
10−6 6.99±0.41 8.00±0 8.00±0 8.00±0

GENE-AH
10−3 7.78±0.75 8.07±0.29 8.06±0.23 8.03±0.19

(TRI-P, p = 2)
10−4 7.27±0.67 8.00±0 8.02±0.14 8.00±0
10−5 6.90±0.65 8.00±0 8.00±0 8.00±0
10−6 6.52±0.70 8.00±0 8.00±0 8.00±0

HYSIME – 6.10±0.30 8.00±0 8.00±0 8.00±0

HFC
10−3 4.05±0.21 5.00±0 5.00±0 5.00±0
10−4 4.00±0 5.00±0 5.00±0 5.00±0
10−5 3.99±0.09 5.00±0 5.00±0 5.00±0
10−6 3.99±0.09 5.00±0 5.00±0 5.00±0

NW-HFC
10−3 5.00±0 5.00±0 5.00±0 5.00±0
10−4 5.00±0 5.00±0 5.00±0 5.00±0
10−5 5.00±0 5.00±0 5.00±0 5.00±0
10−6 5.00±0 5.00±0 5.00±0 5.00±0

ATGP-NPD
10−3 18.14±1.52 30.86±1.92 34.95±1.70 35.89±1.91
10−4 14.78±1.18 25.91±1.68 29.92±1.53 30.68±1.62
10−5 12.60±0.97 22.41±1.30 26.29±1.27 27.02±1.50
10−6 10.94±0.87 19.91±1.21 24.25±1.19 24.93±0.89

MINMAX-SVD – 3.31±1.81 2.66±1.48 2.85±1.31 3.47±1.12

of endmembers are different for each algorithm. For the Cuprite data set, initially

it was concluded that there are about 13 minerals (endmembers) in the site, and

later it was increased to nearly 70 mineral compounds (endmembers) [54]. Hence,

it is difficult to comment on the estimation accuracies of the algorithms under test.

However, the good estimation accuracy of GENE-AH algorithm (as inferred from

Table 5.4 to Table 5.7), makes 27 (see Table 5.8), a reasonable estimate for this data

set. On the other hand, GENE-CH overestimates the number of endmembers. This

may be attributed to the fact that in the absence of pure pixels, GENE-CH indeed
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Table 5.5. Mean±standard deviation of the estimated number of endmembers for various
algorithms over 100 independent runs, with different false alarm probabilities PFA (whenever
applicable) and SNRs- Non-uniform Gaussian noise case. Nmax = 25, true N = 8, L = 5000,
M = 224, and ρ = 1.

Methods PFA

Non-uniform Gaussian noise (τ = 36)
SNR (dB)

15 25 35 45

GENE-CH
10−3 9.07±1.11 8.44±0.68 8.51±0.84 8.26±0.52

(TRI-P, p = 2)
10−4 8.51±0.74 8.19±0.42 8.15±0.41 8.10±0.34
10−5 8.27±0.60 8.07±0.25 8.03±0.19 8.02±0.20
10−6 8.13±0.44 8.05±0.21 8.02±0.17 8.00±0

GENE-AH
10−3 8.26±0.48 8.10±0.30 8.08±0.27 8.09±0.28

(TRI-P, p = 2)
10−4 8.11±0.35 8.03±0.19 8.00±0 8.01±0.09
10−5 7.95±0.50 8.01±0.09 8.00±0 8.00±0
10−6 7.91±0.47 8.00±0 8.00±0 8.00±0

HYSIME – 6.09±0.28 8.00±0 8.00±0 8.00±0

HFC
10−3 3.00±0 5.00±0 5.00±0 5.00±0
10−4 3.00±0 5.00±0 5.00±0 5.00±0
10−5 3.00±0 5.00±0 5.00±0 5.00±0
10−6 2.99±0.09 5.00±0 5.00±0 5.00±0

NW-HFC
10−3 6.04±0.19 6.14±0.34 6.13±0.37 6.13±0.33
10−4 6.03±0.17 6.04±0.19 6.04±0.19 6.04±0.19
10−5 6.01±0.10 6.03±0.17 6.03±0.17 6.03±0.17
10−6 5.99±0.09 6.03±0.17 6.03±0.17 6.03±0.17

ATGP-NPD
10−3 24.60±1.82 33.30±1.83 35.41±1.65 35.75±1.75
10−4 20.40±1.39 28.29±1.49 30.71±1.69 30.93±1.74
10−5 17.52±1.15 24.90±1.25 26.77±1.28 26.97±1.43
10−6 15.41±1.08 22.54±1.22 24.59±1.15 24.81±0.98

MINMAX-SVD – 3.65±1.68 3.10±1.70 3.15±1.62 3.30±1.11

overestimates the number of endmembers (see Table 5.6).

To show the applicability of TRI-P (p = 2) algorithm in real data, a quantitative

measurement of the endmembers estimated by TRI-P (p = 2) algorithm for the

considered real data with N = 27, namely the mean removed spectral angle φ between

the estimated signature and the corresponding library signature, defined in (3.27) is

considered. The value of φ for the various minerals identified by the TRI-P (p = 2),

is given in Table 5.9, and the numbers in the parentheses correspond to the values

of φ for repeatedly identified materials. The abundance maps corresponding to the
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Table 5.6. Mean±standard deviation of the estimated number of endmembers for various
algorithms over 100 independent runs, with different false alarm probabilities PFA (whenever
applicable), for various purity levels. Uniform Gaussian noise case, true N = 8, SNR=30
dB, Nmax = 25, L = 5000, and M = 224.

Methods PFA

N = 8, SNR=30 dB
Purity Level ρ

0.8 0.85 0.9 0.95

GENE-CH
10−3 14.06±3.68 12.79±2.80 9.98±1.44 8.80±0.93

(TRI-P, p = 2)
10−4 12.82±2.94 10.97±2.38 9.28±1.28 8.33±0.58
10−5 12.13±2.70 10.23±1.92 8.85±0.98 8.17±0.45
10−6 11.65±2.69 9.85±1.71 8.61±0.92 8.11±0.38

GENE-AH
10−3 8.10±0.31 8.05±0.21 8.14±0.34 8.09±0.28

(TRI-P, p = 2)
10−4 8.02±0.14 8.01±0.09 8.00±0 8.01±0.09
10−5 8.00±0 8.01±0.09 8.00±0 8.00±0
10−6 8.00±0 8.00±0 8.00±0 8.00±0

HYSIME – 8.00±0 8.00±0 8.00±0 8.00±0

HFC
10−3 5.00±0 5.00±0 5.00±0 5.00±0
10−4 5.00±0 5.00±0 5.00±0 5.00±0
10−5 5.00±0 5.00±0 5.00±0 5.00±0
10−6 5.00±0 5.00±0 5.00±0 5.00±0

NW-HFC
10−3 5.00±0 5.00±0 5.00±0 5.00±0
10−4 5.00±0 5.00±0 5.00±0 5.00±0
10−5 5.00±0 5.00±0 5.00±0 5.00±0
10−6 5.00±0 5.00±0 5.00±0 5.00±0

ATGP-NPD
10−3 35.34±1.97 35.32±2.06 34.73±1.80 34.10±1.85
10−4 29.75±1.63 29.50±1.62 29.43±1.57 29.07±1.45
10−5 25.84±1.45 25.51±1.39 25.55±1.27 25.38±1.22
10−6 22.98±1.42 22.96±1.15 23.17±1.23 22.90±1.20

MINMAX-SVD – 3.20±1.88 2.90±1.81 2.91±1.67 3.15±1.81

endmembers estimated by TRI-P (p = 2) are obtained by fully constrained least

squares (FCLS) algorithm [15] and are shown in Figure 5.4. Note that the minerals

in Table 5.9 and Figure 5.4 are arranged in alphabetical order and the minerals were

identified by the visual comparison of the obtained abundance maps with the ones

available in [20, 23, 51, 55, 56].
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Table 5.7. Mean±standard deviation of the estimated number of endmembers for various
algorithms over 100 independent runs, with different false alarm probabilities PFA (whenever
applicable), for various number of endmembers. Uniform Gaussian noise case, ρ = 1,
SNR=30 dB, Nmax = 25, L = 5000, and M = 224.

Methods PFA

ρ = 1, SNR=30 dB
Number of Endmembers N

8 12 16 20

GENE-CH
10−3 8.19±0.40 12.28±0.62 15.86±0.51 19.82±0.55

(TRI-P, p = 2)
10−4 8.02±0.17 12.04±0.19 15.77±0.46 19.78±0.50
10−5 8.00±0 12.03±0.17 15.77±0.46 19.74±0.52
10−6 8.00±0 12.02±0.14 15.72±0.47 19.70±0.52

GENE-AH
10−3 8.06±0.23 12.02±0.14 14.99±0.38 18.01±0.46

(TRI-P, p = 2)
10−4 8.00±0 12.00±0 14.76±0.42 17.75±0.50
10−5 8.00±0 12.00±0 14.57±0.49 17.51±0.54
10−6 8.00±0 12.00±0 14.32±0.46 17.17±0.66

HYSIME – 8.00±0 12.00±0 14.00±0 16.15±0.35

HFC
10−3 5.00±0 7.81±0.44 8.35±0.49 5.01±0.61
10−4 5.00±0 7.14±0.68 8.66±0.27 4.19±0.63
10−5 5.00±0 6.44±0.53 7.93±0.25 3.67±0.60
10−6 5.00±0 6.10±0.46 7.76±0.47 3.23±0.52

NW-HFC
10−3 5.00±0 7.79±0.53 9.39±0.54 7.01±0.74
10−4 5.00±0 7.18±0.70 9.15±0.35 6.23±0.69
10−5 5.00±0 6.46±0.62 8.97±0.30 5.46±0.77
10−6 5.00±0 5.96±0.58 8.80±0.42 4.78±0.70

ATGP-NPD
10−3 33.88±1.73 44.22±2.09 49.30±2.40 55.59±2.65
10−4 28.68±1.56 37.28±1.55 41.69±2.15 47.16±1.80
10−5 25.25±1.25 32.83±1.60 36.33±2.05 40.92±1.89
10−6 22.93±1.14 28.64±1.61 31.90±1.74 36.01±1.76

MINMAX-SVD – 2.73±1.64 3.57±2.01 4.33±2.01 3.87±1.98

5.6 Summary

In this work, we have considered the estimation of number of endmembers in hy-

perspectral images, which has been a challenging problem prevailing in the field of

hyperspectral image analysis. To this end, we have presented two convex geometry

based algorithms, namely GENE-CH and GENE-AH algorithms, which make use of

the fact that the observed dimension-reduced observations lie in the convex hull and

affine hull of the endmember signatures, respectively. The GENE algorithms em-
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Table 5.8. Number of endmembers estimated by various algorithms, where NA denotes
“non-applicable” and ? denotes “out of memory” encountered in Matlab.

Algorithms PFA Estimated N
GENE-CH 10−8 76
GENE-AH 10−8 27
HYSIME NA 21

HFC 10−8 11
NWHFC 10−8 11

ATGP-NPD-Gaussian Noise 10−8 61
ATGP-NPD-Laplacian Noise 10−8 36

ATGP-NPD-Modified Gaussian Noise 10−8 44
MINMAX-SVD NA ?

Table 5.9. Mean-removed spectral angles φ (degrees) between library spectra and end-
members estimated by TRI-P (p = 2).

Minerals φ (degrees)
Alunite 17.91

Andradite 18.03 (19.16)
Buddingtonite 26.33
Chalcedony 19.85 (30.29)

Desert Varnish 11.92
Dumortierite 26.13 (31.43)

Kaolinite 24.34 (32.85)
Montmorillonite#1 18.79
Montmorillonite#2 20.34 (20.61)

Muscovite 34.01 (37.71)
Nontronite#1 23.89 (24.07) (25.38) (25.12)
Nontronite#2 15.35 (23.07) (26.02) (27.01)
Nontronite#3 22.76

Paragonite 36.73
Pyrope 12.20

Average φ 24.12

ploy a Neyman-Pearson hypothesis testing strategy to estimate the true number of

endmembers. Any SEEA can be employed with the GENE algorithms, however, a

reliable, reproducible and computationally efficient EEA will result in an improved

estimation accuracy. Furthermore, we have also presented a simple, effective, and
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computationally efficient EEA, namely TRI-P algorithm with its endmember iden-

tifiability proven. Simulation results confirm the superior efficacy of TRI-P (p = 2)

and TRI-P (p = 1), for pure and mixed hyperspectral data, respectively. It is also

shown via simulations that to estimate the number of endmembers, GENE-CH is

preferred when pure pixels are present and the number of endmembers is large. In

general, when no such information is available for the hyperspectral data, GENE-AH

should be the advisable choice for estimating the number of endmembers. In addition,

the real hyperspectral data experiment also exhibits the practical applicability of the

proposed GENE-AH algorithm and TRI-P algorithm.
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     if yes

no

yes

no

     SEEA 
(Ex: TRI-P)

       ifno

yes

y[n], Nmax, D̂, PFA
Input

Output

Compute Ĉ, d̂ by (5.5),(5.6)

Compute ỹ[n] = Ĉ
T
(y[n] − d̂)

Set k = 0

N̂ = k − 1

ỹ[lk]

For GENE-CH: Get θ? from (5.20)

For GENE-AH: Get θ? from (5.36)

where Âk−1 = [ỹ[l1], . . . , ỹ[lk−1]]

Find r by (5.26)

Calculate

ψ =
∫ ∞

r
fχ2(x,Nmax − 1)dx

by (5.31)

ψ > PFA

k ≤ Nmaxk = k + 1

if

Increase Nmax

ỹ[n]

k = 1

Figure 5.2. Working strategy of GENE-CH/GENE-AH algorithm in synchronization with
a suitable SEEA.
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x̃[l2]x̃[l2]

x̃[l3]x̃[l3]
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x̃[l5]x̃[l5]

x̃[l6]x̃[l6]
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R
Nmax−1

aff{x̃[l1], . . . , x̃[lk]} = aff{α1,α2,α3}, k = 3, 4, 5, 6.

conv{x̃[l1], . . . , x̃[l6]}

conv{α1,α2,α3}

Figure 5.3. Illustration of GENE-CH algorithm, when no pure pixel is present in the
noise-free hyperspectral data (N = 3 case). (a) The endmember estimates are denoted by
x̃[li], i = 1, ...,Nmax = 6, but conv{x̃[l1], . . . , x̃[l6]} 6= conv{α1,α2,α3} because the true
endmembers α1,α2,α3 are not present in the data cloud, whereas aff{x̃[l1], . . . , x̃[lk]} =
aff{α1,α2,α3}, k = 3, 4, 5, 6, as shown in (b).

98
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Figure 5.4. Abundance maps estimated based on endmembers obtained by TRI-P algo-
rithm (with p = 2).
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Chapter 6

Conclusions and Future Works

In this dissertation, for effectively mitigating the noise effect in the hyperspectral

image data on the HU process, we have presented two robust HU algorithms, namely

RAVMAX and RMVES algorithms for robustly unmixing noisy hyperspectral data

with and without pure pixels, respectively. In fact, to the best of our knowledge, it

is the first time in HU that the presence of noise in the data is systematically and

quantitatively considered in the problem formulation of the HU algorithms. In both

algorithms, the randomness caused by noise has been dealt by incorporating chance

constraints in the unmixing problem formulation with a design parameter η. The

chance constraints are used to control the constraint set which in turn controls the

resultant estimated simplex volume. A detailed analysis on the role of η has been

presented, and it was concluded that η must be less than 0.5, in RMVES algorithm

and must be greater than 0.5 for RAVMAX algorithm. The value of η affects the

convexity of the subproblems involved in the robust algorithms. As a consequence

of it, the subproblems in RAVMAX are convex and hence solved by available convex

optimization solvers, whereas those in RMVES are non-convex and SQP solvers are

used to handle them. The efficacy of the robust algorithms are demonstrated through

extensive simulations and real data experiments using the standard AVIRIS data.
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One of the critical challenges in hyperspectral analysis, namely estimation of num-

ber of endmembers, has also been addressed in this dissertation. The data geometry

based approach for estimating the number of endmembers resulted in two novel al-

gorithms namely GENE-CH and GENE-AH algorithms. A SEEA, namely TRI-P

algorithm has been presented as a suitable candidate to work in synchronization with

the proposed GENE algorithms. Both simulations and real data experiments con-

firmed the superior efficacy of the proposed GENE and TRI-P algorithms.

The algorithms presented in this thesis leave some worthwhile future research di-

rections as follows. In addition to the presence of noise, another challenging problem

faced by the researchers in hyperspectral analysis is the presence of outliers in the

data. An algorithm that is not only robust against noise, but also robust against out-

liers in the hyperspectral data will be an interesting, but challenging future direction.

The design parameter η plays a very important in the performance of robust algo-

rithms. The appropriate values for η ((0.9, 1) for RAVMAX and 0.001 for RMVES)

were obtained through empirical experience. However, other more appropriate choices

for η that can still enhance the performance of the RMVES and RAVMAX algorithms,

for different scenarios, are worth investigations. An robust algorithm that can account

for the orientation of the estimated endmember simplex in addition to the volume

shrinkage of the estimated simplex should further improve the performance of the

robust algorithms.

Algorithms for estimation of number of endmembers, which are robust against

the presence of outliers and against model mismatch errors (which may occur when

multiple reflections are recorded by the hyperspectral sensor), will also be an interest-

ing future research. It will also be interesting to study how the proposed algorithms

perform in other potential applications, such as analytical chemistry, deconvolution of

genomic signals, biomedical images (dynamic contrast enhanced magnetic resonance

images, DCE-MRI), to name a few, where the linear mixing model is valid.
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