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Robust Affine Set Fitting and Fast Simplex Volume
Max-Min for Hyperspectral Endmember Extraction

Tsung-Han Chan†, ArulMurugan Ambikapathi‡, Wing-Kin Ma∗, and Chong-Yung Chi§

Abstract—Hyperspectral endmember extraction is to estimate
endmember signatures (or material spectra) from the hyper-
spectral data of an area for analyzing the materials and their
composition therein. The presence of noise and outliers in the
data poses a serious problem in endmember extraction. In
this work, we handle the noise and outlier contaminated data
by a two-step approach. We first propose a robust affine set
fitting (RASF) algorithm for joint dimension reduction and
outlier removal. The idea is to find a contamination-free, data-
representative affine set from the corrupted data, while keeping
the effects of outliers minimum, in the least-squares errorsense.
Then, we devise two computationally efficient algorithms for
extracting endmembers from the outlier-removed data. The two
algorithms are established from a simplex volume max-min for-
mulation which is recently proposed to cope with noisy scenarios
[1]. A robust algorithm, called worst-case alternating volume
maximization (WAVMAX) [1], has been previously developed for
the simplex volume max-min formulation, but is computationally
expensive to use. The two new algorithms employ a different kind
of decoupled max-min partial optimizations, wherein the design
emphasis is on low-complexity implementations. Some computer
simulations and real data experiments demonstrate the efficacy,
the computational efficiency, and the applicability of the proposed
algorithms, in comparison with the WAVMAX algorithm [1] and
some benchmark endmember extraction algorithms.

Index Terms—Hyperspectral images, Robust dimension re-
duction, Fast endmember extraction, Simplex volume max-min,
Alternating optimization, Successive optimization

I. I NTRODUCTION

Hyperspectral remote sensing exploits the fact that all sub-
stances uniquely reflect, absorb and emit electromagnetic en-
ergy, at specific wavelength, in distinctive patterns depending
on their molecular composition. Hyperspectral sensor collects
data in hundreds of narrow contiguous spectral bands, thereby
providing a powerful means to discriminate disparate materials
based on their unique spectral signatures, orendmember
signatures(simply endmembers). However, depending on the
spatial resolution of the hyperspectral sensor, surface patches
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corresponding to individual pixels may still contain more than
one materials [2], [3]. Hence, decomposition of the received
spectra into a set of endmembers and their corresponding mix-
ing proportions, orabundances, would facilitate the character-
ization of different materials over the scanned area of interest
[2], [3]. In the past several years, endmember extraction using
hyperspectral images has been widely investigated and has
proven to be valuable in many applications, including but
not limited to geology, hydrology, urban planning, geography,
cadastral mapping, cartography, and military [4]–[6].

The presence of noise and outliers in the hyperspectral data
is inevitable in practice, and may seriously affect the analysis
of hyperspectral data. The noise is generated because of the
random nature of the photon arrival/detection process, the
sensor electronics, and quantization [7]. Raw data calibration
routines could alter the statistics of the noise, and so the
noise features may not explicitly depend on the wavelength
of the hyperspectral sensor [7], [8]. The other uncertaintyis
outliers. In general, the outliers are thought of as the pixels
that deviate markedly from the rest of the data. Two definitions
of the outlier pixels have been presented [9]–[12] in the open
literature. The first refers to the pixels that provide constant
or error readout, also called “dead” or “bad” pixels. Possible
causes of such outlier pixels include detector failure, errors
during data transfer, and improper data correction [9], [10].
The second refers to the pixels that have different spectral
signatures from the background representatives. These pixels
are also commonly called targets or objects in the domain of
hyperspectral anomaly detection [11], [12].

Given the fact that the noise and outliers are the major
source of errors in hyperspectral endmember extraction, the
design of endmember extraction algorithms (EEAs) should
take both the noise and outliers into account. Existing efforts
that account for the noise and/or outlier effects include joint
Bayesian algorithm (JBA) [13], simplex identification by split
augmented Lagrangian (SISAL) [14], robust minimum volume
enclosing simplex algorithm (RMVES) [15], and others [16],
[17], and they are carried out by different techniques. Specif-
ically, a Bayesian estimation framework explicitly accounting
for the presence of noise is employed in [13]; soft constraints
are utilized to mitigate outlier and/or noise pixel effectsin [14];
chance constraints are applied to the original minimum volume
enclosing simplex constraints [18] to account for noise effects
in [15]; [16] utilizes a support vector machine based approach
for robustly extracting the simplex topology; [17] proposes a
robust unconstrained linear unmixing (RULU) algorithm to ex-
tract endmembers in the presence of outliers. Simply speaking,
the RULU algorithm uses a clustering method for background
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endmembers estimation, unconstrained abundance estimation,
thresholding for outlier pixel removal, and data indexing with
extreme abundances for robust endmember estimation. Though
RULU provides robustness to outliers, the noise uncertainty
still remains. Moreover, a noise-robust spatial preprocessing
module has been proposed in [19], and it can be easily coupled
with any non-robust EEAs. Other than the aforementioned
methods, we have also reported a robust generalization of
the maximum simplex volume criterion proposed by Winter
[20], [21] to account for noise effects [1], and formulated the
robust Winter criterion as a simplex volume max-min problem.
Although an algorithm, called worst-case alternating volume
maximization (WAVMAX), has been proposed to handle the
robust Winter criterion in a disciplined manner, which usesa
combination of alternating optimization and the subgradient
method [1], it is quite computationally expensive to use for
massive amounts of high-dimensional data.

In this paper, we develop robust hyperspectral endmember
extraction algorithms for coping with outliers and noise. We
first propose a robust version of the affine set fitting (ASF)
[18], [22] for joint dimension reduction and outlier removal.
The idea is to find a corruption-free data-representative affine
set from the given hyperspectral data, while keeping the
outlier effects minimum, in the least-squares error sense.The
proposed algorithm, called robust ASF (RASF), implements
the idea by using alternating optimization. With the outlier
pixels being removed by the RASF algorithm, the uncertainty
that remains in the data is noise. We then propose two compu-
tationally efficient algorithms to implement the robust Winter
criterion, the simplex volume max-min formulation [1], by a
partial max-min optimization approach that provides closed-
form solutions for either of maximization and minimization.
The proposed EEAs, named alternating decoupled volume
max-min (ADVMM) and successive decoupled volume max-
min (SDVMM), approximate the simplex volume max-min
problem by a set of decoupled max-min problems in alter-
nating manner and successive manner, respectively. Some jus-
tifications of the decoupled max-min heuristic that motivates
the development of the proposed ADVMM and SDVMM
algorithms are also discussed. Simulations and experimental
results will be provided to demonstrate the performance, the
computational efficiency, and the real applicability of the
proposed methods.

We should emphasize that in this work the noise is as-
sumed to be zero-mean isotropically distributed with identical
variance over all the hyperspectral bands, and assumed to
be spatially homogenous. In practical scenarios where the
noise is nonisotropic, the noise prewhitening technique can be
applied to the data with the noise covariance matrix estimated
by the multiple regression method [23]. The consideration
of the signal-dependent noise is beyond the scope of this
paper. Interested readers can refer to [24] for further details.
We will only focus on the outliers that are “dead” or “bad”
pixels providing constant or error readout, instead of the
target/object-type outliers. From the perspective of endmember
extraction, the target spectra and the background spectra can
both be seen as unknown endmembers, thereby being able to
be readily estimated by any EEAs [25]. Once both target and

background spectra are extracted, differentiation of the target
spectra from the background spectra is a separate problem
[17], [26].

The outline of this paper is as follows. Section II describes
the hyperspectral endmember extraction problem in the pres-
ence of noise and outliers. Section III presents the proposed
RASF for dimension reduction and outlier removal. Section IV
briefly reviews Winter’s endmember extraction criterion and
its robust generalization. Section V presents the two proposed
fast algorithms for the simplex volume max-min formulation.
Sections VI and VII show the results of computer simulations
and real hyperspectral data experiments, respectively. Finally,
some conclusions are drawn in Section VIII.

Notation:RN andRM×N denote set of realN × 1 vectors
and set of realM ×N matrices, respectively;1N , IN , andei
representN × 1 all-one vector,N × N identity matrix, and
unit column vector with theith entry equal to 1, respectively;
“ � ”, “‖ · ‖” and“ \ ” stand for componentwise inequality,
Euclidean norm, and set difference, respectively;rank(X),
det(X), ‖X‖F , andX† denote the rank, determinant, Frobe-
nius norm, and pseudo-inverse of the matrixX, respectively;
[x]i and [x]1:i denote theith element ofx, and ani × 1
column vector formed by the firsti elements inx, respectively;
{x[n]}Ln=1 denotes{x[1], ...,x[L]}, and[ x[n] ]n∈I represents
a matrix comprisingx[n] for all n in the setI as its column
vectors;N (0, σ2IM ) denotes Gaussian distribution with zero
mean and covariance matrixσ2IM .

II. H YPERSPECTRALENDMEMBER EXTRACTION

PROBLEM

Consider a scenario where a hyperspectral sensor measures
solar electromagnetic (EM) radiation overM spectral bands
from N distinct substances in an area of interest. Assuming
that the EM patterns are received via only one single reflection,
and that the materials therein are distinct, each observed
hyperspectral pixel vector can be represented by a linear
mixing of these substance spectra [2], [3]:

y[n] = x[n] +w[n] + z[n], n = 1, ..., L, (1)

x[n] = As[n] =

N∑

i=1

si[n]ai, n = 1, ..., L. (2)

In (1), y[n] = [ y1[n], . . . , yM [n] ]T is the nth noise and
outlier contaminated pixel vector that comprisesM spectral
bands,x[n] = [ x1[n], . . . , xM [n] ]T is the contamination-free
counterpart,w[n] = [ w1[n], . . . , wM [n] ]T is the isotropically
distributed noise vector; e.g.,N (0, σ2IM ) where σ2 is the
noise variance,z[n] = [ z1[n], . . . , zM [n] ]T denotes the
outlier vector appearing only atZ pixels; i.e.,

z[n] 6= 0, n ∈ {ℓ1, ..., ℓZ} , I
z[n] = 0, n ∈ {1, ..., L} \ I

(3)

andL is the total number of observed pixel vectors. In (2),
A = [ a1, . . . , aN ] ∈ R

M×N represents the endmember
signature matrix whoseith column vectorai denotes theith
endmember signature ands[n] = [ s1[n], . . . , sN [n] ]T is the
nth abundance vector comprisingN fractional abundances.
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In this work, as mentioned in the introduction section, we
focus on the so-called “dead” or “bad” outlier pixels that can
be modeled asz[n], n ∈ I in y[n] given by (1), and these
outliers z[n], n ∈ I are considered without assuming any
statistical priors. The outlier pixels are assumed to be rare,
and hence the number of outlier pixelsZ should be much less
than the number of data samplesL; i.e., outlier-data amount
ratio Z/L ≪ 1. While our emphasis is placed on the outliers
defined as the dead pixels, the outliers given by (3) can also
be interpreted as errors of linear approximation to the real
hyperspectral data where the nonlinear mixing model could
be a better fit [3], [27].

Assuming prior knowledge of the number of endmembers
N , robust hyperspectral endmember extraction is to robustly
estimate the endmember signaturesa1, . . . , aN from the given
corrupted hyperspectral datay[1], . . . ,y[L] with minimum
effects of noise and outliers. Some general assumptions [2],
[3] are as follows:
(A1) Intensities of all the abundance vectors are non-negative,

i.e., si[n] ≥ 0 for all i andn.
(A2) Abundance fractions are proportionally distributed for

eachs[n], i.e.,
∑N

i=1 si[n] = 1, ∀n.
(A3) min{L,M} ≥ N and the endmember signatures

a1, ..., aN are linearly independent, i.e.,rank(A) = N .
(A4) (Pure pixel assumption) There exists at least a set

of indices {l1, l2, . . . , lN} such thatx[li] = ai for
i = 1, . . . , N , and the set of pure pixels{l1, l2, . . . , lN}
and the set of outliersI are disjoint.

Assumptions(A1), (A2) and (A3) have been widely used in
hyperspectral endmember extraction [2], [3], [5], [6]. Thepure
pixel assumption(A4) fits well for a scenario where the sensor
flies in low altitude [28].

It should be noted that the estimation of the number
of endmembersN is generally treated as a separate topic
[23], [29]–[33]. In this work, if there are rare (or target)
endmembers present in the data, the number of endmembers
N should include both background endmembers and rare
endmembers. However, when one is only concerned about the
background endmembers, thenN can be set to the number of
background endmembers. Subsequently, the rare endmembers
are treated as outliers. Relevant discussions and simulations
will be presented in Remark 2 (in Section III) and Section
VI-G, respectively.

III. ROBUST AFFINE SET FITTING FOR DIMENSION

REDUCTION

Dimension reduction is a common, primary step for hyper-
spectral image analysis with the prime merit of reducing the
noise effect and computational complexity of the subsequent
endmember extraction. In [18], we have made use of affine
data geometry for dimension reduction, where it was shown
that the affine set estimate provides the best representation to
the given hyperspectral data in the least-squares error sense.
Nevertheless, in practical scenarios where the outliers are
present, the fitted affine set could be severely affected by the
outliers. To this end, we herein propose a robust affine set
fitting algorithm, attempting to provide an affine set estimate
robust to both noise and outliers.

To start with, let us consider the contamination-free pixels
x[n]. It has been shown in [18] that by(A2) the affine hull of
x[n] is identical to that of endmembersa1, ..., aN :

aff{x[1], ...,x[L]} = aff{a1, . . . , aN}, (4)

whereaff{x1, . . . ,xN} denotes the affine hull ofx1, ...,xN

and it is defined as [34]

aff{x1, . . . ,xN} =

{
N∑

i=1

θixi

∣∣∣∣ 1
T
Nθ = 1, θ ∈ R

N

}
, (5)

whereθ = [θ1, . . . , θN ]T . By (A3), the endmember affine hull
aff{a1, . . . , aN} admits an affine set representation

aff{a1, . . . , aN} =
{
x = Cα+ d

∣∣ α ∈ R
N−1

}
, A(C,d),

(6)
for some (non-unique) affine set parameter(C,d) ∈
R

M×(N−1)×R
M andrank(C) = N−1. By virtue of (4) and

(6), the dimension reduction of the contamination-free data
x[n] can be easily carried out by

x̃[n] = C†(x[n]− d) =

N∑

i=1

si[n]αi, n = 1, ..., L, (7)

where
αi = C†(ai − d), i = 1, ..., N, (8)

are the dimension-reduced endmembers. There exists a closed-
form solution to the affine set parameter(C,d) if the ac-
quisition of the{x[n]}Ln=1 is possible [18]. However, what
we have in reality is the contaminated observed pixel vectors
{y[n]}Ln=1, and therefore obtaining an accurate estimate of
(C,d) from {y[n]}Ln=1 will be a challenging problem.

To tackle this issue, we consider the following robust affine
set fitting (RASF) problem

min
num{z1,...,zL}≤Z





min
xn∈A(C,d)

C
T
C=IN−1

n=1,...,L

L∑

n=1

‖y[n]− xn − zn‖
2
2





,

(9)

wherenum{z1, ..., zL} denotes the number of nonzero vectors
in {z1, ..., zL}, and the number of outliersZ is assumed to
be known for ease of our derivations. Some discussions on
how we set a value ofZ is given in Remark 1 below. The
objective of (9) is to seek an(N − 1)−dimensional affine set
A(C,d) with the minimum projection error with respect to
(w.r.t.)y[n] and with minimum effect of outliersz[n]. Problem
(9) is difficult to solve in a globally optimal sense, but can be
approximated by alternating optimization. Let us considerthe
following two partial minimization problems:

1) Problem(9) w.r.t. variables{xn}Ln=1, C, andd:

min
xn∈A(C,d), C

T
C=IN−1

n=1,...,L

L∑

n=1

‖(y[n]− ẑn)− xn‖
2
2, (10)

for any given{ẑ1, ..., ẑL} that satisfiesnum{ẑ1, ..., ẑL} ≤ Z.
Following the proof in [22, Proposition 1], problem (10) can



4

be shown to have an analytical solution given by

d̂ =
1

L

L∑

n=1

(y[n] − ẑn), (11)

Ĉ = [q1(UUT ),q2(UUT ), ...,qN−1(UUT )], (12)

where U = [(y[1] − ẑ1) − d̂, ..., (y[L] − ẑL) − d̂], and
qi(UUT ) denotes the unit-norm eigenvector associated with
the ith principal eigenvalue ofUUT . The estimated affinely
projected datâxn ∈ A(Ĉ, d̂) can be easily shown to be

x̂n = ĈĈT (y[n]− ẑn − d̂) + d̂, n = 1, ..., L. (13)

2) Problem(9) w.r.t. variables{zn}Ln=1:

min
num{z1,...,zL}≤Z

L∑

n=1

‖(y[n]− x̂n)− zn‖
2
2, (14)

for any given{x̂n}Ln=1 ⊂ A(Ĉ, d̂). It is trivial to see that the
solution of the above problem is

ẑn =

{
y[n]− x̂n, n ∈ {ℓ̂1, ..., ℓ̂Z}

0, n ∈ {1, ..., L} \ {ℓ̂1, ..., ℓ̂Z}
(15)

where ℓ̂i is the index of theith largest value in(‖y[1] −
x̂1‖, ..., ‖y[L]− x̂L‖).

A solution of problem (9) can be obtained by handling the
above two subproblems in a cyclic manner until some stopping
criterion is met. The pseudo-codes of the RASF algorithm for
(9) are given in Table I.

TABLE I
RASFALGORITHM FOR PROBLEM(9).

Given a convergence toleranceε > 0, hyperspectral data{y[n]}Ln=1, and
the number of endmembersN .

Step 1. initialize ẑ1 = · · · = ẑL = 0, and iteration numberk := 0.
Step 2. update the solution of problem (10)

d̂ =
1

L

L∑

n=1

y[n]− ẑn,

Ĉ = [q1(UUT ),q2(UUT ), ...,qN−1(UUT )],

x̂n = ĈĈT (y[n]− ẑn − d̂) + d̂, n = 1, ..., L,

whereU = [(y[1]− ẑ1)− d̂, ..., (y[L]− ẑL)− d̂].
Step 3. update the solution of problem (14)

ẑn =

{
y[n]− x̂n, n ∈ {ℓ̂1, ..., ℓ̂Z}

0, n ∈ {1, ..., L} \ {ℓ̂1, ..., ℓ̂Z}

where ℓ̂i is the index of the ith largest value in(‖y[1] −
x̂1‖, ..., ‖y[L]− x̂L‖).

Step 4. update k := k + 1 and the k-iterate objective value̺ (k) =∑L
n=1 ‖y[n]− x̂n − ẑn‖2.

Step 5. if k = 1 or (̺(k− 1)− ̺(k))/̺(k− 1) < ε for k > 1, then go to
Step 2,

Step 6. output the approximate robust affine set parameter(Ĉ, d̂) and the
outlier pixel indicesÎ = {ℓ̂1, ..., ℓ̂Z}.

Similar to (7), the affine set parameter estimate(Ĉ, d̂)
can be used to obtain the dimension reduced observed pixel
vectors:

ỹ[n] , ĈT (y[n]− d̂) ∼= x̃[n] + ĈTw[n] + ĈT z[n] (16)

=

N∑

i=1

si[n]αi + w̃[n] + z̃[n] ∈ R
N−1, ∀n, (17)

where “∼=” in (16) because(Ĉ, d̂) is an approximation to the
true (C,d),

w̃[n] , ĈTw[n] ∼ N (0, σ2IN−1) (18)

due to w[n] ∼ N (0, σ2IM ) and ĈT Ĉ = IN−1, and
z̃[n] , ĈT z[n]. By (A1) and (A2), the dimension reduced
contamination-free datãx[n] given by (7) must be in the
convex hull of{α1, ...,αN} [34], denoted by

conv{α1, ...,αN} =

{
N∑

i=1

θiαi

∣∣∣ θ � 0,1T
Nθ = 1

}
, (19)

but the contaminations caused by the noisew̃[n] and outlier
z̃[n] could possibly make the observed pixelỹ[n] given by
(17) out of the conv{α1, ...,αN}. Figures 1(a) and 1(b)
illustrate the geometries of the original data{y[n]}Ln=1 and the
dimension reduced data{ỹ[n]}Ln=1, respectively, forN = 3
andZ = 5.

As reported in [25] that the outlier pixels could significantly
affect the results of subsequent endmember extraction, we
remove the outlier pixels at̂I = {ℓ̂1, ..., ℓ̂Z} from the data
{ỹ[n]}Ln=1, and hence the endmember extraction problem is
then to estimateα1, . . . ,αN from

ỹ[n] ∼=

N∑

i=1

si[n]αi + w̃[n], n ∈ {1, ..., L} \ Î, (20)

where the noisẽw[n] is still present. The robust EEAs to be
proposed in Section IV will take the noise effect into account.
Onceα1, . . . ,αN are obtained, one can simply recover the
endmember estimates by the following affine transformation

âi = Ĉαi + d̂, i = 1, . . . , N. (21)

Let us conclude this section with two remarks on the choice
of Z and N for the proposed RASF algorithm in practical
scenarios.

Remark 1. The number of outliersZ is impossible to
be known a priori in practical scenarios, but, as will be
seen in our simulations, the solution(Ĉ, d̂) obtained by
the RASF algorithm in Table I is insensitive to the preset
number of outliers, denoted bŷZ, when Ẑ ≥ Z, meaning
that the estimated̂Z outliers sufficiently cover theZ true
outliers. However, settinĝZ too large for the RASF algorithm
could be jeopardous— it may lead the RASF algorithm to
incidently mistake some rare endmembers as outliers. How
we practically select the value ofZ in real applications will
be considered as our future direction.
Remark 2. In a scenario where theN endmembers include
both background and rare endmembers, it will be seen
from our simulations that RASF algorithm can preserve the
rare endmembers in the subsequent endmember extraction
process, provided that theN is perfectly estimated. It is
also suggested by the simulations that, if one cares only
about background endmembers without the desire of pre-
serving rare endmembers, in the proposed RASF algorithm,
the number of endmembers can be set to the number of
background endmembers only. Then, the proposed RASF
will automatically find(C,d) with minimum impact of both
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y[n]
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A(C,d)
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y[ℓ5]
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(b)

Fig. 1. Illustration of (a) the original data{y[n]}Ln=1, and (b) the dimension reduced data{ỹ[n]}Ln=1 for N = 3 andZ = 5.

“dead” pixels and rare endmembers. How to estimateN in
the presence of rare endmembers can be referred to [31],
[32].

IV. REVIEW OF WINTER’ S ENDMEMBER EXTRACTION

AND ITS ROBUST GENERALIZATION

In the past decade, Winter’s maximum-volume simplex
criterion has led to the well-known EEA, N-FINDR and its
many variants [1], [20], [21], [35], [36]. Suppose that the
outlier pixels have been perfectly identified and removed from
the data by the RASF algorithm; i.e.,{ỹ[n]}n∈{1,...,L}\Î and

Î = I. N-FINDR is to estimate endmembers by finding the
vertices of the maximum-volume simplex inside the dimension
reduced data cloud{ỹ[n]}n∈{1,...,L}\I. Recently, we revisited
the Winter’s endmember extraction criterion and reported two
N-FINDR variants in [1], based on the following continuous
formulation of Winter’s criterion:

max
v1,...,vN∈R

N−1
vol(v1, . . . ,vN )

s.t. vi ∈ conv{{ỹ[n]}n∈{1,...,L}\I}, ∀ i,
(22)

where

vol(v1, . . . ,vN ) =
|det (∆(v1, . . . ,vN ))|

(N − 1)!
, (23)

is the volume ofconv{v1, . . . ,vN}, and

∆(v1, . . . ,vN ) =

[
v1 · · · vN

1 · · · 1

]
∈ R

N×N . (24)

It has been theoretically proved that the true endmembers can
be perfectly estimated by solving problem (22) under(A1)
to (A4) and in the absence of noise; i.e.,ỹ[n] = x̃[n], ∀n
[1]. However, in the presence of additive, isotropic, random
noise, the simplex volume yielded by Winter’s criterion may
be larger than that of the true simplex [1]. In other words, the
endmember estimates obtained by Winter’s criterion may be
far away from the true endmembers when the observed data
are corrupted by noise. To mitigate such simplex inflation, in
[1], we reported an idea to pull back Winter’s endmember
estimates by a suitable margin such that(ν1, . . . ,νN ) are

closer to the true endmembers(α1, . . . ,αN ). This idea, as
illustrated in Figure 2, can be formulated as the following
simplex volume max-min problem [1]:

max
vi∈R

N−1,
i=1,...,N



 min

‖ui‖≤r,
i=1,...,N

∣∣∣∣det(∆(v1 − u1, . . . ,vN − uN ))

∣∣∣∣





s.t. vi ∈ conv{{ỹ[n]}n∈{1,...,L}\I}, ∀ i = 1, ..., N,

(25)
where eachui lying in a norm ball{u ∈ R

N−1 | ‖u‖ ≤ r}
denotes the pull-back vector, andr is the maximum back-
off distance. Denoting the optimal solution of problem (25)
by (v̂1, . . . , v̂N , û1, . . . , ûN), therobust endmember estimates
are obtained as

ν̂i = v̂i − ûi, i = 1, . . . , N. (26)

In [1], we have proposed an algorithm for handling prob-
lem (25), called WAVMAX. WAVMAX has demonstrated
performance improvement in the noisy scenario, but it is
computationally expensive. We therefore propose two fast
algorithms to handle problem (25) in the next section.

true endmembers

robust Winter estimates
original Winter estimates

ỹ[n], n ∈ {1, ..., L} \ I

conv{{ỹ[n]}n∈{1,...,L}\I}

r

r

r

α1

α2

α3

ν1

ν2

ν3

v1

v2

v3

Fig. 2. Illustration of robust Winter’s endmember extraction problem for
N = 3.
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V. FAST ALGORITHMS FORSIMPLEX VOLUME MAX -MIN

PROBLEM

In this section, two fast algorithms are proposed for handling
the simplex volume max-min formulation (25). We employ a
decoupled max-min heuristic, and different partial optimiza-
tion schemes to handle problem (25), and come up with
two algorithms, called alternating decoupled volume max-
min (ADVMM) and successive decoupled volume max-min
(SDVMM), respectively. The computational complexity orders
of the proposed methods are also discussed.

A. ADVMM Algorithm

We first reformulate problem (25) for ease of devel-
opment. Denote the outlier-free data matrix bỹY =
[ ỹ[n] ]n∈{1,...,L}\I ∈ R

(N−1)×(L−Z). Then, by the convex
combination expression

vi = Ỹθi, (27)

and the propertydet(P∆) = ±det(∆) for any permutation
matrix P, problem (25) can be expressed as

max
θi∈S,

i=1,...,N

{
min

‖ui‖≤r,
i=1,...,N

det(∆(Ỹθ1 − u1, . . . , ỸθN − uN ))
}

(28)

whereS = {θ ∈ R
L−Z | θ � 0, 1T

L−Zθ = 1}. Optimizing
θ1, . . . , θN andu1, . . . ,uN jointly in (28) is quite challenging.
In ADVMM, we consider the partial max-min problem of (28)
w.r.t. the pair(θj ,uj) while fixing the other pairs(θi,ui) for
i 6= j; such partial max-min problems are represented by (29);
see top of next page. The partial max-min problems (29) for
j = 1, . . . , N are conducted cyclically until some stopping
criterion is satisfied. A connection of the above decoupled
max-min problem to the original alternating maximization of
(28) used in WAVMAX will be discussed in the end of this
subsection; see Remark 3.

Next, we will present how to solve the partial max-
min problem (29). By applying a cofactor expansion of
det(∆(Ỹθ̂1 − û1, . . . , Ỹθ̂N − ûN )) along thejth column,
we have

det(∆(Ỹθ̂1−û1, . . . , Ỹθ̂N − ûN ))

= kT
j (Ỹθj − uj) + (−1)N+jdet(QNj),

(30)

wherekj ∈ R
N−1 is expressed as

kj = [(−1)1+jdet(Q1j), . . . , (−1)N−1+jdet(Q(N−1)j)]
T

(31)
and Qij ∈ R

(N−1)×(N−1) is a submatrix of∆(Ỹθ̂1 −
û1, . . . , Ỹθ̂N − ûN ) with the ith row and thejth column
removed. Then, problem (29) is equivalent to

max
θj∈S

{
min

‖uj‖≤r
kT
j (Ỹθj − uj)

}
, (32)

where the term(−1)N+jdet(QNj) in (30) is independent
of (θj ,uj) and so is removed without loss of optimality.
In addition, sinceθj anduj have been decoupled, problem

(32) can be handled by solving the following two separate
problems, each with a closed-form solution:

ûj = arg max
‖uj‖≤r

kT
j uj = rkj/‖kj‖, (33)

θ̂j = argmax
θj∈S

kT
j Ỹθj = el, l = arg max

n∈{1,...,L}\I
kT
j ỹ[n],

(34)

where ûj in (33) is obtained by Cauchy-Schwarz inequality
and θ̂j in (34) can be obtained by [1, Lemma 2]. Let us
summarize how we pragmatically implement the ADVMM
algorithm in Table II.

TABLE II
ADVMM ALGORITHM FOR PROBLEM(25).

Given a convergence toleranceε > 0, a back-off distancer, the dimension
reduced and outlier-removed data matrix̃Y and the number of
endmembersN .

Step 1. randomly select(θ̂1, . . . , θ̂N ) from {ei}
L−Z
i=1 and setû1 = · · · =

ûN = 0.
Step 2. set j := 1, ̺ := det(∆(Ỹθ̂1 − û1, . . . , Ỹθ̂N − ûN )).
Step 3. computekj by (31), and then updatêuj by (33) andθ̂j by (34).
Step 4. if (j moduloN) 6= 0, thenj := j + 1 and go toStep 3,

else computē̺ = det(∆(Ỹθ̂1 − û1, . . . , Ỹθ̂N − ûN )).
Step 5. if | ¯̺− ̺|/̺ > ε, then set̺ := ¯̺, j := 1, and go toStep 3,

else output̂νj = Ỹθ̂j − ûj , ∀j as an approximate solution to (25).

Remark 3. WAVMAX, as has been presented in [1], is
an alternating optimization method w.r.t.θ1, ..., θN . Its jth
alternating maximization problem to (28) can be expressed
as

max
θj∈S

min
‖ui‖≤r,
i=1,...,N

f(θj, Θ̂j ,u1, ...,uN ),
(35)

wheref(θ1, ..., θN ,u1, ...,uN ) is the objective function of
(28), andΘ̂j = [θ̂1, . . . , θ̂j−1, θ̂j+1, . . . , θ̂N ] is fixed. As
can be observed from (35), for each updateθj, we have to
deal with the inner minimizationmin f(θj, Θ̂j ,u1, ...,uN )
w.r.t. u1, ...,uN jointly. In [1], we have used the subgradient
method to handle (35), but the resulting WAVMAX algorithm
is computationally complicated. The proposed ADVMM al-
gorithm uses a computationally efficient way to approximate
(35), which in turn handles thejth decoupled max-min
problem (29), or equivalently,

max
θj∈S

min
‖uj‖≤r

f(θj , Θ̂j ,uj , Ûj), (36)

where Ûj = [û1, . . . , ûj−1, ûj+1, . . . , ûN ]. It is easy to
observe that problem (36) serves as an upper bound of
problem (35). IfÛj happens to be the optimal solution of the
inner minimization of (35), then the upper bound (36) will be
equal to (35). As a result, the proposed ADVMM algorithm
can be thought of as a method to maximize an upper bound
of the partial maximization problem of (28) in WAVMAX.

B. SDVMM Algorithm

We turn our attention to how we apply successive optimiza-
tion to handle problem (25). By letting

wi = [vT
i 1]T , ti = [uT

i 0]T , ȳ[n] = [ỹ[n]T 1]T , (37)
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max
θj∈S

{
min

‖uj‖≤r
det(∆(Ỹθ̂1 − û1, . . . , Ỹθ̂j−1 − ûj−1, Ỹθj − uj , Ỹθ̂j+1 − ûj+1, . . . , Ỹθ̂N − ûN ))

}
. (29)

problem (25) can be rewritten as

max
wi∈F ,

i=1,...,N

{
min

‖ti‖≤r,

e
T
N ti=0, ∀i

∣∣∣∣det([w1 − t1, . . . ,wN − tN ])

∣∣∣∣
}
,

(38)

whereF = conv{{ȳ[n]}n∈{1,...,L}\I}. It has been shown in
[1, Lemma 3] that

|det([w1 − t1, . . . ,wN − tN ])|

= ‖P⊥
H1:0

(w1 − t1)‖ · · · ‖P
⊥
H1:(N−1)

(wN − tN )‖, (39)

whereP⊥
H1:j

= IN −H1:j(H
T
1:jH1:j)

†HT
1:j is the orthogonal

complement projector of

H1:j , [w1 − t1, ...,wj − tj ] (40)

andP⊥
H1:0

= IN . Hence, substituting (39) into problem (38)
yields

max
wi∈F ,

i=1,...,N

min
‖ti‖≤r,

e
T
N ti=0,∀i

N∏

j=1

‖P⊥
H1:(j−1)

(wj − tj)‖. (41)

Solving problem (41) w.r.t.2N -tuple (w1, . . . ,wN , t1, . . . ,
tN ) is difficult. In SDVMM, we decouple problem (41)
into a set of max-min subproblems, and employ successive
optimization to these subproblems as follows:

(ŵj , t̂j) = arg max
wj∈F

min
‖tj‖≤r,

e
T
N tj=0

‖P⊥
Ĥ1:(j−1)

(wj − tj)‖, (42)

from j = 1 to N . The solution (ŵj , t̂j) is obtained by
handling thejth max-min subproblem with the previous(j −
1) max-min subproblem solutionŝw1, . . . , ŵj−1, t̂1, . . . , t̂j−1

used inĤ1:(j−1) as defined in (40). Unlike alternating opti-
mization, the methodology presented here is initialization free
and only needs to solve (42) successively forj = 1, ..., N .
A relation of the successive optimization procedure given by
(42) to problem (41) will be discussed in Remark 4 below.

The issue that remains is how we handle each difficult (non-
convex) max-min subproblem (42). By relaxingeTNtj = 0, it
can be shown that a closed-form solution to (42) exists. To
see this, problem (42) witheTNtj = 0 relaxed is

max
wj∈F

min
‖tj‖≤r

∥∥∥P⊥
Ĥ1:(j−1)

(wj − tj)
∥∥∥ , j = 1, . . . , N. (43)

The inner problem of (43) for anywj ∈ F is

t̂j = arg min
‖tj‖2

≤r

∥∥∥P⊥
Ĥ1:(j−1)

(wj − tj)
∥∥∥. (44)

Problem (44) is convex and Slater’s condition holds [34]. The
optimal solution of problem (44) can be derived by Karush–
Kuhn–Tucker (KKT) conditions, as stated in the following
lemma:

Lemma 1 For any wj ∈ F , problem(44) has an analytical
solution given by

t̂j =
rP⊥

Ĥ1:(j−1)
wj

‖P⊥
Ĥ1:(j−1)

wj‖
, wj ∈ W(r), (45)

t̂j ∈ { tj
∣∣ P⊥

Ĥ1:(j−1)
(wj − tj) = 0 }, wj ∈ R

N \W(r),

(46)

whereW(r) =
{
w ∈ R

N
∣∣ ‖P⊥

Ĥ1:(j−1)
w‖ > r

}
.

Proof: The proof of Lemma 1 is given in Appendix. �

It is trivial to see that the solution (46) always yields zero
objective value in (43), and hence only the optimal solution
(45) is considered. Substituting (45) into (43) yields

max
wj∈F

⋂
W(r)

∥∥∥P⊥
Ĥ1:(j−1)

wj

∥∥∥. (47)

The optimal solution of (47) can be easily obtained by
following the proof in [1, Lemma 4]; it is given by

ŵj = ȳ[l], l = arg max
n∈Nj

‖P⊥
Ĥ1:(j−1)

ȳ[n]‖, (48)

whereNj = { n
∣∣ ‖P⊥

Ĥ1:(j−1)
ȳ[n]‖ > r, n ∈ {1, ..., L} \ I }.

We should mention that the constraintwj ∈ W(r) is to
ensure the non-trivial solution of problem (43). In fact, one can
properly choose anr such thatwj ∈ W(r), j = 1, ..., N are
all satisfied. Also, if the(ŵj , t̂j) is obtained, we can artificially
set [t̂j ]N = 0 to ensure the feasibility of(ŵj , t̂j) to problem
(42). The pseudo-codes of the SDVMM algorithm are given
in Table III.

TABLE III
SDVMM ALGORITHM FOR PROBLEM(25).

Given a back-off distancer, the dimension reduced and outlier-removed
data set{ỹ[n]}n∈{1,...,L}\I and the number of endmembersN .

Step 1. constructȳ[n] = [ỹ[n]T 1]T , n ∈ {1, ..., L} \ I and setĤ1:0 =
IN and j = 0.

Step 2. updatej := j + 1 and obtainŵj by (48), and̂tj by (45).
Step 3. set [t̂j ]N = 0, updateĤ1:j := [Ĥ1:(j−1) ŵj − t̂j ] and go to

Step 2until j = N .
Step 4. outputν̂j = [ŵj ]1:N−1−[t̂j]1:N−1, ∀j as an approximate solution

to (25).

Remark 4. A theoretical justification of the decoupled max-
min heuristic used in the proposed SDVMM algorithm is
presented herein. By Von Neumann’s max-min theorem (or
max-min inequality1) [37], one can easily derive an upper
bound of (41) as follows:

max
wN∈F

min
‖tN‖≤r,

e
T
N tN=0

{
· · ·

{
max
w1∈F

min
‖t1‖≤r,

e
T
N t1=0

N∏

j=1

‖P⊥
H1:(j−1)

(wj−tj)‖

}}
.

(49)

1The max-min inequality states that for any real functionf : RN × R
M →

R and any real setsP ⊆ R
N and Q ⊆ R

M , it holds true that
minp∈P maxq∈Q f(p, q) ≥ maxq∈Q minp∈P f(p,q).
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Obviously, applying successive optimization to problem (49)
turns out to be the same as the optimization procedure
described in (42). Hence, SDVMM algorithm can be thought
of as a method that approximates an upper bound of (38),
i.e., (49), using successive optimization.

C. Computational Complexity

The computational complexity orders of the proposed AD-
VMM and SDVMM algorithms and their comparison with the
WAVMAX algorithm [1] are now discussed in this subsection.
For the ADVMM algorithm in Table II, it is easy to verify that
each column update involves complexity orderO((N − 1)L).
Combining all theN columns and denoting the number of
alternating cycles required to converge byζ, the complexity or-
der of the ADVMM isO(ζN2L). Regarding the SDVMM al-
gorithm in Table III which only involves simple matrix/vector
additions and multiplications, the complexity order can be
easily verified asO(N2L). Moreover, as has been analyzed
and reported in [1], the complexity order of the WAVMAX
algorithm isO

(
NζK

(
(N − 1)L+ ζwL+ ζuN

2(N − 1)η
))

,
whereK is the maximum number of subgradient iterations,ζ
andζu are the number of alternating cycles for outer and inner
subproblems respectively,ζw denotes the number of iterations
required by water filling algorithm, andη ∈ (2.3, 2.8). Since
these parametersK, ζ, ζu, andζw are all positive integers, it
is obviously that the complexity of WAVMAX is much higher
than that of the proposed ADVMM and SDVMM algorithms.
As will be seen in our simulations, the ADVMM and SDVMM
not only outperform the WAVMAX in most cases, but also
would spend much less computation time than the WAVMAX.

VI. COMPUTERSIMULATIONS

In this section, six Monte Carlo simulations are presented to
demonstrate the advantages of the proposed RASF algorithm,
and the ADVMM and SDVMM algorithms2. One hundred
independent runs were performed in each Monte Carlo simu-
lation. Section VI-A presents results of the sensitivity ofthe
RASF algorithm to the preassigned number of outliersZ.
Section VI-B presents results of the sensitivity of the ADVMM
and SDVMM algorithms to the preassigned back-off tolerance
r. In the subsequent subsections, we compare the proposed
ADVMM and SDVMM algorithms with some existing bench-
mark non-robust EEAs, including sequential N-FINDR (SQ-
N-FINDR) [36], successive N-FINDR (SC-N-FINDR) [36],
simplex growing algorithm (SGA) [35], vertex component
analysis (VCA) [38], and the existing robust EEA, WAVMAX
[1]. Note that throughout Sections VI and VII, all the EEAs
employed the affine set fitting (ASF) [18] for dimension re-
duction unless particularly specified. Sections VI-C, VI-D, and
VI-E show the performance of the EEAs for various signal-
to-noise ratios (SNRs), for various number of endmembers,
and for various number of pixels, respectively. Section VI-F
shows the performance of the EEAs with RASF/ASF used
over various signal-to-outlier ratios (SORs) (defined in (53)

2The Matlab codes of the proposed algorithms can be downloaded at http:
//mx.nthu.edu.tw/∼tsunghan/index.html.

below). Section VI-G demonstrates the performance of the
proposed ADVMM/SDVMM with RASF when data contain
rare endmembers.

In the simulations, three performance indices were used.
The distance between the true affine setA(C,d) and the
estimated affine setA(Ĉ, d̂), denoted byDaff , for evaluation
of the accuracy of the RASF is defined as

Daff =
‖CCT − ĈĈT ‖F√

2(N − 1)
+

‖P⊥
C
d−P⊥

Ĉ
d̂‖

‖P⊥
C
d‖+ ‖P⊥

Ĉ
d̂‖

, (50)

where the first term, in range[0, 1], is called theprojection
F-norm [39] and it measures the distance between the range
space ofC and that ofĈ, and the second term in range
[0, 1] quantifies the error betweenP⊥

C
d andP⊥

Ĉ
d̂. The root-

mean-square (rms) spectral angle distance between the true
endmembers and estimated endmembers, denoted byφ (in
degrees), was used as an accuracy measure of EEAs [38],
which is defined as follows:

φ = min
π∈ΠN

√√√√ 1

N

N∑

i=1

[
arccos

(
aTi âπi

‖ai‖ · ‖âπi
‖

)]2
(51)

where âi denotes theith estimated endmember signature,
π = [π1, . . . , πN ]T , and ΠN = {π ∈ R

N | πi ∈
{1, 2, . . . , N}, πi 6= πj for i 6= j} is the set of all the
permutations of{1, 2, ..., N}. The estimation accuracy defined
in (51) with N ! permutationsπ can be efficiently solved by
Hungarian algorithm [40]. The smaller the values ofDaff (or
φ), the better the accuracy of the affine set estimate (or the
endmember estimates). The computation timeTsec (in secs) of
each algorithm (implemented in Mathworks Matlab R2008a)
running in a desktop computer equipped with Core i7-930
CPU 2.80 GHz, 12GB memory was used as the computational
complexity measure.

Hyperspectral data were synthetically generated indepen-
dently for each run of the simulation. The contamination-
free pixel vectors were generated following the signal model
(2) where the endmember signatures withM = 224 bands
were selected from the U.S. geological survey (USGS) library
[41] and the corresponding abundance vectors were generated
following Dirichlet distributionD(s[n],µ) with µ = 1

N 1N

which automatically enforces(A1) and (A2) [38]. Moreover,
theN pure pixels were randomly added to the data to enforce
(A4). The noisy data were generated by adding independent
and identically distributed (i.i.d.) zero-mean white Gaussian
noise to the contamination-free data for differentSNRs, where
SNR =

∑L
n=1 ‖x[n]‖

2/(σ2ML). In addition, the outliers
were also added to the noisy data, where the outlier indices
ℓ1, ..., ℓZ were randomly selected from{1, ..., L}, and the
associated outliers were generated by

z[ℓi] = cκi, i = 1, ..., Z, (52)

where each element ofκi is a zero-mean unit-variance Laplace
random variable, andc is a scalar adjusted to satisfy signal-
to-outlier ratio (SOR) specification, where

SOR =

∑L
n=1 ‖x[n]‖

2/L
∑Z

i=1 ‖z[ℓi]‖
2/Z

. (53)
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The generation of outliers using Laplace distribution is to
fulfill the belief that the outliers should be heavily tailed
in distribution, which is highly peaked at zero and falls off
more slowly than Gaussian distribution in the tail. Let us
emphasize again that the proposed RASF algorithm does not
require any statistical priors of the outliers. When SNR≥SOR,
the outlier pixelsy[ℓ1], ...,y[ℓZ ] are corrupted by the outliers
z[ℓ1], ..., z[ℓZ ] more seriously than the noise; otherwise, the
case of SOR≥SNR means that the effects of the outliers
z[ℓ1], ..., z[ℓZ ] are smaller than the noise effects, thereby
making the outlier pixelsy[ℓ1], ...,y[ℓZ ] not much different
from the rest of the observed pixel vectors.

A. Robust Affine Set Fitting for Various SNRs and SORs

In this subsection, the performance of the proposed RASF
and its sensitivity to the preset number of outliersẐ are
evaluated. The hyperspectral data withN = 8 number of end-
members (Carnallite, Biotite, Actinolite, Andradite, Clintonite,
Diaspore, Goethite, and Halloysite),L = 1000 pixels, and
Z = 5%L outliers were generated for SNR= 15, 25, 35, 45,∞
(dB) and SOR= 10, 15, 20, 25 (dB). The true affine set
parameters(C,d) were obtained from the contamination-free
observed pixel vectors{x[n]}Ln=1.

Figure 3 shows the averageDaff of the ASF [18] and the
proposed RASF algorithm witĥZ = 2%L, 5%L, and 8%L
for various SORs and SNRs. It can be observed from Figure
3 that the performance of the RASF algorithm improves as
Ẑ increases, and gets saturated when the preset number of
outliers Ẑ is greater than the true number of outliersZ.
The RASF algorithm also perfectly identifies the true affine
set when the noise is absent (i.e., SNR= ∞) and Ẑ ≥ Z.
Moreover, the RASF algorithm outperforms ASF for all the
values ofẐ under test when SOR≤SNR, no matter whether
SOR is high or low. This implies that as long as the outlier
pixels were corrupted by the outliers more heavily than by the
noise, the RASF algorithm will take effect in outlier detection.

B. ADVMM and SDVMM Algorithms for Various Back-off
Tolerances and SNRs

The sensitivity of the proposed ADVMM and SDVMM
algorithms to the preset back-off tolerancesr is presented.
Data generation (N = 8, M = 224 andL = 1000) is the same
as that in Section VI-A, where SNR= 15, 25, 35, 45 (dB) and
SOR= ∞ (dB). We setr = λσ whereσ is the noise standard
deviation assumed to be known, andλ is a real number varying
from 0 to 4 in step of0.2.

The average values ofφ of the ADVMM and SDVMM
algorithms versusλ for different SNRs are shown in Figures
4(a) and 4(b), respectively. One can see from Figure 4(a)
that the performance of ADVMM is less sensitive toλ over
0 ≤ λ ≤ 3 for all the SNRs under test, but its performance
decreases significantly asλ > 3 and SNR= 15 dB. It can also
be seen from Figure 4(b) that the sensitivity of SDVMM to
λ is low for all the SNRs andλ. Obviously, the sensitivity of
SDVMM to bothλ and SNR is less than that of ADVMM.

For performance comparison in Sections VI-C, VI-D, VI-E,
and VI-F, we set the back-off tolerance of the proposed

TABLE IV
PERFORMANCE COMPARISON OF AVERAGEφ (DEGREES) AND AVERAGE

Tsec (SECS) OVER SOME EXISTINGEEAS FORN = 8, L = 1000,
SOR= ∞ (DB) AND VARIOUS SNRS.

Algorithms
SNR (dB)

5 15 25 35 45 ∞

VCA φ 15.34 3.79 1.26 0.44 0.13 0.00
Tsec 0.073 0.053 0.054 0.032 0.028 0.024

SGA φ 13.92 3.33 0.96 0.28 0.09 0.00
Tsec 0.126 0.132 0.127 0.123 0.121 0.120

SQ-N-FINDR φ 14.13 3.49 1.07 0.31 0.10 0.00
Tsec 0.179 0.152 0.132 0.119 0.119 0.118

SC-N-FINDR
φ 14.90 3.91 1.08 0.34 0.10 0.00

Tsec 0.068 0.065 0.060 0.059 0.059 0.059

WAVMAX φ 13.30 3.15 1.03 0.31 0.10 0.00
Tsec 42.879 46.383 49.804 38.155 40.921 41.577

ADVMM φ 12.95 3.15 1.03 0.31 0.10 0.00
Tsec 0.042 0.029 0.018 0.016 0.016 0.015

SDVMM φ 13.50 3.00 0.89 0.28 0.09 0.00
Tsec 0.028 0.020 0.016 0.015 0.015 0.015

ADVMM and SDVMM algorithms tor = 1.3σ, which could
be considered as a modest choice suggested by the simulation
results shown in Figure 4. We also set the same value ofr for
the robust WAVMAX algorithm [1].

C. EEAs for Various SNRs

Hyperspectral data generation (N = 8, M = 224, and
L = 1000) is the same as that in Section VI-A where we set
SNR= 15, 25, 35, 45,∞ (dB) and SOR= ∞ (dB). Table IV
shows the averageφ andTsec of the EEAs over various SNRs.
The minimumφ and minimumTsec for a specific SNR over
all the algorithms are highlighted as bold-faced numbers. One
can see from Table IV that the averageφ of all the algorithms
gradually decreases as the SNR goes up, and they are equal to
zero when the SNR approaches to infinity. The performance
of SDVMM is the best for almost all the tested SNRs among
the existing algorithms under test, and the performances of
ADVMM and WAVMAX are quite comparable. On the other
hand, the computation time cost by SDVMM is the least,
followed by ADVMM, and both are much less than WAVMAX
by around an order of 3.

D. EEAs for Various Number of Endmembers

The synthetic data generation (M = 224 andL = 1000)
is the same as that in Section VI-A, where SNR= 15 dB,
SOR= ∞ dB, andN = 4, 6, ..., 14 endmembers are randomly
selected from the USGS library [41]. The averageφ andTsec

of the EEAs for the synthetic data with differentN are shown
in Table V. One can see that the performances of all the
algorithms degrade asN increases. WAVMAX is the best for
N = 4. For N = 6, 8, the SDVMM outperforms all the other
algorithms and ADVMM does so forN = 10, 12, 14. Again,
the computation time of the proposed two algorithms is the
least and, in particular, is much less than that of WAVMAX
by an order of3.

E. EEAs for Various Number of Pixels

Again, the synthetic data generation (N = 8 andM = 224)
is the same as that in Section VI-A, where SNR= 15 dB,
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Ẑ

Ẑ
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Fig. 3. Performance comparison of averageDaff of ASF and RASF with different preset̂Z for various SNRs,Z = 5%L, as well as (a) SOR= 10, 15 dB,
and (b) SOR= 20, 25 dB.
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Fig. 4. The performance sensitivity of (a) the ADVMM algorithm and (b) SDVMM algorithm with respect toλ for different SNRs.

TABLE V
PERFORMANCE COMPARISON OF AVERAGEφ (DEGREES) AND AVERAGE

Tsec (SECS) OVER SOME EXISTINGEEAS FORL = 1000, SNR= 15 (DB),
SOR= ∞ (DB) AND VARIOUS NUMBER OF ENDMEMBERSN .

Algorithms The number of endmembers (N )
4 6 8 10 12 14

VCA φ 2.27 2.64 3.40 5.78 9.10 9.72
Tsec 0.097 0.120 0.116 0.461 0.769 0.564

SGA φ 1.97 2.36 3.08 6.43 8.65 9.60
Tsec 0.177 0.217 0.184 0.248 0.353 0.384

SQ-N-FINDR
φ 2.11 2.58 3.17 4.89 8.58 9.85

Tsec 0.154 0.195 0.171 0.259 0.394 0.505

SC-N-FINDR φ 2.32 2.87 3.52 6.01 9.41 10.44
Tsec 0.089 0.105 0.088 0.118 0.156 0.167

WAVMAX φ 1.58 2.17 2.86 5.77 9.12 9.77
Tsec 24.222 58.961 45.110 87.006 197.176 252.528

ADVMM φ 1.59 2.19 2.87 4.61 8.39 9.46
Tsec 0.047 0.057 0.053 0.089 0.165 0.222

SDVMM
φ 1.61 2.08 2.73 5.33 9.05 9.52

Tsec 0.047 0.055 0.046 0.064 0.081 0.076

SOR= ∞ dB, and the number of pixelsL varies from250 to
8000. The averageφ andTsec of the EEAs for the synthetic
data with differentL are shown in Table VI. One can see
from Table VI that the proposed SDVMM and ADVMM

outperform all the other algorithms in all cases. On the other
hand, the computation times of all the algorithms, except
VCA algorithm, gradually increase as theL increases. The
proposed ADVMM and SDVMM algorithms spend much less
computation time than WAVMAX by an order of magnitude
between3 and4 whenL = 8000.

F. EEAs with RASF and with ASF Used for Various SORs

The performance difference between EEAs with RASF
and with ASF used is evaluated herein. We also include the
state-of-the-art robust endmember estimation method, RULU
algorithm [17], for our performance comparison. The data
generation (M = 224, N = 8, andL = 1000) is the same as
that in Section VI-A, whereZ = 5%L, SNR is fixed to15
(dB), and SOR= 5, 8, ..., 20 (dB). Table VII shows the average
φ of the EEAs with RASF/ASF used and RULU algorithm
over various SORs. One can see from Table VII that the
performances of all the EEAs with ASF used improve as the
SOR increases, and the RASF algorithm substantially boosts
the performances of all the EEAs in the presence of outliers.
Although the performance of EEAs with ASF is worse than
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TABLE VI
PERFORMANCE COMPARISON OF AVERAGEφ (DEGREES) AND AVERAGE

Tsec (SECS) OVER SOME EXISTINGEEAS FORN = 8, SNR= 15 (DB),
SOR= ∞ (DB) AND VARIOUS NUMBER OF PIXELSL.

Algorithms
The number of pixels (L)

250 500 1000 2000 4000 8000

VCA φ 5.61 4.33 3.80 3.45 3.43 3.66
Tsec 0.229 0.202 0.169 0.213 0.246 0.274

SGA φ 5.32 3.95 3.34 3.01 2.97 2.94
Tsec 0.118 0.192 0.255 0.577 1.054 2.231

SQ-N-FINDR φ 5.23 4.08 3.50 3.19 3.11 3.11
Tsec 0.109 0.179 0.247 0.556 0.907 1.664

SC-N-FINDR
φ 5.99 4.66 3.92 3.52 3.54 3.34

Tsec 0.066 0.096 0.120 0.244 0.384 0.649

WAVMAX φ 5.24 4.01 3.15 2.92 2.73 2.58
Tsec 11.518 30.861 65.850 233.859 778.585 2997.140

ADVMM φ 5.16 3.87 3.15 2.85 2.70 2.61
Tsec 0.066 0.073 0.072 0.111 0.166 0.218

SDVMM φ 5.04 3.66 3.00 2.69 2.49 2.42
Tsec 0.049 0.056 0.060 0.099 0.149 0.184

TABLE VII
PERFORMANCE COMPARISON OF AVERAGEφ (DEGREES) OVER SOME

EXISTING EEAS WITH RASFAND WITH ASF FORN = 8, L = 1000,
Z = 5%L, SNR= 15 (DB) AND VARIOUS SORS.

Algorithms SOR (dB)
5 8 11 14 17 20

RULU - 14.61 14.66 15.56 14.85 13.79 13.43

VCA RASF 3.36 3.40 3.39 3.38 3.38 3.42
ASF 17.49 10.96 5.44 3.87 3.53 3.65

SGA RASF 3.13 3.12 3.13 3.13 3.12 3.17
ASF 15.46 9.59 4.94 3.43 3.19 3.14

SQ-N-FINDR
RASF 3.22 3.22 3.22 3.22 3.22 3.23
ASF 17.14 10.34 4.83 3.54 3.28 3.22

SC-N-FINDR
RASF 3.41 3.31 3.40 3.49 3.48 3.39
ASF 17.70 11.02 5.56 3.92 3.60 3.60

WAVMAX RASF 2.95 3.01 3.00 2.89 3.15 2.97
ASF 16.81 10.25 5.14 3.69 3.34 3.35

ADVMM RASF 2.93 2.90 2.90 2.88 2.90 2.90
ASF 16.99 9.95 4.86 3.22 2.97 2.93

SDVMM
RASF 2.76 2.77 2.77 2.76 2.76 2.77
ASF 16.82 9.74 4.53 3.08 2.85 2.79

that of RULU for low SORs (namely, SOR= 5 dB), EEAs
with RASF outperform RULU for all the SORs tested.

Moreover, the performance of any EEA with RASF for all
SORs are quite competitive, meaning that the RASF can be
in conjunction with any EEAs to provide better endmember
estimates than the ASF. Last but not least, the performance of
the SDVMM with RASF used is still the best.

G. ADVMM-RASF and SDVMM-RASF Algorithms for Rare
Endmembers

So far we have demonstrated the superior performance
of RASF algorithm, ADVMM/SDVMM algorithm, and their
combinations over some benchmark methods in the previous
subsections. Now, one may question whether the proposed
algorithms can preserve rare endmembers if the data really
contain rare endmembers. Following the similar data genera-
tion (M = 224, L = 1000, Z = 5%L) as in Section VI-A,
in addition to the8 endmembers considered as background
endmembers, we also add2 endmembers, Montmorillon and
Muscovite, as rare endmembers. Each rare endmember oc-
cupies only2 pixels. We then consider two scenarios. First,
the number of endmembers is perfectly estimated; i.e.,N̂ =
10 and the given number of outlierŝZ = Z = 5%L.

Second, the number of endmembers is underestimated and
it corresponds to the number of background endmembers,
say N̂ = 8. Here, the given number of outliers is set to
Ẑ = 6%L and making such1%L increment in Ẑ is to
account for errors made by theN − N̂ endmembers, as only
N̂ = 8 endmembers will be finally extracted. The above two
cases for differentN̂ are to simulate various outcomes of
methods for estimating the number of endmembers, such as
hyperspectral signal identification by minimum error (Hysime)
[23], maximum orthogonal-complements algorithm (MOCA)
[30], robust signal subspace estimation (RSSE) [31], modified
MOCA (MMOCA) [32], and geometry based estimation of
number of endmembers (GENE) [33].

The performances of ADVMM-RASF and SDVMM-RASF
with the generated data for SNR= ∞, 35 (dB) and various
SORs are shown in Table VIII, whereφB (or φR) is the
rms spectral angle between the estimated background (or
rare) endmembers and their ground truth. One can easily see
from Table VIII that whenN̂ = N = 10 the proposed
algorithms can estimate both background endmembers and
rare endmembers with high accuracy in noise-free and noisy
cases. When̂N = 8, all the estimated endmembers are found
to be the background endmembers, and due toN̂ 6= N , the
proposed algorithms treat rare endmembers as outliers, and
their performance slightly degrade. The above observations
suggest that if one wants to preserve the rare endmembers
after dimension reduction, the given̂N should include both
the number of background endmembers and the number of
rare endmembers. This immediately confirms the importance
of estimation of number of endmembers in the presence of
rare endmembers [30]–[33].

VII. H YPERSPECTRALDATA EXPERIMENTS

In this experiment, SGA [35], WAVMAX [1], the pro-
posed ADVMM and SDVMM algorithms, all with ASF used,
were tested on the AVIRIS hyperspectral data taken over the
Cuprite mining site, Nevada, in 1997 [42]. The SDVMM with
RASF used (SDVMM-RASF) was also applied to the AVIRIS
Cuprite data set for comparison. We consider a sub-image
(200 × 200 pixels, L = 40000) of the hyperspectral data as
the region of interest which comprises224 spectral bands over
wavelength from0.4µm to 2.5µm. The bands1 - 2, 104 - 113,
148 - 167, and221 - 224, which are in low SNR (due to the
effect of water-vapor), were removed from the original224-
band hyperspectral data. A total of188 bands were therefore
used in our experiment. Moreover, since the noise in real
data may not be isotropically distributed, we applied noise
prewhitening to the data set; that is

yp[n] , D−1/2y[n] =

N∑

i=1

si[n]gi+zp[n]+wp[n], ∀n, (54)

where the noise covariance matrixD was estimated by the
multiple linear regression method [23],gi = D−1/2ai,
zp[n] = D−1/2z[n], andwp[n] = D−1/2w[n] is the isotrop-
ically distributed noise with covariance matrix equal toIM .
Once ĝ1, . . . , ĝN were found by any EEA, the endmember
estimates can be recovered byâi = D1/2ĝi, i = 1, ..., N .
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TABLE VIII
PERFORMANCE COMPARISON OF AVERAGEφ (DEGREES) OVER ADVMM-RASF AND SDVMM-RASFWITH N̂ = 8, 10 FORN = 10, L = 1000,

Z = 5%L, SNR= ∞, 35 (DB) AND VARIOUS SORS.

Algorithms SOR (dB) (N̂ = 10, Ẑ = 5%L) SOR (dB) (N̂ = 8, Ẑ = 6%L)
8 11 14 17 20 8 11 14 17 20

ADVMM-RASF φB 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
(SNR= ∞ (dB)) φR 0.00 0.00 0.00 0.00 0.00 – – – – –
SDVMM-RASF φB 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
(SNR= ∞ (dB)) φR 0.00 0.00 0.00 0.00 0.00 – – – – –
ADVMM-RASF φB 0.31 0.30 0.30 0.31 0.30 0.32 0.32 0.32 0.32 0.32
(SNR= 35 (dB)) φR 3.08 3.08 3.09 3.09 3.08 – – – – –
SDVMM-RASF φB 0.23 0.23 0.23 0.23 0.23 0.30 0.30 0.30 0.30 0.30
(SNR= 35 (dB)) φR 3.13 3.13 3.13 3.13 3.13 – – – – –

According to the noise prewhitening processing where the
resulting noise variance becomes unity, the back-off toler-
ance r of the robust WAVMAX, ADVMM, SDVMM, and
SDVMM-RASF algorithms was set to1.3. The hyperspectral
subspace identification by minimum error (HySime) [23] was
applied to estimate the number of endmembers in this region,
and the results yieldN = 18. The number of outliersẐ
used in RASF was empirically set to0.05%L = 20. How
to optimally tune the value of̂Z will be considered as our
future directions, but as suggested by simulations, there will
be not much performance improvement whenẐ is larger than
the (unknown) trueZ.

The abundance maps associated with the estimated end-
members for all the EEAs under test were obtained by fully
constrained least square (FCLS) method [43]. The minerals
were then identified by visual comparison of the obtained
abundance maps with the ones in [1], [15], [38]. Due to space
limit, we herein only demonstrate the endmember estimates
[Figure 5(a)], the locations of the0.05%L = 20 detected
outliers [Figure 5(b)], and the estimated abundance maps
[Figure 5(c)] for the proposed SDVMM-RASF. The true
endmember signatures taken from the U.S. geological survey
(USGS) library were also shown in Figure 5(a) for comparison
[44]. In addition, the mean-removed spectral angle (degrees)
between the estimated endmemberâ and the associated USGS
library endmember signaturea was used as the performance
measure

φ̄ = arccos

(
(â−m(â))T (a−m(a))

‖â−m(â)‖ · ‖a−m(a)‖

)
, (55)

wherem(a) = (1T
Ma/M)1M for any vectora ∈ R

M . The
smaller the value of̄φ, the better the accuracy of endmem-
ber signature estimates. The values ofφ̄ for the estimated
endmembers yielded by all the various EEAs are shown in
Table IX, where the least̄φ for a specific mineral over those
five algorithms is highlighted as bold-faced number and the
number in parenthesis denotes the value ofφ̄ for the repeatedly
estimated endmember. It can be observed from Table IX that
the φ̄ of the SDVMM-RASF method is the least, although
there is no much difference in̄φ for all the methods under test.
The possible reason is that the quality of AVIRIS data set is
high; i.e., both SNR and SOR of the AVIRIS Cuprite data set
are large [45] and the true outlier pixels are very few. Hence,
suchẐ = 20 estimated outliers may presumably be the pixels
with the Ẑ largest approximation errors between the linear

spectral mixing model (1) and the non-linear mixing model of
the real hyperspectral data [3], [27]. Moreover, we have also
tunedẐ equal to0.1%L and0.3%L for the SDVMM-RASF,
and the associated performances do not vary much, inferring
thatẐ = 0.05%L outliers should sufficiently cover all the true
outliers; i.e.,Ẑ is larger than the trueZ.

As presented above that the AVIRIS Cuprite data set is
of very high quality, one may raise a question: Because the
information of the outliers are not publicly available, do the
locations of theẐ = 20 outliers estimated by the RASF
algorithm [Figure 5(b)] really cover the locations of the true
outliers? To properly investigate this, we generated semi-
real hyperspectral data set with outliers artificially added.
We selected three spatial coordinates, say(16, 24), (24, 16),
(24, 32), from the 200 × 200 cropped data, and artificially
added three outliersz[n], as well as adjusted these outliers
to satisfy different SORs defined in (53), provided that the
original hyperspectral data were contamination-free. Figure
6(a) displays the locations of the three simulated outliers,
marked in yellow triangles on the 50th band hyperspectral
image, and one can see that they geometrically, spatially form
a triangle. After applying the noise-prewhitening (54) to the
outlier-added data, we then tested the proposed SDVMM-
RASF algorithm with Ẑ = 0.05%L on the data sets of
various SORs, and show the estimated locations of the outliers
in Figures 6(b) and 6(c) for SOR≤ 45 dB and SOR> 45
dB, respectively. For SOR≤ 45 dB, it can be observed that
there is a clear triangle shape formed by the three outlier
locations in the upper left corner of Figure 6(b), showing a
good consistency with our simulated outlier locations in Figure
6(a). For the scenario where SOR> 45 dB, we cannot identify
any pre-placed outlier locations in Figure 6(c), conceivably
because either the SNR of the Cuprite data set is around45
dB, while the outliers (marked by circles) in the hyperspectral
data are more dominant (i.e., the corresponding SOR lower
than 45 dB) than the three pre-placed outliers. Besides, the
performance of the estimated endmembers by the SDVMM-
RASF algorithm is the same as that in Table IX, and hence
the associated results are not demonstrated herein.

VIII. C ONCLUSION

We have presented a two-step approach for robust hyper-
spectral endmember extraction in the presence of outliers
and noise. For dimension reduction, the RASF algorithm
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TABLE IX
MEAN-REMOVED SPECTRAL ANGLESφ̄ (DEGREES) BETWEEN LIBRARY SPECTRA AND ENDMEMBERS ESTIMATED BY THESGA, WAVMAX, ADVMM

AND SDVMM.

SGA WAVMAX ADVMM SDVMM SDVMM-RASF
Alunite 18.02 22.00 21.90 21.48 20.47

Andradite 25.49 22.22 - 21.53 16.73 (26.43)
Buddingtonite 24.49 26.19 24.54 24.53 26.40
Chalcedony 25.98 - - 24.00 24.00

Desert Varnish - 11.79 12.04 11.64 -
Dumortierite 24.96 (32.02) (31.54) (21.01) 28.77 (25.42) 25.64 (25.19) 33.53 (27.10) 20.47 (27.10)

Kaolinite 24.11 27.56 27.09 24.14 27.58
Montmorillonite#1 17.14 19.65 (24.58) 18.90 17.53 17.12 (22.65) (22.36)
Montmorillonite#2 25.70 25.70 25.67 20.65 (25.70) -

Muscovite 35.28 37.86 37.67 35.26 35.61
Nontronite#1 25.04 (24.84) 25.69 25.06 (25.77) (25.64) 25.03 25.99
Nontronite#2 16.18 17.00 (23.04) 23.03 (15.69) 17.53 (23.01) 17.55 (22.65)
Nontronite#3 25.78 26.96 (26.62) 26.33 (27.70) 25.72 24.59

Paragonite 35.36 31.37 30.92 35.42 35.36
Pyrope 13.03 13.09 13.20 15.73 15.70

Averageφ̄ 24.78 24.22 24.00 23.93 23.82

was proposed to find a robust affine set and meanwhile to
detect and remove the outliers. For endmember extraction,
we have also presented two fast algorithms, namely ADVMM
and SDVMM, to approximate the simplex volume max-min
formulation that has shown its robustness against noise [1].
The proposed ADVMM and SDVMM algorithms decouple the
max-min simplex volume problem, and solve the partial max-
min problems in alternating fashion and successive fashion,
respectively. The decoupled max-min heuristic and approxima-
tion mechanisms used in the proposed ADVMM and SDVMM
algorithms have also been discussed. All the subproblems
involved in the RASF algorithm, as well as the ADVMM and
SDVMM algorithms, end up with closed-form solutions, and
hence the proposed methods are computationally efficient.

Monte Carlo simulation results have shown that the RASF
algorithm provides more accurate affine set estimate than the
ASF, as long as SOR≤SNR. The simulation results have also
shown that the ADVMM and SDVMM algorithms perform
slightly better than the robust algorithm, WAVMAX [1], while
significantly outperform some existing benchmark algorithms
especially for low SNR. The computation load in terms of run-
ning time required by the ADVMM and SDVMM algorithms
is significantly less than that of the WAVMAX algorithm by
around an order of3. Moreover, the results also demonstrated
that the performance of any EEAs preceded by the dimension
reduction using RASF improves significantly especially for
low SOR. In cases where some of the endmembers are rare,
the proposed ADVMM/SDVMM-RASF algorithms can still
preserve the rare endmembers if the number of endmembers
is perfectly given; i.e.,N̂ = N . For N̂ < N , the rare
endmembers may instead be treated as outliers. Real data
experiments using the Cuprite data set have also demonstrated
the practical applicability of the proposed RASF, ADVMM,
and SDVMM algorithms.
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APPENDIX

PROOF OFLEMMA 1

Problem (44) is equivalent to

min
‖tj‖2

≤r

∥∥∥P⊥
Ĥ1:(j−1)

(wj − tj)
∥∥∥
2

, (56)

whose KKT conditions can be easily shown to be
(
P⊥

Ĥ1:(j−1)
+ λ̂IN

)
t̂j = P⊥

Ĥ1:(j−1)
wj , (57a)

λ̂(‖t̂j‖
2
− r2) = 0, (57b)

‖t̂j‖
2
− r2 ≤ 0, λ̂ ≥ 0, (57c)

where t̂j and λ̂ are primal and dual optimal points of (56).
By (57a) and (57c), we have

‖P⊥
Ĥ1:(j−1)

wj‖ ≤ ‖P⊥
Ĥ1:(j−1)

+ λ̂IN‖·‖t̂j‖ ≤ (1+ λ̂)r, (58)

where the first inequality is due to the inequality of the
operator norm, and the second inequality is due to the fact
that the eigenvalues of a projection matrix are equal to either
zero or one.

To prove Lemma 1, we first prove

λ̂ > 0 ⇐⇒ ‖P⊥
Ĥ1:(j−1)

wj‖ > r. (59)

First, let us show the sufficiency of (59). Suppose thatλ̂ > 0.
Then,P⊥

Ĥ1:(j−1)
+ λ̂IN is of full rank, and (57a) becomes

t̂j = (P⊥
Ĥ1:(j−1)

+ λ̂IN )−1P⊥
Ĥ1:(j−1)

wj. (60)

By eigenvalue decomposition, we can express

P⊥
Ĥ1:(j−1)

= V

[
IN−(j−1) 0

0 0

]
VT , (61)

whereV ∈ R
N×N is the matrix constituted by orthonormal

eigenvectors ofP⊥
Ĥ1:(j−1)

. Substituting (61) into (60) followed

by some derivations, (60) can be simplified to

t̂j =
1

1 + λ̂
P⊥

Ĥ1:(j−1)
wj . (62)
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Fig. 5. Experimental results of SDVMM-RASF with Cuprite data set: (a) the endmember signatures taken from the USGS library, and the estimated
endmembers; (b) locations of thêZ = 20 outliers detected by RASF; (c) the eighteen abundance maps associated with the estimated endmembers.

By (62) and (57b), it is easy to see‖t̂j‖ =
‖ 1
1+λ̂

P⊥
Ĥ1:(j−1)

wj‖ = r, which yields

λ̂ =
1

r
‖P⊥

Ĥ1:(j−1)
wj‖ − 1, (63)

thus leading to‖P⊥
Ĥ1:(j−1)

wj‖ > r due to λ̂ > 0. The proof

of necessity of (59) is trivial. By (58),‖P⊥
Ĥ1:(j−1)

wj‖ > r

implies λ̂ > 0.
Now, we make use of (59) to prove Lemma 1. Two cases

on wj ∈ F are considered: (C1)wj ∈ W(r) and (C2)wj ∈

R
N \W(r). By (59), (C1) implieŝλ > 0. Hence, by (62) and

(63), the solution (45) can be obtained. On the other hand, for
case (C2), by (57c) and (59), (C2) impliesλ̂ = 0. Hence, (46)
can be obtained by settinĝλ = 0 in (57a). �
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