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Abstract—Hyperspectral endmember extraction is to estimate
endmember signatures (or material spectra) from the hyper-
spectral data of an area for analyzing the materials and thei
composition therein. The presence of noise and outliers inhe
data poses a serious problem in endmember extraction. In
this work, we handle the noise and outlier contaminated data
by a two-step approach. We first propose a robust affine set
fitting (RASF) algorithm for joint dimension reduction and
outlier removal. The idea is to find a contamination-free, d#éa-
representative affine set from the corrupted data, while keping
the effects of outliers minimum, in the least-squares errorsense.
Then, we devise two computationally efficient algorithms fo
extracting endmembers from the outlier-removed data. The wo
algorithms are established from a simplex volume max-min fo
mulation which is recently proposed to cope with noisy scenas
[1]. A robust algorithm, called worst-case alternating volme
maximization (WAVMAX) [1], has been previously developed or
the simplex volume max-min formulation, but is computatiorally
expensive to use. The two new algorithms employ a differentikd
of decoupled max-min partial optimizations, wherein the dsign
emphasis is on low-complexity implementations. Some comgar
simulations and real data experiments demonstrate the effacy,
the computational efficiency, and the applicability of the poposed
algorithms, in comparison with the WAVMAX algorithm [1] and
some benchmark endmember extraction algorithms.

Index Terms—Hyperspectral images, Robust dimension re-
duction, Fast endmember extraction, Simplex volume max-nm,
Alternating optimization, Successive optimization

I. INTRODUCTION

corresponding to individual pixels may still contain mohear
one materials [2], [3]. Hence, decomposition of the reagdive
spectra into a set of endmembers and their corresponding mix
ing proportions, oabundanceswould facilitate the character-
ization of different materials over the scanned area ofré@ste
[2], [3]. In the past several years, endmember extractiomgus
hyperspectral images has been widely investigated and has
proven to be valuable in many applications, including but
not limited to geology, hydrology, urban planning, geodmap
cadastral mapping, cartography, and military [4]-[6].

The presence of noise and outliers in the hyperspectral data
is inevitable in practice, and may seriously affect the wsial
of hyperspectral data. The noise is generated because of the
random nature of the photon arrival/detection process, the
sensor electronics, and quantization [7]. Raw data caidra
routines could alter the statistics of the noise, and so the
noise features may not explicitly depend on the wavelength
of the hyperspectral sensor [7], [8]. The other uncertaigty
outliers. In general, the outliers are thought of as the Ipixe
that deviate markedly from the rest of the data. Two defingio
of the outlier pixels have been presented [9]-[12] in therope
literature. The first refers to the pixels that provide canst
or error readout, also called “dead” or “bad” pixels. Poksib
causes of such outlier pixels include detector failureprarr
during data transfer, and improper data correction [9]].[10
The second refers to the pixels that have different spectral
signatures from the background representatives. Thesdspix

Hyperspectral remote sensing exploits the fact that alt subye 5150 commonly called targets or objects in the domain of
stances uniquely reflect, absorb and emit electromagnetic Ryperspectral anomaly detection [11], [12].

ergy, at specific wavelength, in distinctive patterns delpemn
on their molecular composition. Hyperspectral sensorectsl

Given the fact that the noise and outliers are the major
source of errors in hyperspectral endmember extractian, th

data in hundreds of narrow contiguous spectral bands,tmer%esign of endmember extraction algorithms (EEAs) should

providing a powerful means to discriminate disparate nielter
based on their unique spectral signatures, eadmember

take both the noise and outliers into account. Existingreffo
that account for the noise and/or outlier effects includatjo

signatures(simply endmembejs However, depending on thegayesian algorithm (JBA) [13], simplex identification bylisp

spatial resolution of the hyperspectral sensor, surfatehpa
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augmented Lagrangian (SISAL) [14], robust minimum volume
enclosing simplex algorithm (RMVES) [15], and others [16],
[17], and they are carried out by different techniques. 8pec
ically, a Bayesian estimation framework explicitly accting

for the presence of noise is employed in [13]; soft constsain
are utilized to mitigate outlier and/or noise pixel effeict§14];
chance constraints are applied to the original minimummweau
enclosing simplex constraints [18] to account for noise&#

in [15]; [16] utilizes a support vector machine based apphoa
for robustly extracting the simplex topology; [17] propsse
robust unconstrained linear unmixing (RULU) algorithm e e
tract endmembers in the presence of outliers. Simply spgaki
the RULU algorithm uses a clustering method for background



endmembers estimation, unconstrained abundance estimatbackground spectra are extracted, differentiation of &ngett
thresholding for outlier pixel removal, and data indexinighw spectra from the background spectra is a separate problem
extreme abundances for robust endmember estimation. Tho{dyr], [26].
RULU provides robustness to outliers, the noise uncestaint The outline of this paper is as follows. Section Il describes
still remains. Moreover, a noise-robust spatial preprsiogs the hyperspectral endmember extraction problem in the- pres
module has been proposed in [19], and it can be easily couptatte of noise and outliers. Section Il presents the prapose
with any non-robust EEAs. Other than the aforemention€tASF for dimension reduction and outlier removal. Sectién |
methods, we have also reported a robust generalizationboiefly reviews Winter's endmember extraction criteriordan
the maximum simplex volume criterion proposed by Wintets robust generalization. Section V presents the two psego
[20], [21] to account for noise effects [1], and formulaté@ t fast algorithms for the simplex volume max-min formulation
robust Winter criterion as a simplex volume max-min prohlensections VI and VII show the results of computer simulations
Although an algorithm, called worst-case alternating wadu and real hyperspectral data experiments, respectivetgllfi
maximization (WAVMAX), has been proposed to handle theome conclusions are drawn in Section VIII.
robust Winter criterion in a disciplined manner, which uses Notation:RY andRM*" denote set of reaN x 1 vectors
combination of alternating optimization and the subgratieand set of real\/ x N matrices, respectivelyl, 7, Iy, ande;
method [1], it is quite computationally expensive to use faepresentV x 1 all-one vector,N x N identity matrix, and
massive amounts of high-dimensional data. unit column vector with théth entry equal to 1, respectively;

In this paper, we develop robust hyperspectral endmember 7, || - ||” and “\ ” stand for componentwise inequality,
extraction algorithms for coping with outliers and noisee WEuclidean norm, and set difference, respectivelynk(X),
first propose a robust version of the affine set fitting (ASFet(X), || X||», and X' denote the rank, determinant, Frobe-
[18], [22] for joint dimension reduction and outlier reméva nius norm, and pseudo-inverse of the maiXix respectively;
The idea is to find a corruption-free data-representatifieeaf [x]; and [x|;.; denote theith element ofx, and ani x 1
set from the given hyperspectral data, while keeping tlwlumn vector formed by the firstelements inx, respectively;
outlier effects minimum, in the least-squares error sefibe. {x[n]}Z_, denoteg{x[1], ..., x[L]}, and[ x[n] ].cz represents
proposed algorithm, called robust ASF (RASF), implementsmatrix comprisings[n] for all n in the setZ as its column
the idea by using alternating optimization. With the outlievectors;\ (0, c%1,,) denotes Gaussian distribution with zero
pixels being removed by the RASF algorithm, the uncertaintgean and covariance matri;;.
that remains in the data is noise. We then propose two compu-
tationally efficient algorithms to implement the robust \feéin I
criterion, the simplex volume max-min formulation [1], by a
partial max-min optimization approach that provides aibse ) )
form solutions for either of maximization and minimization Consider a scenario where a hyperspectral sensor measures

The proposed EEAs, named alternating decoupled volugi@lar electromagnetic (EM) radiation ovéf spectral bands_
max-min (ADVMM) and successive decoupled volume mafrom N distinct substances in an area of interest. Assuming
min (SDVMM), approximate the simplex volume max-mirthat the EM patterns are received via only one single refiacti
problem by a set of decoupled max-min problems in altefnd that the materials therein are distinct, each obs_erved
nating manner and successive manner, respectively. Sene JtyPerspectral pixel vector can be represented by a linear
tifications of the decoupled max-min heuristic that motigat Mixing of these substance spectra [2], [3]:

the development of the proposed ADVMM and SDVMM

. HYPERSPECTRALENDMEMBER EXTRACTION
PROBLEM

algorithms are also discussed. Simulations and experahent yin] =xn] + win] + zln}, n=1,.... L, @)
results will be provided to demonstrate the performance, th . . -

computational efficiency, and the real applicability of the x[n] = Asin] = Z;Si[n]ai’ n=1..L 2)
proposed methods. -

We should emphasize that in this work the noise is ak? (1), y[n] = [ y1[n],...,ym[n] ]* is the nth noise and
sumed to be zero-mean isotropically distributed with itt outlier contaminated pixel vector that comprisks spectral
variance over all the hyperspectral bands, and assumedbendsx[n] = [ z1[n],...,za[n] ]" is the contamination-free
be spatially homogenous. In practical scenarios where theunterpartw|n] = [wi[n],...,wa[n]]” is the isotropically
noise is nonisotropic, the noise prewhitening techniquelz distributed noise vector; e.g\(0,0°I,;) where o? is the
applied to the data with the noise covariance matrix estihatnoise variancez(n] = [ zi[n],...,zu[n] |7 denotes the

by the multiple regression method [23]. The consideratigiitlier vector appearing only & pixels; i.e.,

of the signal-dependent noise is beyond the scope of this N

paper. Interested readers can refer to [24] for furtherildeta :m i 8’ Z g gl’ ’LK}Z{I* z 3)
We will only focus on the outliers that are “dead” or “bad” ’ B
pixels providing constant or error readout, instead of thend L is the total number of observed pixel vectors. In (2),
target/object-type outliers. From the perspective of esiver A = [ a;,...,ax | € RM*YN represents the endmember
extraction, the target spectra and the background speatra signature matrix whoséh column vectora; denotes theth
both be seen as unknown endmembers, thereby being ablendmember signature anth] = [ s1[n],...,sn[n] |7 is the
be readily estimated by any EEAs [25]. Once both target amth abundance vector comprisiig fractional abundances.



In this work, as mentioned in the introduction section, we To start with, let us consider the contamination-free fExel
focus on the so-called “dead” or “bad” outlier pixels thahcax[n]. It has been shown in [18] that {A2) the affine hull of
be modeled ag[n], n € Z in y[n] given by (1), and these x[n] is identical to that of endmembess, ..., ay:
outliers z[n], n € Z are considered without assuming any
statistical priors. The outlier pixels are assumed to be,rar aff {x[1], ..., x[L]} = aff{a, ..., an}, (4)
and hence the number of outlier pi>.<eZsshou.Id be much less whereaff{x;,...,xy} denotes the affine hull of;,
than the number of data samplési.e., outlier-data amount 5 it is defined as [34]
ratio Z/L < 1. While our emphasis is placed on the outliers
defined as the dead pixels, the outliers given by (3) can also { N

H{Xl, .,XN}: Z@ZXZ
=1

ey XNV

be interpreted as errors of linear approximation to the reaf*
hyperspectral data where the nonlinear mixing model could
be a better fit [3], [27]. whered = [0y, ...,0x]T. By (A3), the endmember affine hull
Assuming prior knowledge of the number of endmemberst{a,,...,ay} admits an affine set representation

N, robust hyperspectral endmember extraction is to robustl%r No11 &

estimate the endmember signatusgs. . ., ay from the given & {ar,...;an} = {x=Ca+d |a e R""'} £ A(C.d),
corrupted hyperspectral datg[1],...,y[L] with minimum ) i (6)
effects of noise and outliers. Some general assumptions J(4><S(ONT1e) (n?\?—umque) affine set paramete€,d) <
[3] are as follows: x RM™ andrank(C) = N — 1. By virtue of (4) and

(A1) Intensities of all the abundance vectors are non-negati{@): the dimension reduction of the contamination-freeadat
i.e., si[n] > 0 for all i andn x|n] can be easily carried out by

156=1, OGRN}, (5)

(A2) Abundance fractions are proportionally distributed for N
eachs[n], i.e., Zfil si[n] =1, ¥n. %[n] = CT(x[n] — d) = Zsi[n]ai, n=1,..,L, (7)
(A3) min{L,M} > N and the endmember signatures i=1
aj,...,ay are linearly independent, i.e.ank(A) = N. \here
(A4) (Pu.re .plxel assumption) There exists at least a set a;=Cla;—d), i=1,..,N, 8)
of indices {l1,ls,...,ln} such thatx[l;] = a; for
t=1,...,N, and the set of pure pixeld,ls,...,ln} arethe dimension-reduced endmembers. There exists al€lose
and the set of outlierg are disjoint. form solution to the affine set paramet@®,d) if the ac-

Assumptions(Al), (A2) and (A3) have been widely used in quisition of the {x[n]}L_, is possible [18]. However, what
hyperspectral endmember extraction [2], [3], [5], [6]. Thee we have in reality is the contaminated observed pixel vector
pixel assumptiorfA4) fits well for a scenario where the sensof{y[n]}%~_,, and therefore obtaining an accurate estimate of
flies in low altitude [28]. (C,d) from {y[n]}~_, will be a challenging problem.

It should be noted that the estimation of the number To tackle this issue, we consider the following robust affine
of endmembersV is generally treated as a separate topwet fitting (RASF) problem
[23], [29]-[33]. In this work, if there are rare (or target)
endmembers present in the data, the number of endmembers

L
N should include both background endmembers and rare min min Z Iy[n] = Xn — zn||2 %,
endmembers. However, when one is only concerned about theun{z,....2.}<2 | x,€A(C.d) =]
background endmembers, thdhcan be set to the number of C Ol
background endmembers. Subsequently, the rare endmembers o (9)

are treated as outliers. Relevant discussions and sirondati
will be presented in Remark 2 (in Section IIl) and Sectiowherenum{zl,...,zL} denotes the number of nonzero vectors

VI-G, respectively. in {z1,...,z1}, and the number of outlier is assumed to
be known for ease of our derivations. Some discussions on

1. ROBUSTAFFINE SET FITTING FOR DIMENSION how we set a value of is given in Remark 1 below. The

REDUCTION objective of (9) is to seek aflV — 1)—dimensional affine set

Dimension reduction is a common, primary step for hypedd(C,d) with the minimum projection error with respect to
spectral image analysis with the prime merit of reducing tH#.r.t.) y[n] and with minimum effect of outliers[n]. Problem
noise effect and computational complexity of the subsetjud) is difficult to solve in a globally optimal sense, but caa b
endmember extraction. In [18], we have made use of affid@pProximated by alternating optimization. Let us consttier
data geometry for dimension reduction, where it was sho/@llowing two partial minimization problems:
that the affine set estimate provides the best represemtatio 1) Problem(9) w.rt. variables{x,}_,, C, andd:
the given hyperspectral data in the least-squares err@esen I
Nevertheless, in practical scenarios where the outliees ar min Z I (y[n] = 22) — xn |3, (10)
present, the fitted affine set could be severely affected by th x,.€A(C.d), CTC=Ix_,
outliers. To this end, we herein propose a robust affine set n=henl
fitting algorithm, attempting to provide an affine set estienafor any given{z,, ...,z; } that satisfieswum{z,,...,z,} < Z.
robust to both noise and outliers. Following the proof in [22, Proposition 1], problem (10) can

n=1



be shown to have an analytical solution given by where ‘2" in (16) becaus€C, d) is an approximation to the

o true (C,d),
d=7 200 =2, (1) win] £ CTwln] ~ N (0,0°Iy ) (18)
_ [ql(UUT),qQ(UUT),---,qN_l(UUT)]) (12) due to w[n] ~ N(0,0%I,) and CTC = Iy_i, and

z[n] £ CTz[n]. By (A1) and (A2), the dimension reduced
ontamination-free dat&[n| given by (7) must be in the
nvex hull of{a, ..., an} [34], denoted by

where U = [(y[1] — 1) — d,..., (y[L] — z1) — d], and
q:(UUT) denotes the unit-norm eigenvector associated wi
the ith principal eigenvalue otJU”. The estimated affinely

projected data,, € A(C,d) can be easily shown to be N
. AAT A . N conv{ay,..,an} = Zﬂiai 0>0156=1;, (19
%, =CC" (y[n] -2, —d)+d, n=1,..., L. (13) pt
2) Problem(9) w.rt. vanables{zn}n E but the contaminations caused by the noisi] and outlier
z[n| could possibly make the observed pixgln] given by
n Z [(y[n] —%,) —2zall3,  (14) (17) out of theconv{as,...,ay}. Figures 1(a) and 1(b)
) < n=1 illustrate the geometries of the original ddtg[n]}~_, and the
for any given{x,}%_,  A(C,d). Itis trivial to see that the dimension reduced datgy|[n]},_;, respectively, forN — 3
solution of the above problem is andZ =5. o o
R . . As reported in [25] that the outlier pixels could signifidgnt
%, = ylnl =%n, nel{ly,..lz} . (15) affect the results of subsequent endmember extraction, we
0, ne{l,...L}\{l,....,0z} remove the outlier pixels a = {/1,...,/z} from the data
P . ) . {y[n]}L_;, and hence the endmember extraction problem is
\ivhere ¢; is the Alndex of theith largest value in([ly[l] — ien'to estimatey,, ..., ay from
Xy s Iy L) = % [)- _ _
A solution of problem (9) can be obtained by handling the .
above two subproblems in a cyclic manner until some stopping yln] = Z nla; +winl, ne{l,..., L}\ 1, (20)
criterion is met. The pseudo-codes of the RASF algorithm for i=1
(9) are given in Table I. where the noisev[n] is still present. The robust EEAs to be
TABLE | proposed in Section IV will take the noise effect into acdoun
RASFALGORITHM FOR PROBLEM(9). Onceay,...,ay are obtained, one can simply recover the

endmember estimates by the following affine transformation

Given a convergence toleranee> 0, hyperspectral datgy[n]}~_,, and

the number of endmembers. a; = (A]a,t- + a7 i=1,...,N. (21)
Step 1. initialize z; = --- = z;, = 0, and iteration numbek := 0.
Step 2. update the solution of problem (10) Let us conclude this section with two remarks on the choice
X of Z and N for the proposed RASF algorithm in practical
I HZZIY[”] o scenarios.
= [q1(UUT), q2(UUT), ...,qn_1 (UUT)], Remark 1. The number of outliersZ is impossible to
%n = CCT(y[n] —2n —d)+d, n=1,..., L, be knowna priori in practical scenarios, but, as will be
whereU = [(y{1] — 1) — &, . (L] — ) — . seen in our simulations, the splu_tiqré,d)_ obtained by
Step 3. update the solution of problem (14) the RASF algorithm in Table | is insensitive to the preset
) o number of outliers, denoted b¥, whenZ > Z, meaning
#n :{ 37[”] —xm Zgglf}z\} i) that the estimatedZ outliers sufficiently cover theZ true
R outliers. However, setting too large for the RASF algorithm
V&Vhﬁre [ﬁ i[SL]tﬁeﬁi”Hd)eX of theith largest value in(|ly[1] — could be jeopardous— it may lead the RASF algorithm to
Step 4. u;,dgt;k y;: E +L1 and the k-iterate objective valueo(k) — incidently mistake some rare endmembers as outliers. How
Sror lyln] = %n — 2n % we practically select the value df in real applications will
Step 5. gt’gpzzl or (e(k =1) = e(k))/o(k = 1) < efork >1,then goto Ko considered as our future direction.

Step 6. output the approximate robust affine set paramééérd) and the Remark 2. In a scenario where th& endmembers include
outlier pixel indicesZ = {¢1,...,0z}. both background and rare endmembers, it will be seen
from our simulations that RASF algorithm can preserve the
rare endmembers in the subsequent endmember extraction
ijocess, provided that th&/ is perfectly estimated. It is
also suggested by the simulations that, if one cares only
. . R about background endmembers without the desire of pre-
T(y[n] — d) 2 x[n] + C"wln] + C"z[n] (16) serving rare endmembers, in the proposed RASF algorithm,
the number of endmembers can be set to the number of
si[n]a; + Wn] 4+ z[n] € RN, vn, (17)  background endmembers only. Then, the proposed RASF
1 will automatically find(C, d) with minimum impact of both

Similar to (7), the affine set parameter estimafé,&)
can be used to obtain the dimension reduced observed pi
vectors:

(1>
o

yln]

I
M=

<.
I
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Fig. 1. lllustration of (a) the original datfy[n]}Z_,, and (b) the dimension reduced ddta[n]}Z_, for N =3 andZ = 5.

“dead” pixels and rare endmembers. How to estimisitén  closer to the true endmembefeas, ..., ay). This idea, as
the presence of rare endmembers can be referred to [3l]strated in Figure 2, can be formulated as the following
[32]. simplex volume max-min problem [1]:

IV. REVIEW OF WINTER'S ENDMEMBER EXTRACTION

AND TS ROBUST GENERALIZATION max min |det(A(vy —uy,...,vy —uy))

. , . . iE]RN_l, ”uL”<T
In the past decade, Winter's maximum-volume simpleX 5. n li=1,...8

criterion has led to the well-known EEA, N-FINDR and its st vi € comv{{Flnlbneqr.opzh Vi=1 .. N,
many variants [1], [20], [21], [35], [36]. Suppose that the =)
outlier pixels have been perfectly identified and removedfr where eachy; lying in a norm ball{u € RN | [[uf| < r}

the data by the RASF algorithm; i.ey[r ]}ne{l »»»»» LNT and denotes the pull-back vector, andis the maximum back-

T = I. N-FINDR is to estimate endmembers by finding thgf distance. Denoting the optimal solution of problem (25)
vertices of the maximum-volume simplex inside the dimemsiqyy (¢, ..., v, y,..., ay), therobust endmember estimates

reduced data cloudly[n]},ecq1,.....1\z- Recently, we revisited gre obtained as
the Winter's endmember extraction criterion and reporveal t
N-FINDR variants in [1], based on the following continuous

. ) I U=V, -1, i=1,...,N. (26)
formulation of Winter’s criterion:
maXRNfl vol(vi, ..., vn) In [1], we have proposed an algorithm for handling prob-
Vi VNG ) - (22) |lem (25), called WAVMAX. WAVMAX has demonstrated
s.t. v € conv{{y[n)bneq,..opnzh Vi, performance improvement in the noisy scenario, but it is
where computationally expensive. We therefore propose two fast
vol(v, x) = det (A(v1,...,vx))| (23) algorithms to handle problem (25) in the next section.
T (N —1)! ’
is the volume OfCOIlV{Vl, R ,VN}, and O true endmembers.
<> original Winter estimates
Vi e VN NxN conv {{y[n]}nE{l ..... L}\I} A robust Winter estimates
— X
A(vy,...,vN) = [ 1 . ] eR . (24) Gl m e (Lo L]\Z

It has been theoretically proved that the true endmembers ca

be perfectly estimated by solving problem (22) undad)

to (A4) and in the absence of noise; i.§[n] = x[n], Vn

[1]. However, in the presence of additive, isotropic, ramdo

noise, the simplex volume yielded by Winter’s criterion may

be larger than that of the true simplex [1]. In other words, th

endmember estimates obtained by Winter's criterion may be

far away from the true endmembers when the observed data

are corrupted by noise. To mitigate such simplex inflation, i_. , _ _
. . , Fig. 2. llustration of robust Winter's endmember extrantiproblem for

[1], we reported an idea to pull back Winter's endmembey_ "5

estimates by a suitable margin such that,...,vy) are



V. FAST ALGORITHMS FORSIMPLEX VOLUME MAX-MIN  (32) can be handled by solving the following two separate

PROBLEM problems, each with a closed-form solution:
Int_his section, two fast algorithms are proposed for hanadli @i, = arg max k]Tuj = rk; /|||, (33)
the simplex volume max-min formulation (25). We employ a llujll<r

decoupled max-min heuristic, and different partial optiani 6, = arg maxk?{(gj = e, l=arg max Kk'y[n],
tion schemes to handle problem (25), and come up with 6,€5 7 ne{l,...L\T 7
two algorithms, called alternating decoupled volume max- (34)
min (ADVMM) and successive decoupled volume max-Miyhere; in (33) is obtained by Cauchy-Schwarz inequality
(SDVMM), respectively. The computa_tlonal complexity orsle 5, éj in (34) can be obtained by [1, Lemma 2]. Let us
of the proposed methods are also discussed. summarize how we pragmatically implement the ADVMM

algorithm in Table 1.
A. ADVMM Algorithm

TABLE I

We first reformulate problem (25) for ease of devel- ADVMM ALGORITHM FOR PROBLEM(25).
opment. Denote the outlier-free data matrix ¥ =

Given a convergence toleranee> 0, a back-off distance, the dimension

[ ¥[n] Jneqr,...apnz € RV=Dx(L=Z) Then, by the convex reduced and outlier-removed data mat’ and the number of
combination expression endmembersV. . L
Step 1. randomly selec(@,...,0y) from {e;};—,” and seti; = --- =
v uy =0.
vi =Y0;, (27) Step 2. sé}/j =1, 0:=det(A(Y6; —1,..., YOy — an)).
. Step 3. computek,; by (31), and then updat&; by (33) and@, by (34).
and the propertylet(PA) = +det(A) for any permutation SIeS i (jpmodljb}\’,)( 7&)0’ then ]P+ ) gndyéo t)oStepja y 34
matrix P, problem (25) can be expressed as else computeg = det(A(Y; — a1, ..., YOn — an)).
Step 5. if [0 — o|/0 > ¢, then setp := g, j := 1, and go toStep 3
max { min det(A(?Ol —uy,... 7?01\] _ UN))} else outputy; = Y6, — 17, Vj as an approximate solution to (25).
9:€S, lluil[<r,
i=1,...N =1,.. N

(28)  Remark 3. WAVMAX, as has been presented in [1], is

_ I—7 o T _ o an alternating optimization method w.r@, ..., 8. Its jth
whereS = {0 € R |0 =0, 1,0 = 1}. Optimizing alternating maximization problem to (28) can be expressed

6,,...,0y anduy,...,uy jointly in (28) is quite challenging.

In ADVMM, we consider the partial max-min problem of (28)

w.r.t. the pair(6,,u;) while fixing the other pairgf;, u;) for max min f(6;, (3)]-, ug,...,uy), 35
i # 7, such partial max-min problems are represented by (29); ejesi||:uf7|v|§71-\,[ (35)

see top of next page. The partial max-min problems (29) for ) o )

j =1,...,N are conducted cyclically until some stopping Where (61, ....6x, us, ..., uy) is the objective function of
criterion is satisfied. A connection of the above decoupled28): and®; = [01,....6;-1,6;11,....0n] is fixed. As
max-min problem to the original alternating maximizatioh o & be observed from (35), for each updéje we have to

(28) used in WAVMAX will be discussed in the end of this d€&! with the inner minimizatiomin f(6;,©;, u, ..., uy)
subsection: see Remark 3. w.r.t. uy, ..., uy jointly. In [1], we have used the subgradient

Next, we will present how to solve the partial max- method to handle (35), but the resulting WAVMAX algorithm

min problem (29). By applying a cofactor expansion ofiS computationally complicated. The proposed ADVMM al-

det(A(Y6; — 1,..., YOy — iy)) along thejth column gorithm uses a computationally efficient way to approximate
we have T " (85), which in turn handles thgth decoupled max-min

. . problem (29), or equivalently,
det(A(YOl—fll, . ,YGN — le))

~ ) max min f(8;,0,,u;,U,),
=kI(YO; —u;) + (~1)"*det(Qn;), 9;€3 ||ujusrf( 7 ©5015,Uy) (36)
(30) « . . . N :
where U; = [Qy,...,05-1,Q41,...,0x]. It IS easy to
wherek; € RV~ is expressed as observe that problem (36) serves as an upper bound of

problem (35). Iffjj happens to be the optimal solution of the

o [(_1\1+g . _1\N—-1+j YA
kj = [(=1)"det(Qyy), .., (=1) 7det(Q(wv-1);)] inner minimization of (35), then the upper bound (36) will be

(B1)  equal to (35). A It, th d ADVMM algorith
- (N—1)x(N—-1) : . S qual to (35). As a result, the proposed A algorithm
?nd Qi < R . ) , 'S, a submairix Of_A(Yel can be thought of as a method to maximize an upper bound
..., YOy —uay) with the ith row and thejth column ¢ the partial maximization problem of (28) in WAVMAX.
removed. Then, problem (29) is equivalent to
max { min k]T({(gj _ uj)}7 (32) B. SDVMM Algorithm
0;€5 | ujl<r

‘ We turn our attention to how we apply successive optimiza-
where the term(—1)V*idet(Qy;) in (30) is independent tion to handle problem (25). By letting

of (6;,u;) and so is removed without loss of optimality. - oo [P

In addition, sinced; andu; have been decoupled, problem Wi = [Vi 1", ti =[ui 0", y[n] = [y[]" 1]7,  (37)



g’laé {” mﬁl’é det(A(?él - ﬁl, . ,?éj,1 - ﬁj,l,?Oj — uj,?éjqu - ﬁj+1, . ,?é]\] - ﬁN))} . (29)
i€ u;||<r

problem (25) can be rewritten as Lemma 1 For any w; € F, problem(44) has an analytical
solution given by
we}‘ { ||trﬁ1£r, det([wl—tl,...,wN—tN])‘} ) T.PJI’__\I W
i=1...N eft=0, Vi S y Wy € W(r), (45)

%= Pl [
W,
(38) Higo1y

where F = conv{{y[n]}ne(1...ry\z}- It has been shown in tie{t;| PHl( L (Wi—t) =0}, w; € RY A W(r),

[1, Lemma 3] that (46)

|det([wy —t1,...,wn —tn])] whereW(r) = {w e RN | |P%
= Pa, (w1 —t)[ - [Pa, o, , (Wn —tn)[l, (39)

. w|| >}

Proof: The proof of Lemma 1 is given in Appendix. N

wherePl =1y - H,. J(HT H, )t Hfj is the orthogonal It is trivial to see that the solution (46) always yields zero
complement projector of objective value in (43), and hence only the optimal solution
N (45) is considered. Substituting (45) into (43) yields
Hl:j = [Wl — tl, ...,Wj — t]] (40)
o . max HP Wl (47)
and Pﬁm = In. Hence, substituting (39) into problem (38) w;EFNW(r) Hig-n
yields The optimal solution of (47) can be easily obtained by
N following the proof in [1, Lemma 4]; it is given by
max min [P, (Wi —t)ll.  (41) o _

S v = Wi =3l 1= g s PG, S0l (49

whereN; = { n Pl >r,ne{l,....L}\T}.

Solving problem (41) w.r.t2N-tuple (wy,...,wy,t1,..., { ‘ | 1:G-1) vl {L, T}

We should mentlon that the constraint; € W( ) is to
fAsure the non-trivial solution of problem (43). In factearan
properly choose am such thatwj eW(r),j=1,..,N are
all satisfied. Also, if théw;, t;) is obtained, we can art|f|C|aIIy
(w; —t;)|[, (42) set [t;]n = 0 to ensure the fea5|b|I|ty ofw;, t;) to problem
(42). The pseudo-codes of the SDVMM algorithm are given

ty) is difficult. In SDVMM, we decouple problem (41)
into a set of max-min subproblems, and employ success
optimization to these subproblems as follows:

I 1
(W;,t;) = arg Inax Htmlllg ||Pﬁ1:(j_1)

el t,;=0 .
N in Table 11I.
from j = 1 to N. The solution(w,,t;) is obtained by TABLE Il
handling thejth max-min subproblem with the previogs— SDVMM ALGORITHM FOR PROBLEM(25).
1) max-min subproblem solution&, ..., w;_1,t1,...,t;_1 : : : : :

.= . . . . . Given a back-off distance, the dimension reduced and outlier-removed
u;ed _|nH1:(j,1) as defined in (40). Unhke_al_telr.na_tmg. opti- data se{§[n]}neq1.....01\2 and the number of endmembeé
mization, the methodology presented here is initializafi@e  step 1. constructy[n] = [§[n]7 1)7, n € {1,..., L} \ T and setH;.o =
and only needs to solve (42) successively foe 1,...,N. Ly andj =0.

. . .. . . Step 2. updatej := 5 + 1 and obtaunwJ by (48), andt by (45).
A relation of the successive optimization procedure givgn b g, 5 get [E5]n = 0, updateHlJ = [H,,,_1 W, — &] and go to

(42) to problem (41) will be discussed in Remark 4 below. Step 2}mt|| j=N _ _
The issue that remains is how we handle each difficult (non-SteP 4. outputz; = [, 11.v-1 = [E5], v ¥4 & an approximate solution

convex) max-min subproblem (42). By relaxiegt; = 0, it o 29,
can be shown that a closed-form solution to (42) exists. To
see this, problem (42) with%t; = 0 relaxed is Remark 4. A theoretical justification of the decoupled max-
min heuristic used in the proposed SDVMM algorithm is
nax Hinﬁgl Pﬁl o 1)(Wj —t;) ‘ , J=1,...,N. (43) presented herein. By Von Neumann’s max-min theorem (or
e max-min inequality) [37], one can easily derive an upper
The inner problem of (43) for anw; € F is bound of (41) as follows:
t; =arg min ||PZ w; —t; H 44 .
e i, (o 4 (44) Joex min { b {gfg} ||§fl|13r H P, ) ( tj)|}}.
Problem (44) is convex and Slater’s condition holds [34]eTh entn=0 el t1=0"
optimal solution of problem (44) can be derived by Karush— (49)
Kuhn—Tucker (KKT) conditions, as stated in the following 1The max-min inequality states that for any real functipnR™ x RM —

lemma: R and any real set® C RN and @ C RM, it holds true that
minpep maxqeg f(P, q) > maxqeo minpep (P, q).



Obviously, applying successive optimization to probler®)(4 below). Section VI-G demonstrates the performance of the

turns out to be the same as the optimization procedysoposed ADVMM/SDVMM with RASF when data contain

described in (42). Hence, SDVMM algorithm can be thoughare endmembers.

of as a method that approximates an upper bound of (38)In the simulations, three performance indices were used.

i.e., (49), using successive optimization. The distance between the true affine s&tC,d) and the
estimated affine setl(C, d), denoted byD.g, for evaluation

C. Computational Complexity of the accuracy of the RASF is defined as

The computational complexity orders of the proposed AD- [, |CCT — CCT||p | |Pgd—Pgd| (50)
VMM and SDVMM algorithms and their comparison with the & 2(N —1) |PLd] + IIPé&II ’
WAVMAX algorithm [1] are now discussed in this subsection. ) ) ] o
For the ADVMM algorithm in Table II, it is easy to verify that Where the first term, in rang@®, 1], is called theprojection
each column update involves complexity ord®(N — 1)L). F-norm [39] and it measures the distance between_ the range
Combining all theN columns and denoting the number ofPace ofC and that ofC, and thf secondL term in range
alternating cycles required to convergedyyhe complexity or- (0> 1] quantifies the error betwedAd and P d. The root-
der of the ADVMM is O(¢N2L). Regarding the SDVMM al- Mean-square (rms) spectral angle distance between the true

gorithm in Table 11l which only involves simple matrix/vegt €ndmembers and estimated endmembers, denoted by

additions and multiplications, the complexity order can b&€9rees), was used as an accuracy measure of EEAs [38],

easily verified asO(N2L). Moreover, as has been analyzed/Nich is defined as follows:

and reported in [1], the complexity order of the WAVMAX | N T4 2
algorithm isO (N¢CK (N — 1)L + L + CuN?(N — 1)7)), ¢= min | =Y [arccos (&)} (51)
whereK is the maximum number of subgradient iteratiois, melly \| NV 2l - [|a,

and(, are the number of alternating cycles for outer and mnWhere a, denotes theith estimated endmember signature,
subproblems respectively,, denotes the number of iterations [ anT, and Iy = {m € RY | m €
yeees , = i

required by water filling algorithm, ang € (2.3,2.8). Since (1 2: N}, m # m; for i # j} is the set of all the
" . . Y&yttt ) K3 J

_these _parameterK, ¢, Cu, and_gw are all p03|t_|ve mtege_rs' It permutations of 1, 2, ..., N'}. The estimation accuracy defined

is obviously that the complexity of WAVMAX is much hlgherin (51) with N! permutationsr can be efficiently solved by

than .t"hgt of the proposed IIAD_VMMhand SDVMM zlgoritthHungarian algorithm [40]. The smaller the valueslof; (or
As will be seen in our simulations, the ADVMM an SDVMM¢), the better the accuracy of the affine set estimate (or the

not only outperform the WAVMAX in most cases, but alsq,,ynemper estimates). The computation tifge (in secs) of
would spend much less computation time than the WAVMAXy .y aigorithm (implemented in Mathworks Matlab R2008a)
running in a desktop computer equipped with Core i7-930
VI. COMPUTERSIMULATIONS CPU 2.80 GHz, 12GB memory was used as the computational

In this section, six Monte Carlo simulations are presented §omplexity measure. _ _
demonstrate the advantages of the proposed RASF algorithnfjyPerspectral data were synthetically generated indepen-

and the ADVMM and SDVMM algorithn® One hundred dently for each run of the simulation. The contamination-
independent runs were performed in each Monte Carlo sinf{€€ Pixel vectors were generated following the signal nhode
lation. Section VI-A presents results of the sensitivitytog (2) where the endmember signatures with = 224 bands
RASF algorithm to the preassigned number of outligis Were selected from the US geological survey (USGS) hibrar
Section VI-B presents results of the sensitivity of the ADMV [41] and the corresponding abundance vectors were gederate
and SDVMM algorithms to the preassigned back-off tolerand@llowing Dirichlet distribution D(s[n], ) with p = w1y

r. In the subsequent subsections, we compare the propod&tch automatically enforcegAl) and (A2) [38]. Moreover,
ADVMM and SDVMM algorithms with some existing bench-the IV pure plxels were randomly added to the_datg to enforce
mark non-robust EEAs, including sequential N-FINDR (SQA4). The noisy data were generated by adding independent
N-FINDR) [36], successive N-FINDR (SC-N-FINDR) [36]’anq identically dlstr_lbut_ed (i.i.d.) zero-mean white Gsias
simplex growing algorithm (SGA) [35], vertex componenf€iSe to theLcontamlnatlon—free data for dllflferSNtRs, Wh_ere
analysis (VCA) [38], and the existing robust EEA, WAVMAXSNR = 32, [Ix[n][|*/(¢*ML). In addition, the outliers
[1]. Note that throughout Sections VI and VI, all the EEAJVere also added to the noisy data, where the outlier indices
employed the affine set fitting (ASF) [18] for dimension ref1, - {z were randomly selected fronil,..., L}, and the
duction unless particularly specified. Sections VI-C, Viidpd a@ssociated outliers were generated by

VI-E show the performance of the EEAs for various signal- 2l = cki, i=1,.., 7, (52)
to-noise ratios (SNRs), for various number of endmembers,

and for various number of pixels, respectively. SectionFvI-where each element &f; is a zero-mean unit-variance Laplace
shows the performance of the EEAs with RASF/ASF usd@ndom variable, and is a scalar adjusted to satisfy signal-
over various signal-to-outlier ratios (SORs) (defined i)(5 to-outlier ratio (SOR) specification, where

> X[/ T
2The Matlab codes of the proposed algorithms can be downtbatiattp: S =&m=l LAl 17 (53)
//mx.nthu.edu.twttsunghan/index. html. Zle lz[¢:)112/Z



. . . L . . TABLE IV
The generation of outliers using Laplace distribution is tOperrorMANCE COMPARISON OF AVERAGES (DEGREES AND AVERAGE

fulfill the belief that the outliers should be heavily tailed Tsc. (SECS OVER SOME EXISTINGEEAS FORN = 8, L = 1000,

in distribution, which is highly peaked at zero and falls off SOR= o (DB) AND VARIOUS SNRs.

more slowly than Gaussian distribution in the tail. Let us S

emphasize again that the proposed RASF algorithm does not Algorithms 5 15 pis 35 75 =
require any statistical priors of the outliers. When SNGOR, vCA A I R I I o
the outlier pixelsy[/1], ..., y[¢z] are corrupted by the outliers cn % [ 1392 | 333 | 096 | 0.28 | 0.09 | 0.00
z[l1], ..., z[¢z] more seriously than the noise; otherwise, the Tsee | 0126 | 0132 | 0127 | 0123 | 0121 | 0120

_ 6 | 1413 | 349 | 107 | 03L | 010 | 0.00
case of SORSNR means that the effects of the outliers SQN-FINDR| ' 1 4179 | 0152 | 0132 | 0.119 | 0.119 | 0.118

i ¢ 14.90 3.91 1.08 0.34 0.10 0.00
z[(1], ...,z[(z] are smaller than the noise effects, therebysc-n-rnor | 2 | (tce | Joss | 0060 | 0089 | 0.056 | 0.059

making the outlier pixelsy[¢1], ...,y[¢z] not much different — & ° ¢ | 1330 | 315 | 1.03 | 031 | 010 | 0.00
1 Tsec | 42.879 | 46.383 | 49.804 | 38.155| 40.921 | 41.577
from the rest of the observed pixel vectors. — S e 315 T3 03l o0 00

Teo | 0.042 | 0029 | 0.018 | 0.016 | 0.016 | 0.015
_ L , s | 1350 | 300 | 089 | 028 | 000 | 000
A. Robust Affine Set Fitting for Various SNRs and SORs SDVMM 1 . | 0.028 | 0.020 | 0.016 | 0.015 | 0.015 | 0.015

In this subsection, the performance of the proposed RASF
and its sensitivity to the preset number of outliefs are
evaluated. The hyperspectral data wih= 8 number of end- ApvMM and SDVMM algorithms to

members (Carnallite, Biotite, Actinolite, Andradite, @bnite, o considered as a modest choice suggested by the simulation
Diaspore, Goethite, and Halloysite}, = 1000 pixels, and oqts shown in Figure 4. We also set the same valuefof
7 = 5%L outliers were generated for SNRI5, 25, 35, 45, oo the robust WAVMAX algorithm [1].

(dB) and SOR-= 10,15,20,25 (dB). The true affine set

parametersC, d) were obtained from the contamination-free .
observed pixel vectorx|n]|} X C. EEAs for Various SNRs

n=1-

Figure 3 shows the average,s of the ASF [18] and the  Hyperspectral data generatiov (= 8, M = 224, and
proposed RASF algorithm witty = 2%L,5%L, and8%L L = 1000) is the same as that in Section VI-A where we set
for various SORs and SNRs. It can be observed from FiguBNR= 15, 25, 35,45, co (dB) and SOR:= co (dB). Table IV
3 that the performance of the RASF algorithm improves ahows the averaggand7.. of the EEAs over various SNRs.

Z increases, and gets saturated when the preset numbeTieé minimum¢ and minimumZ.. for a specific SNR over
outliers Z is greater than the true number of outliefs all the algorithms are highlighted as bold-faced numberse O
The RASF algorithm also perfectly identifies the true affinean see from Table IV that the averagef all the algorithms
set when the noise is absent (i.e., SNRo) and Z > Z. gradually decreases as the SNR goes up, and they are equal to
Moreover, the RASF algorithm outperforms ASF for all thegero when the SNR approaches to infinity. The performance
values of Z under test when SORSNR, no matter whether of SDVMM is the best for almost all the tested SNRs among
SOR is high or low. This implies that as long as the outlighe existing algorithms under test, and the performances of
pixels were corrupted by the outliers more heavily than &y tADVMM and WAVMAX are quite comparable. On the other
noise, the RASF algorithm will take effect in outlier deteat  hand, the computation time cost by SDVMM is the least,
followed by ADVMM, and both are much less than WAVMAX

B. ADVMM and SDVMM Algorithms for Various Back-offy around an order of 3.
Tolerances and SNRs

The sensitivity of the proposed ADVMM and SDVMM D. EEAs for Various Number of Endmembers

algorithms to the preset back-off tolerancess presented. Tpe synthetic data generatiod/( = 224 and L = 1000)
Data generation¥' = 8, M = 224 andL = 1000) is the same g the same as that in Section VI-A, where SNR5 dB,
as that in Section VI-A, where SNR15,25,35,45 (dB) and gop- ~ dB, andN = 4,6, ..., 14 endmembers are randomly
SOR= oo (dB). We setr = Ao whereo is the noise standard gejected from the USGS library [41]. The averagand 7.
deviation assumed to be known, ahis a real number varying of the EEAs for the synthetic data with differeNt are shown
from 0 to 4 in step 0f0.2. in Table V. One can see that the performances of all the
The average values 0f of the ADVMM and SDVMM 4 qorithms degrade a¥ increases. WAVMAX is the best for
algorithms versus for different SNRs are shown in Figuresy — 4 For N = 6,8, the SDVMM outperforms all the other
4(a) and 4(b), respectively. One_can see frqr_n Figure 4%orithms and ADVMM does so foN = 10, 12, 14. Again,
that the performance of ADVMM is less sensitive Xoover e computation time of the proposed two algorithms is the

0 < A < 3 for all the SNRs under test, but its performancgast and, in particular, is much less than that of WAVMAX
decreases significantly as> 3 and SNR= 15 dB. It can also by an order of3.

be seen from Figure 4(b) that the sensitivity of SDVMM to
A is low for all the SNRs and. Obviously, the sensitivity of i )
SDVMM to both \ and SNR is less than that of ADVMM. E- EEAs for Various Number of Pixels
For performance comparison in Sections VI-C, VI-D, VI-E, Again, the synthetic data generatiai & 8 and M = 224)
and VI-F, we set the back-off tolerance of the proposas the same as that in Section VI-A, where SNR5 dB,

r = 1.30, which could
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Fig. 3. Performance comparison of averadggy of ASF and RASF with different presef for various SNRsZ = 5%L, as well as (a) SOR 10, 15 dB,
and (b) SOR= 20, 25 dB.
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Fig. 4. The performance sensitivity of (a) the ADVMM algorit and (b) SDVMM algorithm with respect td for different SNRs.

TABLE V . .
PERFORMANCE COMPARISON OF AVERAGE) (DEGREEY AND Averace  outperform all the other algorithms in all cases. On the othe

Tsec (SECY OVER SOME EXISTINGEEAS FORL = 1000, SNR= 15 (DB), hand, the computation times of all the algorithms, except

SOR= oo (DB) AND VARIOUS NUMBER OF ENDMEMBERSN . VCA algorithm, gradually increase as the increases. The
proposed ADVMM and SDVMM algorithms spend much less
Algorithms The number of endmembersVj . . .
7 3 8 10 2 12 computation time than WAVMAX by an order of magnitude
) 2.27 2.64 3.40 5.78 9.10 9.72 _
VCA Tsec 0.097 0.120 0.116 0.461 0.769 0.564 betweeng and4 when L = 8000.
SGA ¢ 1.97 2.36 3.08 6.43 8.65 9.60
Tsec 0.177 0.217 0.184 | 0.248 0.353 0.384 . i .
SONFNDR| ¢ | 211 | 258 | 317 | 489 | 858 | 9.5 F. EEAs with RASF and with ASF Used for Various SORs
Tsec 0.154 | 0.195 0.171 0.259 0.394 0.505 ) )
& | 232 | 287 | 352 | 601 | 941 | 1044 The performance difference between EEAs with RASF
SC-N-FINDR | 0.089 | 0.105 | 0.088 | 0.118 | 0.156 0.167 ; ; ; ;
S —1ss T 217 [ 286 T 577 o1 N and with ASF used is evaluated herein. We also include the
WAMAX | Tuce | 24222 58.961 | 45.110| 87.006 | 197.176 | 252528 state-of-the-art robust endmember estimation method, RUL
1. 2.1 2.87 4.61 . A . .
ADVMM T¢ 0_§f7 0_05?7 0_0853 0_(?89 ffags 09_2262 algorithm [17], for our performance comparison. The data
SDVMM o [ 161 [ 208 [ 273 | 533 [ 905 [ 952 generation {/ = 224, N = 8, and L = 1000) is the same as
Tsec 0.047 0.055 0.046 0.064 0.081 0.076

that in Section VI-A, whereZ = 5%L, SNR is fixed tol5
(dB), and SOR: 5,8, ..., 20 (dB). Table VII shows the average

¢ of the EEAs with RASF/ASF used and RULU algorithm
over various SORs. One can see from Table VII that the
SOR= oo dB, and the number of pixelé varies from250 to performances of all the EEAs with ASF used improve as the
8000. The average) andT.. of the EEAs for the synthetic SOR increases, and the RASF algorithm substantially boosts
data with different. are shown in Table VI. One can sedhe performances of all the EEAs in the presence of outliers.
from Table VI that the proposed SDVMM and ADVMM Although the performance of EEAs with ASF is worse than
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TABLE VI . .
PERFORMANCE COMPARISON OF AVERAGE) (DEGREEY AND AvERAGE  oecond, the number of endmembers is underestimated and

Tsec (SECY OVER SOME EXISTINGEEAS FORN = 8, SNR=15 (DB), it corresponds to the number of background endmembers,
SOR= o (DB) AND VARIOUS NUMBER OF PIXELSL. say N = 8. Here, the given number of outliers is set to
— Z = 6%L and making suchl%L increment inZ is to
Algorithms 250 ] 500 [ 1000 | 2000 | 4000 | 8000 account for errors made by th€ — N endmembers, as only
¢ 5.61 4.33 3.80 3.45 3.43 3.66 T __ H :
VCA T | 0220 | 0202 | 0160 | 0213 | 0246 | 0274 N =38 endmember§ will be flqally extractgd. The above two
SGA ¢ | 532 | 395 | 334 | 30L | 297 2.94 cases for differentV are to simulate various outcomes of
Tsec 0.118 0.192 0.255 0.577 1.054 2.231 . .
=53 T 408 | 350 319 11 =11 methods for estimating the number of endmembers, such as
SQNFINDR | .2 | 8 | o0 | o2 0.556 0 66 ; : T fi
T:;c 51909 ek 03-9427 > %95 T | 1o hyperspectral signal identification by minimum error (Hys)
SCN-FINDR | 7 | 0.066 | 0.096 | 0120 | 0244 | 0384 | 0.649 [23], maximum orthogonal-complements algorithm (MOCA)
[ 5.24 4.01 3.15 2.92 2.73 2.58 ; : : e
WAMAX | o | 11518 | 30,861 | 65850 | 233.859| 778.585| 2097140  [30], robust signal subspace estimation (RSSE) [31], mediifi
ADVMM ¢ | 516 | 387 | 315 | 285 | 270 261 MOCA (MMOCA) [32], and geometry based estimation of
Tsec 0.066 0.073 0.072 0.111 0.166 0.218
SOVMM ® | 504 | 366 | 300 | 260 | 249 | 242 number of endmembers (GENE) [33].
Tsce | 0049 | 0.056 | 0060 | 0099 | 0149 | 0184 The performances of ADVMM-RASF and SDVMM-RASF
with the generated data for SNRoo, 35 (dB) and various
TABLE VI SORs are shown in Table VIII, whereg (or ¢g) is the

PERFORMQEXECOMPQFX;gNopAVER/AAGSZ(DEG;EE%OZER TS%E rms spectral angle between the estimated background (or

EXISTING S WITH AND WITH FOR =3, L= , . .

Z = 5%L, SNR= 15 (DB) AND VARIOUS SORS. rare) endmembers and their ground truth. One can easily see
from Table VIII that whenN = N = 10 the proposed

: SOR (dB) algorithms can estimate both background endmembers and
Algorithms . . . . .
~ULU 14561 14866 1é15 s 11‘; s 1?1’779 1;‘13 rare endmembers with high accuracy in noise-free and noisy
Ven RASE 336 1 340 | 330 | 338 | 338 | 340 cases. WhenV = 8, all the estimated endmembers are found
ASF | 17.49| 1096 | 544 | 3.87 | 3.53 | 365 to be the background endmembers, and dué&vtet N, the
RASF | 313 | 312 | 313 | 313 | 312 | 3.17 ; ;
SGA ASE | 1546 | 956 | 494 | 343 | 319 | 314 proposed algorlthms. treat rare endmembers as outllers,_ and
SON-FINDR | RASF [ 322 [ 322 [ 322 [ 322 [ 322 [ 323 their performance slightly degrade. The above observation
RAASSFF 137;1114 130-3314 ‘3‘-28 g-ig g-ig ggs suggest that if one wants to preserve the rare endmembers
SC-N-FINDR | "\or | 1770 | 11.02| 556 | 392 | 360 | 3.60 after dimension reduction, the giveN should include both
WAVMAX RASSF 26985 36021 3.00 g-gg géS 5-27 the number of background endmembers and the number of
ASF 16.81 | 10.25| 5.14 . .34 .35 A . . .
v | RASF | 203 | 200 | 200 | 288 | 290 | 290 rare endmembers. This immediately confirms the importance
ASF | 16.99 | 9.95 | 486 | 3.22 | 2.97 | 2.93 of estimation of number of endmembers in the presence of
RASF | 2.76 2.77 2.77 2.76 2.76 2.77 _
SOVMM | "ur | {632 | 974 | 453 | 308 | 288 | 279  'are endmembers [30]-[33].

VIl. HYPERSPECTRALDATA EXPERIMENTS

In this experiment, SGA [35], WAVMAX [1], the pro-
th.at of RULU for low SORs (namely, SOR 5 dB), EEAs posed ADVMM and SDVMM algorithms, all with ASF used,
with RASF outperform RULU for all the SORS tested. ere tested on the AVIRIS hyperspectral data taken over the
Moreover, the performance of any EEA with RASF for alb,ite mining site, Nevada, in 1997 [42]. The SDVMM with
SORs are quite competitive, meaning that the RASF can RQ\SF used (SDVMM-RASF) was also applied to the AVIRIS
in conjunction with any EEAs to provide better endmemb‘?‘fuprite data set for comparison. We consider a sub-image
estimates than_ the ASF. Last k_)ut n_ot least, the performafnce(QOO x 200 pixels, L — 40000) of the hyperspectral data as
the SDVMM with RASF used is still the best. the region of interest which compris24 spectral bands over
wavelength fron0.4um to 2.5um. The bandg - 2, 104 - 113,
G. ADVMM-RASF and SDVMM-RASF Algorithms for Raré48 - 167, and221 - 224, which are in low SNR (due to the
Endmembers effect of water-vapor), were removed from the origiali-

So far we have demonstrated the superior performant():aend hyperspectral data. A total 088 bands were therefore

of RASF algorithm, ADVMM/SDVMM algorithm, and their 1oc0 I OUr experiment. Moreover, since the noise in real
L . . data may not be isotropically distributed, we applied noise
combinations over some benchmark methods in the previous . ~~. ) .
. . rewhitening to the data set; that is
subsections. Now, one may question whether the propose

algorithms can preserve rare endmembers if the data really L1 N
contain rare endmembers. Following the similar data gener&pl?] £ D™ '/2y[n] = " s:[n]g; +zp[n] + wp[n], Vn, (54)

tion (M = 224, L = 1000, Z = 5%L) as in Section VI-A, i=1
in addition to the8 endmembers considered as backgroundhere the noise covariance matidXx was estimated by the
endmembers, we also addendmembers, Montmorillon andmultiple linear regression method [23f; = D~!/2a;,

Muscovite, as rare endmembers. Each rare endmember ggn] = D~1/2z[n], andwpy[n] = D~/2w]n] is the isotrop-
cupies only2 pixels. We then consider two scenarios. Firsically distributed noise with covariance matrix equalltgy.
the number of endmembers is perfectly estimated; Nes= Onceg;,...,&nv were found by any EEA, the endmember
10 and the given number of outlier§ = Z = 5%L. estimates can be recovered By = D'/2g;, i = 1,...,N.
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TABLE VIII
PERFORMANCE COMPARISON OF AVERAGE) (DEGREES OVERADVMM-RASF AND SDVMM-RASFWITH N = 8,10 FORN = 10, L = 1000,
Z = 5%L, SNR= 0o, 35 (DB) AND VARIOUS SORSs.

. SOR (dB) NV = 10, Z — 5%L) SOR (dB) (V = 8, Z — 6%L)
Algorithms 8 | 1L [ 14 | 17 | 20 | 8 IT | 14 [ 17 | 20
ADVMM-RASE | &5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
(SNR= o (dB)) | ¢x | 0.00 | 0.00 | 0.00| 0.00| 0.00| - - - - -
SDVMM-RASF | ¢5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
(SNR= oo (dB)) | ér | 0.00 | 0.00| 0.00| 0.00| 0.00| - - - - -
ADVMM-RASF | 5 | 031 ] 030 0.30 | 0.31 | 0.30 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32
(SNR= 35 (dB)) | ¢r | 3.08 | 3.08| 3.09| 3.09| 3.08| - - - - -
SDVMM-RASE | ¢5 | 023 | 023 | 023 | 023 | 0.23 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30
(SNR=35 (dB)) | ér | 3.13 | 3.13| 3.13| 3.13| 3.13| - - - - -

According to the noise prewhitening processing where tlspectral mixing model (1) and the non-linear mixing model of
resulting noise variance becomes unity, the back-off {olehe real hyperspectral data [3], [27]. Moreover, we have als
ancer of the robust WAVMAX, ADVMM, SDVMM, and tunedZ equal t00.1%L and0.3%L for the SDVMM-RASF,
SDVMM-RASF algorithms was set t6.3. The hyperspectral and the associated performances do not vary much, inferring
subspace identification by minimum error (HySime) [23] wathat Z = 0.05%L outliers should sufficiently cover all the true
applied to estimate the number of endmembers in this regiatliers; i.e.,Z is larger than the tru¢.
and the results yieldV = 18. The number of outliersZ As presented above that the AVIRIS Cuprite data set is
used in RASF was empirically set @05%L = 20. How of very high quality, one may raise a question: Because the
to optimally tune the value of will be considered as our information of the outliers are not publicly available, deet
future directions, but as suggested by simulations, théile wocations of theZ = 20 outliers estimated by the RASF
be not much performance improvement whétis larger than algorithm [Figure 5(b)] really cover the locations of ther
the (unknown) trueZ. outliers? To properly investigate this, we generated semi-
The abundance maps associated with the estimated erahl hyperspectral data set with outliers artificially adide
members for all the EEAs under test were obtained by fullie selected three spatial coordinates, §&y,24), (24, 16),
constrained least square (FCLS) method [43]. The minerdist, 32), from the 200 x 200 cropped data, and artificially
were then identified by visual comparison of the obtaineatided three outlierg[n]|, as well as adjusted these outliers
abundance maps with the ones in [1], [15], [38]. Due to spate satisfy different SORs defined in (53), provided that the
limit, we herein only demonstrate the endmember estimatesginal hyperspectral data were contamination-free.ufég
[Figure 5(a)], the locations of th€.05%L = 20 detected 6(a) displays the locations of the three simulated outliers
outliers [Figure 5(b)], and the estimated abundance mapsrked in yellow triangles on the 50th band hyperspectral
[Figure 5(c)] for the proposed SDVMM-RASF. The truemage, and one can see that they geometrically, spatialiy fo
endmember signatures taken from the U.S. geological suneyriangle. After applying the noise-prewhitening (54) he t
(USGS) library were also shown in Figure 5(a) for comparisasutlier-added data, we then tested the proposed SDVMM-
[44]. In addition, the mean-removed spectral angle (degre®ASF algorithm with Z = 0.05%L on the data sets of
between the estimated endmembeand the associated USGSvarious SORs, and show the estimated locations of the aitlie
library endmember signature was used as the performancén Figures 6(b) and 6(c) for SOR 45 dB and SOR- 45

measure dB, respectively. For SOR 45 dB, it can be observed that
5 ﬂ (3a—m(a))T(a - m(a)) (55) therg is a clear triangle shape forme_d by the three putlier
TS - m@)|[ - a—m@)]] /)’ locations in the upper left corner of Figure 6(b), showing a

good consistency with our simulated outlier locations iguFfe

6(a). For the scenario where SOR5 dB, we cannot identify

any pre-placed outlier locations in Figure 6(c), conceliyab

X : because either the SNR of the Cuprite data set is arddnd

inglmelgz]berhs yletlﬁedl by_a;ll the varl_c;_us E_EAsIare ST;])W” ('ﬁé, while the outliers (marked by circles) in the hyperspact
able IX, where the leash for a specific mineral over 0S€ yata are more dominant (i.e., the corresponding SOR lower

five algorithms is highlighted as bold-faced number and tqﬁan 45 dB) than the three pre-placed outliers. Besides, the

nutr_nbetr '3 pa:jenthegs dﬁnotesbthe \t/)alua ﬁ(jjrfthe ri_p%?tegl(yt erformance of the estimated endmembers by the SDVMM-
estimated endmember. 1t can be observed from fable SF algorithm is the same as that in Table 1X, and hence

the ¢ .Of the SDVMM'RAS'.:— method is the least, althougqhe associated results are not demonstrated herein.
there is no much difference infor all the methods under test.
The possible reason is that the quality of AVIRIS data set is
high; i.e., both SNR and SOR of the AVIRIS Cuprite data set VIII. CONCLUSION

are large [45] and the true outlier pixels are very few. Hence We have presented a two-step approach for robust hyper-
suchZ = 20 estimated outliers may presumably be the pixelpectral endmember extraction in the presence of outliers
with the Z largest approximation errors between the lineand noise. For dimension reduction, the RASF algorithm

wherem(a) = (13,a/M)1, for any vectora € RM. The
smaller the value ofy, the better the accuracy of endmem
ber signature estimates. The values ¢offor the estimated
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TABLE IX
MEAN-REMOVED SPECTRAL ANGLESp (DEGREEY BETWEEN LIBRARY SPECTRA AND ENDMEMBERS ESTIMATED BY THESGA, WAVMAX, ADVMM

AND SDVMM.
SGA WAVMAX ADVMM SDVMM SDVMM-RASF
Alunite 18.02 22.00 21.90 21.48 20.47
Andradite 25.49 22.22 - 21.53 16.73(26.43)
Buddingtonite 24.49 26.19 24.54 24.53 26.40
Chalcedony 25.98 - - 24.00 24.00
Desert Varnish - 11.79 12.04 11.64 -
Dumortierite 24.96 (32.02) (31.54) (21.01) 28.77 (25.42) 25.64 (25.19) 33.53 (27.10) 20.47(27.10)
Kaolinite 24.11 27.56 27.09 24.14 27.58
Montmorillonite# 1 17.14 19.65 (24.58) 18.90 17.53 17.12(22.65) (22.36)
Montmorillonite#2 25.70 25.70 25.67 20.65(25.70) -
Muscovite 35.28 37.86 37.67 35.26 35.61
Nontronitef:1 25.04 @4.84 25.69 25.06 (25.77) (25.64) 25.03 25.99
Nontronitef:2 16.18 17.00 (23.04) 23.03 (5.69 17.53 (23.01) 17.55 (22.65)
Nontronite#3 25.78 26.96 (26.62) 26.33 (27.70) 25.72 24.59
Paragonite 35.36 31.37 30.92 35.42 35.36
Pyrope 13.03 13.09 13.20 15.73 15.70
Average ¢ 24.78 24.22 24.00 23.93 23.82
was proposed to find a robust affine set and meanwhile to APPENDIX

detect and remove the outliers. For endmember extraction, PROOF OFLEMMA 1
we have also presented two fast algorithms, namely ADVMM

and SDVMM, to approximate the simplex volume max-min Problem (44) is equivalent to

formulation that has shown its robustness against noise [1] . n 2

i min ||Pz (w; —t;) (56)
The proposed ADVMM and SDVMM algorithms decouple the It;ll,<r 11T Hug-n 7 7
max-min simplex volume problem, and solve the partial max- N .
min problems in alternating fashion and successive fashigih0se KKT conditions can be easily shown to be
respectively. The decoupled max-min heuristic and appnexi n . s o
tion mechanisms used in the proposed ADVMM and SDVMM ( Higo T )‘IN) b = Pﬁl:(jmwj’ (57a)
glgorithn"!s have also bee_n discussed. All the subproblems 5\(|\£j|\2 . 7~2) — 0, (57b)
involved in the RASF algorithm, as well as the ADVMM and S 2 .
SDVMM algorithms, end up with closed-form solutions, and [t;" —r= <0, A>0, (57¢)

hence the proposed methods are computationally efficient. - o ) , )
Monte Carlo simulation results have shown that the RAGE€Tet; and A are primal and dual optimal points of (56).

algorithm provides more accurate affine set estimate than @ty (57a) and (57¢), we have

ASF, as long as SORSNR. The simulation results have also IPL

shown that the ADVMM and SDVMM algorithms perform -

slightly better than the robust algorithm, WAVMAX [1], wkil here the first inequality is due to the inequality of the
significantly outperform some existing benchmark algonish operator norm, and the second inequality is due to the fact

especially for low SNR. The computation load in terms of rurhat the eigenvalues of a projection matrix are equal toeeith
ning time required by the ADVMM and SDVMM algorithms zerg or one.

is significantly less than that of the WAVMAX algorithm by T prove Lemma 1, we first prove

around an order of. Moreover, the results also demonstrated
that the performance of any EEAs preceded by the dimension
reduction using RASF improves significantly especially for
low SOR. In cases where some of the endmembers are rare, . N
the proposed ADVMM/SDVMM-RASF algorithms can still ISt 1€t us show the sufficiency of (59). Suppose that 0,
preserve the rare endmembers if the number of endmemb-gr"gn’Pﬁw,U + Aly is of full rank, and (572) becomes
is perfectly given; i.e,N = N. For N < N, the rare

will SIPE, Ml sl < (1+3)r, (58)

(G-

(59)

" n ,
A> 0= HPﬁl:(j—l)WjH > 7.

endmembers may instead be treated as outliers. Real data tj=Px,  +AN)TPE W, (60)
experiments using the Cuprite data set have also demaettrat | .
the practical applicability of the proposed RASF, ADVMMBY €igenvalue decomposition, we can express
and SDVMM algorithms. I , 0
1 _ N—(j-1) T
PL .=V [ G- 0 } V7, (61)
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Fig. 5. Experimental results of SDVMM-RASF with Cuprite daset: (a) the endmember signatures taken from the USGSylitaad the estimated
endmembers; (b) locations of the = 20 outliers detected by RASF; (c) the eighteen abundance megzxiated with the estimated endmembers.

By (62) and (57b), it is easy to sed|£jH = RN\ W(r). By (59), (C1) implies\ > 0. Hence, by (62) and
| < i H ij = r, which yields (63), the solution (45) can be obtained. On the other hand, fo
Hoe case (C2), by (57c) and (59), (C2) impligs= 0. Hence, (46)
5 1||P§ | wil| =1, (63) can be obtained by setting= 0 in (57a). [ |
r (-
thus leading td\PL w;| > r due to > 0. The proof REFERENCES
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