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Abstract— Dynamic contrast enhanced magnetic resonance
imaging (DCE-MRI) is a powerful imaging modality to study
the pharmacokinetics in a suspected cancer / tumor tissue.
The pharmacokinetic (PK) analysis of prostate cancer includes
the estimation of time activity curves (TACs) and thereby the
corresponding kinetic parameters (KPs), and plays a pivotal role
in diagnosis and prognosis of prostate cancer. In this work,we
endeavor to develop a blind source separation algorithm, namely
convex optimization based KPs estimation (COKE) algorithm
for PK analysis based on compartmental modeling of DCE-MRI
data, for effective prostate tumor detection and its quantification.
The COKE algorithm first identifies the best three representative
pixels in the DCE-MRI data, corresponding to the plasma, fast
flow, and slow flow TACs, respectively. The estimation accuracy
of the flux rate constants (FRCs) of the fast flow and slow
flow TACs directly affects the estimation accuracy of the KPs
that provide the cancer and normal tissue distribution maps
in the prostate region. The COKE algorithm wisely exploits
the matrix structure (Toeplitz, lower triangular, and exponential
decay) of the original non-convex FRCs estimation problem,
and reformulates it into two convex optimization problems,that
can reliably estimate the FRCs. After estimation of the FRCs,
the KPs can be effectively estimated by solving a pixel-wise
constrained curve-fitting (convex) problem. Simulation results
demonstrate the efficacy of the proposed COKE algorithm. The
COKE algorithm is also evaluated with DCE-MRI data of four
different patients with prostate cancer and the obtained results
are consistent with clinical observations.
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I. I NTRODUCTION

Prostate cancer is the most common cancer in elderly men
and the number of patients with prostate cancer is considerably
increasing worldwide, and so is its mortality rate [1]–[3].
Early detected prostate cancers can be more easily treated
with standard therapy and the death rate can be significantly
reduced [4]. Unfortunately, many patients are found to have
tumors that have already spread over other surrounding tissues,
by the time of their initial diagnosis of prostate cancer.
Therefore, early detection of prostate tumor plays a critical
role in the management of prostate cancer therapy.

Digital rectal examination (DRE) is the most common and
conventional method to identify prostate cancer by elevated
prostate-specific antigen (PSA) levels. The major limitation
of DRE is that it is unable to detect non-palpable tumors
or tumors localized in the central and transition zones of the
prostate gland [5], [6]. Magnetic resonance (MR) imaging isa
standard technique used for the evaluation of prostate cancer.
However, it also suffers from some important limitations,
like, it is very difficult to identify the cancer in central and
transition zones of the prostate gland, since the tumors are
visualized as weak signals with superimposed intensities on
MR images [7], [8]. Dynamic contrast enhanced magnetic
resonance imaging (DCE-MRI) provides a noninvasive in vivo
method to evaluate tumor vasculature architectures based on
contrast accumulation and washout [9], [10]. In DCE-MRI,
a bolus of low molecular weight paramagnetic contrast agent
(CA) is used, usually gadolinium (Gd-DTPA) [11]. The CA
is transiently bounded with blood plasma and rapidly diffuses
into extravascular extracellular space (EES) through capillary
bed, where the relaxation processes of surrounding protons
are catalyzed, and the relaxation time is shortened [12] -
[15]. By their inherent nature, T1-weighted DCE-MRI data
are favored in the quantification of perfusion as they produce
the strong signal intensity changes in the abnormal regions,
when compared to the T2-weighted DCE-MRI data that have
longer acquisition time. In T1-weighted DCE-MRI, instead of
acquiring only one contrast enhanced image, a series of images
is acquired with regular interval (approximately, every 15to
30 seconds one image will be captured), when the CA flows
in and out the concerned region of interest. Micro-vascular
growth will be high in the cancer region; therefore, in the
cancer region more CA passes between the vascular system
and the EES tissue. Repeated MRI scans continue until the
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body metabolism filters out most of the CA from the blood
plasma through the kidneys (a time period usually between
6-12 minutes), and hence T1-weighted DCE-MRI produces a
time series of images of the region of interest (in this work,
the prostate region), and is the one considered in this work.

A signal intensity versus time curve is obtained for each
pixel vector (pixel, for convenience) in the image cube and it
varies in accordance with the accumulation and metabolism of
CA, within the corresponding area of the prostate region [9].
While DCE-MRI can potentially depict the intra-tumor hetero-
geneity of vascular permeability, the quantitative application
of DCE-MRI has been hindered by its inability to reliably
dissect vascular compartments with distinct pharmacokinetics.
For a cancerous region, the pharmacokinetic (PK) analysis of
the corresponding T1-weighted DCE-MRI data is to estimate
the tissue specific time activity curves (TACs) corresponding to
the plasma, fast flow (cancer), and slow flow (normal) regions,
and the associated kinetic parameter (KP) maps of the tissues
(especially for the cancer and normal regions), for effective
tumor detection. However, the prime difficulty in the analysis
of the obtained T1-weighted DCE-MRI data arises due to the
limited spatial resolution of the imaging modality and the
partial volume effect(PVE) in the observed images [10]. Such
a problem is formally referred to as the tissue heterogeneity
problem, by virtue of which the observed image intensity at
each pixel of DCE-MRI data set, is a weighted composition
of time activities of more than one distinct tissue, irrespective
of the spatial resolution of the imaging device. This inevitable
PVE in DCE-MRI data hinders the quantitative PK analysis
of the DCE-MRI data. To investigate this issue of PVE, many
model-based approaches and algorithms have been reported for
PK analysis of DCE-MRI data. They include the classical com-
partmental modeling (CM) [16], cluster component analysis
(CCA) [17], convex analysis of mixtures with CM (CAM-CM)
[18], iterative maximum likelihood CM (IML-CM) [19], and
the iterative quadratic maximum likelihood (IQML) estimation
[20]. In addition, modern methods such as in [21], [22] have
also been suitably modified and applied to pharmacokinetic
analysis. However, their major limitations include the un-
realistic assumption on the compartmental model that the
tissue kinetics are statistically independent [21], intractable
computational complexity, and sensitivity to initialization of
the unknown parameters (local optimality issues) [22].

The pharmacokinetic analysis problem has a lot in com-
mon with blind source separation (BSS), which is a signal
processing methodology to extract the true sources (in PK
analysis, they are the TACs and the KP maps) from the
mixed observations (T1-weighted DCE-MR images), devoid
of (or with very limited) prior knowledge about the sources
and how those sources are mixed in the observations. In this
work, for the pharmacokinetic analysis of prostate cancer using
T1-weighted DCE-MRI data, we propose an effective BSS
algorithm, namely convex optimization based KPs estimation
(COKE) algorithm, to estimate the tissues’ TACs and the KPs
associated with each slice of the DCE-MRI data, for cancer
detection. As in [16]–[20], this work is constructed under the
premise that the prostate cancer is confirmed to be present in
the patient (through biopsy tests or other clinical means).The

proposed COKE algorithm intends to estimate the parameters
associated with the prostate tumor through PK analysis of the
DCE-MRI data of the patient taken over different positions
(slices), so as to analyze the seriousness level (cancer stage)
and distribution of the prostate cancer over the given region
of interest.

Precisely, the proposed COKE algorithm first identifies the
pure pixels (representative pixels) corresponding to the TACs,
with provable theoretical guarantee. This idea is motivated by
our previous work in hyperspectral image analysis (for spectral
signature identification of disparate minerals in hyperspec-
tral images for remote sensing applications) [23]. Since the
sum-to-one assumption1 in hyperspectral image analysis [23],
[24] is not intrinsically satisfied in DCE-MRI data, we first
normalize the DCE-MRI data and then successively estimate
the pure pixels corresponding to the TACs. Once the pure
pixels corresponding to the TACs are obtained, the COKE
algorithm then aims to estimate the flux rate constants (FRCs).
In existing methods, including the state-of-the-art CAM-CM
[18] algorithm and the recently proposed TAC estimation by
projection (TACE-Pro) algorithm [25], the FRCs are estimated
by attempting to solve a non-convex optimization problem,
thereby rendering the estimated FRCs not very reliable (due
to local optimality issue) for KP estimation (cancer and normal
tissue distributions). Moreover, in existing methods, thescaling
ambiguities and some of the physical constraints are ignored
[18], [25], which may result in unreliable estimation of the
FRCs. The idea in COKE algorithm is to exploit the matrix
structure (Toeplitz, lower triangular, and exponential decay) of
the non-convex curve fitting problem, which results in solving
two convex optimization problems to effectively estimate the
FRCs, and thereby the TACs. Finally, the estimation of the
KPs using the obtained TACs can be formulated as a pixel-
by-pixel convex constrained least-squares problem. All the
convex optimization problems in the COKE algorithm can
be effectively solved by available convex optimization solvers
such asSeDuMi [26] andCVX [27], and due to the inherent
nature of convex optimization problems, the obtained respec-
tive solutions are guaranteed to be globally optimal solutions.
The simulation and experimental results are presented to
demonstrate the efficacy of proposed COKE algorithm.

The ensuing sections are organized as follows. The tissue
compartmental model is first presented in Section II. The
transformation of the tissue compartmental model into a
latent variable model, and the associated general and physical
assumptions are also presented in this section. The COKE
algorithm for pharmacokinetic analysis of DCE-MRI data
is presented in Section III, where the idea of perspective
projection and successive estimation of the pure pixel indices
are presented in detail, followed by the estimation of the tissue
specific FRCs and the estimation of the associated KPs. In
Section IV, the proposed COKE algorithm is evaluated with
synthetically generated data, under different noisy scenarios

1The sum-to-one assumption is a common assumption in some of the BSS
applications, wherein the combining coefficients (also referred to as sources)
in the linear mixing model sum to unity, for all observations. For instance,
in hyperspectral image analysis, these coefficients are called abundances, and
due to their physical constraints, they naturally sum to one.
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Fig. 1. Schematic diagram of three-tissue compartmental model.

and for different stages of cancer (early-stage, moderate,and
advanced). The COKE algorithm is then applied to real DCE-
MRI data of four patients, and the results and discussions are
presented in Section V. Finally, Section VI provides some
conclusions and future directions.

The following notations are employed in the remainder
of the paper.RM and R

M
+ represent the set of real and

non-negative realM × 1 vectors, respectively.1N and IN

represent theN × 1 all-one vector, and theN × N identity
matrix, respectively.⊗ represents convolution operation and
‖ · ‖p represents thep-norm. exp(·) stands for exponential
function andln(x) denotes natural logarithm ofx. Aij denotes
the (i, j)th element of the matrixA, and qi(R) denotes
the orthonormal eigenvector associated with theith principal
eigenvalue of the positive semidefinite matrixR. A

T and
a
T represent the transpose of a matrixA and a vectora,

respectively.P⊥
b

is the projection matrix for the subspace
orthogonal to vectorb.

II. SIGNAL MODEL AND PROBLEM STATEMENT

In this work, the proposed PK analysis of prostate tumor
lesions using DCE-MRI time-series images is based on the
well-known three-tissue compartmental model [17], [18], [29],
which is a generalization of the two-tissue compartmental
model proposed by Tofts et al., for the analysis of T1-
weighted DCE-MRI data [16], [28]. The generalized Toft’s
compartmental model basically consists of three tissue pools,
namely fast flow pools (cancerous regions), slow flow pools
(normal tissue regions), and the vascular plasma (blood), as
depicted in Figure 1.

As mentioned in Figure 1, the important parameters in-
volved in the compartmental model includes the unidirectional
transfer constant (K trans), the flux rate constant (kep), plasma
fractional volume (Kp), and the extravascular extracellular
space (EES). The dynamic tracer concentrations of the T1-
weighted DCE-MR images are governed by the following
set of first-order differential equations involving the above

parameters [16], [28]:

dCf (t)

dt
+ kep,fCf (t) = K trans

f Cp(t), (1)

dCs(t)

dt
+ kep,sCs(t) = K trans

s Cp(t), (2)

Cms(t) = KpCp(t) + Cf (t) + Cs(t), (3)

where Cf (t), Cs(t), and Cp(t) are respectively the tracer
concentrations at timet, in the fast flow pool, slow flow pool,
and in arterial (plasma) space.Cms(t) is the total measured
tracer concentration at timet and is given by the T1-weighted
DCE-MR image. The unidirectional transfer coefficients from
plasma to fast and slow flow pools areK trans

f andK trans
s (in

min−1), respectively. The flux rate constants from fast and
slow flow pools to plasma arekep,f and kep,s (in min−1),
respectively [9], [10]. It is straightforward to solve Equations
(1)-(2) for Cf (t) andCs(t) [18]. Thus we have,

Cf (t) = K trans
f Cp(t)⊗ exp(−kep,f t), (4)

Cs(t) = K trans
s Cp(t)⊗ exp(−kep,s t). (5)

For ease of ensuing presentation, let us define the following:

ap(t) , Cp(t), (6)

af (t) , Cp(t)⊗ exp(−kep,f t), (7)

as(t) , Cp(t)⊗ exp(−kep,s t). (8)

Then (3) becomes

Cms(t) = Kpap(t) +Ktrans
f af (t) +Ktrans

s as(t). (9)

Let the temporal resolution of the T1-weighted DCE-MR
images be∆t, and the tracer concentration measured at time
tm = (m − 1)∆t in the pixel n be Cms(n, tm). Then, by
(9), the temporal patterns of a given tissue slice, at pixeln,
denoted as[Cms(n, t1), . . . , Cms(n, tM )]T ∈ R

M (whereM is
the total number of sampling time points), can be expressed
as the following latent variable model [17], [18], [29]:2

x[n] =




Cms(n, t1)
Cms(n, t2)

...
Cms(n, tM )


 (10)

=




ap(t1) af (t1) as(t1)
ap(t2) af (t2) as(t2)

...
...

...
ap(tM ) af (tM ) as(tM )







Kp[n]
Ktrans

f [n]

Ktrans
s [n]




= [ ap af as ] K[n] ∈ R
M , ∀n = 1, ..., L, (11)

where x[n] represents the pixel vector (will be sim-
ply referred to as pixel, for convenience) composed
of temporal patterns of a given tissue slice, at pixel

2Note from (11) that unlike the original Toft’s model [16], [28] (where both
the flux rate constants and the kinetic parameters are allowed to vary from
pixel to pixel, and slice to slice), in the pixel-wise generalized model given
by (11), the flux rates are assumed to be constant for each slice of DCE-MRI
data, so that the flux rate constants and pixel-wise kinetic parameters can be
effectively estimated from the associated time series dataof a slice, in the
presence of measurement noise and other uncertainties.
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n, aj = [aj(t1), . . . , aj(tM )]T ∈ R
M
+ , j ∈ {p, f, s} are the

TACs for tissue typej ∈ {p, f, s}, the kinetic parameter
vector K[n] = [Kp[n], Ktrans

f [n], Ktrans
s [n]]T is the vector

containing the kinetic parameters in the pixeln, andL is the
total number of pixels in the region of interest (ROI) of a
given tissue slice. Specifically,ap ∈ R

M
+ is the arterial input

function (AIF) which is the plasma TAC, andaf ∈ R
M
+

and as ∈ R
M
+ are the TACs of fast and slow flow tissues,

respectively. Furthermore, by expressing the convolutionin
(7) and (8) in matrix forms,af andas can be expressed as

aj = D(kep,j)ap, j ∈ {f, s}, (12)

where D(x) is an M × M lower triangular matrix whose
(m,n)th entry is

Dm,n(x) =

{
∆te−(m−n)x∆t, m ≥ n,
0, m < n.

(13)

As will be seen in the ensuing sections, the judicious exploita-
tion of the above matrix structure will be one of the vital steps
of the COKE algorithm. The COKE algorithm proposed in this
work for PK analysis of prostate cancer using DCE-MRI data,
aims to estimate the TACs (i.e., AIF, TAC of fast flow, and
TAC of slow flow) and the kinetic parameters vector associated
with each pixeln from the observed tracer concentration
vectorsx[1], ...,x[L], so as to generate the kinetic parameter
maps (plasma mapKp, fast flow mapKtrans

f , and slow flow
mapKtrans

s ), which are defined as

Kp = [Kp[1], . . . ,Kp[L]]
T ∈ R

L (14)

K
trans
j = [Ktrans

j [1], . . . ,Ktrans
j [L]]T ∈ R

L, j ∈ {f, s}.
(15)

Some standard (non-statistical) assumptions that have been
conventionally considered by the Toft’s compartmental mod-
eling are as follows [17], [25]:
(A1) The components of the kinetic parameters vectors are

non-negative i.e.,K[n] ∈ R
3
+, for all n.

(A2) The TACsap, af , andas are linearly independent.
(A3) (Physical assumptions): 0 ≤ Kp[n] ≤ 1, ∀n,

kep,f ≥ Ktrans
f [n] andkep,s ≥ Ktrans

s [n], ∀n.
(A4) (Pure pixel assumption):

- In the entire image (with the set of indicesI), there
exists a pure artery pixel indexlp ∈ I such that
Ktrans

f [lp] = Ktrans
s [lp] = 0 andKp[lp] 6= 0, thereby

leading tox [lp] = Kp[lp]ap.
- In the prostate gland, there exists an index set
{lf , ls} (i.e., “pure pixel” indices) such thatx [lj ] =
Ktrans

j [lj ]aj for j ∈ {f, s}.

Assumptions(A1) - (A3) are the standard straightforward
assumptions that hold true in DCE-MRI data analysis [17],
[25]. The pure pixel assumption,(A4) stems from the fact that
within the prostate gland the distributions of the fast and slow
flow tissues are not fully overlapped [25]. In other words, there
exists at least a pixel location in the prostate gland such that
it is purely a normal (slow flow) region (or purely a cancerous
(fast flow) region). This is a practical assumption because it
fails only when the entire prostate is normal or it is entirely
affected by cancer. Since a major artery may not lie in the

region of interest, it is assumed that in the entire image there
exists a pure artery pixel, possibly corresponding to one of
the major arteries such as internal pudendal artery or inferior
vesical artery or middle rectal artery, of the prostate region.

III. C ONVEX OPTIMIZATION BASED K INETIC PARAMETER

ESTIMATION (COKE) ALGORITHM

In this section, we propose a BSS algorithm, namely COKE
algorithm for the PK analysis of DCE-MRI data. The COKE
algorithm basically does the following: (i) Identifies the pure
pixels corresponding to the TACs, (ii) Estimates the fast flow
and slow flow FRCs so as to estimate the TACs, and (iii)
Estimates the KP maps corresponding to the tissues, which
are presented in the following subsections, respectively.

A. Identification of Pure Pixel Indices

In this subsection, we demonstrate how COKE algorithm
can sequentially identify the pure pixel indices corresponding
to the TACs of plasma, fast flow, and slow flow regions,
from the DCE-MRI data. We begin by employing a pixel-wise
normalization, that makes the KPs of the normalized pixels,
sum to one (for all pixels), thereby facilitating the application
of the ideas developed in [23], [30], [31] to estimate the
pure pixel indices. The pixel vector normalization can be
represented as:

x̄[n] ,
x[n]

1T
Mx[n]

∈ R
M (16)

= k̄p[n]āp + k̄f [n]āf + k̄s[n]ās, n = 1, ..., L, (by (11))
(17)

where āj = aj/(1
T
Maj) for j ∈ {p, f, s} denote the nor-

malized TACs, andk̄p[n] = Kp[n](1
T
Map)/(1

T
Mx[n]) and

k̄j [n] = Ktrans
j [n](1T

Maj)/(1
T
Mx[n]) for j ∈ {f, s} are the

normalized kinetic parameters, such that
∑

i∈{p,f,s}

k̄i[n] = 1. (18)

In other words,

x̄[n] ∈ conv{ās, āf , āp},

whereconv{·} denotes the convex hull of the set of vectors,
and withθ = [θs, θf , θp]

T , it is defined as [32]:

conv{ās, āf , āp} =

{
x =

∑

i∈{s,f,p}

θiāi

∣∣∣∣ θ ∈ R
3
+,1

T
3 θ = 1

}
.

The normalization procedure is visually illustrated in Figure
2. It can be seen from Figure 2 that the observed datax[n]
(represented as green dots) are normalized (using (16)), soas
to satisfy the sum-to-one constraint of the normalized kinetic
parameters. On account of which, the normalized datax̄[n]
(represented as red dots) are now confined to lie within the
conv{ās, āf , āp} (blue triangle and its interior) with the three
extreme points (pure pixels) beinḡas, āf , and āp.

So far, the signal model considered in (11) (and therefore
also in (17)) does not account for the noise, which is inevitable
in reality. Assuming an additive white Gaussian noise (which



5

ap

af

as

0 conv{ās, āf , āp}

x[n]

x̄[n]

āp

āf

ās

R
M

Fig. 2. Illustration of the pixel-wise normalization procedure. The pixel-
wise normalization projects the original datax[n] (shown as green dots) on
theconv{ās, āf , āp}. The projected pixels̄x[n] are represented as red dots.

is the most commonly used noise distribution in PK analysis,
[18]), a dimension-reduction procedure can be employed to
mitigate the noise effect and speed up the ensuing analysis.
In this work, we employ the affine set fitting procedure
[33], by which the dimension-reduced normalized observations
x̄[n], ∀n are given by

x̄[n] = C
T (x̄[n]− d) ∈ R

2, (19)

whereC = [q1(UU
T ), q2(UU

T )], and d = 1
L

∑L

n=1 x̄[n],
in which U = [ x̄[1] − d, . . . , x̄[L] − d ] ∈ R

M×L. With
the dimension-reduced normalized data (given by (19)), under
(A1), (A2), and(A4), it has been theoretically proven in [23]
that the first pure pixel indexl1 can be identified by

l̂1 ∈ arg max
n∈I

‖x̄[n]‖2, (20)

where I is the set of pixel indices over the entire image.
However, following the findings in [34] (where it has been
shown that the AIF has the maximum purity among all the
time series pixels in a given DCE-MRI image), it can be
concluded that the so identified pure pixel corresponds to the
normalized AIF i.e.,̂lp = l̂1. Having identified a pure pixel
index corresponding to the AIF from the entire image, we
now proceed to identify the pure pixel indices corresponding
to the fast flow (lf ) and slow flow (ls) TACs from the prostate
region of interest. Following the footsteps of the procedure3

in [23], [25] the pure pixel indices{l̂2, l̂3} = {l̂f , l̂s} can be

3In this work, the reliable (with theoretical guarantee for perfect identi-
fiability), reproducible (insensitive to initializations), simplex estimation by
projection (SIMPLE-Pro) algorithm introduced in [23] is used to identify the
pure pixel indices. Other effective algorithms for pure pixel identification
include p-norm based pure pixel identification algorithm (TRI-P) [23], [35],
and volume maximization algorithms [30].

sequentially obtained as:

l̂2 ∈ arg min
n=1,...,L

x̄T [n]x̄[l̂p], (21)

l̂3 ∈ arg min
n=1,...,L

x̄T [n]d?, (22)

whered? = P
⊥
b
x̄[l̂2], in which

P
⊥
b
= I2 − b(bT

b)−1
b
T , (23)

and b = x̄[l̂p] − x̄[l̂2]. The above procedure has been
theoretically proved to perfectly identify the pure pixel indices
[23], [25].

From the estimated pure pixel indices{l̂2, l̂3} = {l̂f , l̂s}, the
characteristics of the TACs of fast flow and slow flow pools
can be used to identifŷlf and l̂s. It is well known that the
TAC for fast flow has a sharp peak and then a sudden decay,
whereas the TAC of the slow flow has a gradual but steady
increase in activity level [18], [29]. Letρj of x[l̂j ], j ∈ {2, 3}
be defined as

ρj =

∥∥∥x[l̂j ]
∥∥∥
2∥∥∥x[l̂j ]

∥∥∥
1

, j ∈ {2, 3} (24)

Then, based on the arguments in [34], ifρ2 > ρ3, thenl̂f = l̂2
and l̂s = l̂3, else l̂f = l̂3 and l̂s = l̂2. Thus the pure pixel
indices corresponding to the AIF, fast flow TAC, and slow
flow TAC have been identified aŝlp, l̂f , and l̂s, respectively.

B. Estimation ofkep,f and kep,s

Given the pure pixel indices{l̂p, l̂f , l̂s} estimated above, by
(11), (12), and(A4), we have

âp =
x[l̂p]

Kp[l̂p]
, (25)

x[l̂f ] = K trans
f [l̂f ] âf = K trans

f [l̂f ] D(kep,f ) âp, (26)

x[l̂s] = K trans
s [l̂s] âs = K trans

s [l̂s] D(kep,s) âp. (27)

Substituting (25) into (26) and (27) yields

x[l̂j ] =
K trans

j [l̂j ]

Kp[l̂p]
D(kep,j)x[l̂p], j ∈ {f, s}, (28)

wherex[l̂p], x[l̂f ], andx[l̂s] are known. Let us emphasize that
(28) holds true only whenx[l̂p], x[l̂f ], andx[l̂s] are noise-free
measurements and the observations follow the underlying sig-
nal model in (11). In practice, the unknown kinetic parameters
can be estimated by solving the following least-squares fitting
problem:

min
Kp[l̂p],

K trans
f [l̂f ], K trans

s [l̂s],

kep,f , kep,s

∑

j∈{f,s}

∥∥∥∥∥x[l̂j ]−
K trans

j [l̂j ]

Kp[l̂p]
D(kep,j)x[l̂p]

∥∥∥∥∥

2

2

(29)

subject to (s.t.) 0 ≤ Kp[l̂p] ≤ 1,

0 ≤ K trans
j [l̂j ] ≤ kep,j , j ∈ {f, s}.
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However, the above problem is a non-convex curve
fitting problem due to the fact that the unknowns
{Kp[l̂p],K

trans
f [l̂f ],K

trans
s [l̂s], kep,f , kep,s} are non-linearly

combined in the objective function. Existing algorithms for
kinetic parameters estimation such as CAM-CM [18], [29]
and TACE-Pro [25], attempt to solve (29) using available
sequential quadratic programming (SQP) solvers and hence
suffer from local optimality issues in the estimation of FRCs
and the ensuing KP maps. Moreover, it is also true that
the methods such as CAM-CM [18], [29], simply ignore
the constantKp[l̂p] in solving (29), which may result in
inaccurate estimation of FRCs and KP maps (caused due to
scaling ambiguities).

Next, we will present a convex optimization based frame-
work to estimate the FRCs and KP maps. Basically, we will
exploit the structure ofD(kep,j) in the following. LetD̃j ,

cjD(kep,j), j ∈ {f, s}, wherecj = K trans
j [l̂j ]/Kp[l̂p]. Since

D̃
j is a lower-triangle Toeplitz matrix, it has the following

structure:

D̃
j =




d̃j0 0 0 · · · 0

d̃j1 d̃j0 0 · · · 0

d̃j2 d̃j1 d̃j0 · · · 0
...

...
...

. . . 0

d̃jM−1 d̃jM−2 d̃jM−3 · · · d̃j0



∈ R

M×M .

(30)

D̃
j can be expressed as in (31) (shown at the top of

next page), and based on (30), the elements ofD̃
j have the

following relationship:

D̃j
m,n = D̃j

m+1,n+1

, d̃jm−n =

{
d̃jr, 0 ≤ r = m− n ≤ M − 1,

0, otherwise.

Then, the pharmacokinetic model fitting problem in (29) can
be rewritten as the following least-squares problem, whichis
convex inD̃j :

min
d̃j
r, j∈{f,s}, r=0,...,M−1

∑

j∈{f,s}

∥∥∥x[l̂j ]− D̃
j
x[l̂p]

∥∥∥
2

2
(32)

s.t. d̃jr = 0, j ∈ {f, s}, ∀r < 0,

0 ≤ d̃jr, d̃jr+1 ≤ d̃jr, j ∈ {f, s},

r = 0, ...,M − 1.

Problem (32) can be solved for̃Dj , j ∈ {f, s} by using
available convex optimization solvers such asSeDuMi [26]
or CVX [27]. Let the optimal solution of (32) bẽDj∗ Further,
to estimatekep,f and kep,s from the obtainedD̃f∗ and D̃

s∗

respectively, we perform the following:
Step 1: Obtain the scaling factor:

cj = d̃j∗0 /∆t, j ∈ {f, s}. (33)

Step 2: Obtain the estimate ofD(kep,j) by removing the
scaling factorcj :

D̂
j , (1/cj)D̃

j∗, j ∈ {f, s}. (34)

Then, from (11), (12), and(A4), the AIF and other TACs
are estimated as

apKp[l̂p] = x[l̂p] ≈ âp, (35)

âj = D̂
j
âp, j ∈ {f, s}. (36)

Note that the above estimated AIF (i.e., the plasma TAC)
still has a scaling ambiguity, asKp[l̂p] is still unknown. This
scaling ambiguity also propagates tôaf and âs. However,
this issue of scaling ambiguity will be appropriately handled
while estimating the KP maps, which is discussed in the next
subsection.

Since from (13),lnDj
m,1 = ln∆t− kep,j(m− 1)∆t, m =

1, ...,M, j ∈ {f, s}, from the estimated̂Dj , the flux rate
constants (kep,f andkep,s) can be obtained by using available
convex optimization solvers [26], [27], to solve the following
convex problem:

min
kep,f , kep,s

M∑

m=1

∑

j∈{f,s}

∥∥∥ln D̂j
m,1 − ln∆t+ kep,j(m− 1)∆t

∥∥∥
2

2

(37)

s.t. 0 ≤ kep,j , j ∈ {f, s},

kep,s ≤ kep,f .

Once, the AIF estimate (âp), TAC estimates (̂af , andâs), and
FRC estimates (̂kep,f and k̂ep,s) are estimated, the KP maps
can be estimated as discussed next.

C. Estimation of KP Maps

Finally, the estimation of tissue distribution maps (i.e.,ki-
netic parameter maps), based on (11) boils down to the follow-
ing convex least-squares fitting problem, forn = 1, 2, . . . , L:

K̂[n] = arg min
K[n]

∥∥∥∥x[n]− α[âp, âf , âs]K[n]

∥∥∥∥
2

2

(38)

s.t. 0 ≤ Kp[n] ≤ 1,

K trans
f [n] ≥ 0, K trans

s [n] ≥ 0,

K trans
s [n] ≤ k̂ep,s, K trans

f [n] ≤ k̂ep,f .

The scaling parameterα in (38) is used to alleviate the
scaling ambiguity caused due to the unknownKp[l̂p]. Setting
a suitable scaling factorα (sayα = 100), (38) can be solved
by using available convex optimization solvers likeSeDuMi
[26] andCVX [27]. If this scaling is not appropriately taken
into account, the KP maps estimated by (38) will be an
overestimation of the true KP maps, as the estimated KP vec-
tors may reach their respective upper bounds (i.e., saturation
levels) owing to the constraints of (38), thus violating the
relationship amongKp[n], K trans

f [n], andK trans
s [n]. It should

be noted that theKp[n], K trans
f [n], and K trans

s [n], estimated
are relative values of their respective true values, however
their relationships are maintained, by preventing them from
reaching the saturation level. The only condition on choosing
the value ofα is that it should be larger than the inverse of
Kp[lp]. More importantly, such a value ofα will not affect
the distribution of the estimated KP maps, as will also be
addressed in Sections IV and V, below. Also, it is worth
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D̃
j = cj




∆t 0 0 · · · 0
∆te−kep,j∆t ∆t 0 · · · 0
∆te−kep,j2∆t ∆te−kep,j∆t ∆t · · · 0
...

...
...

. . . 0
∆te−kep,j(M−1)∆t ∆te−kep,j(M−2)∆t ∆te−kep,j(M−3)∆t · · · ∆t




︸ ︷︷ ︸
D(kep,j) defined by (13)

(31)

mentioning that unlike in [18], the estimation ofK trans
s [n]

and K trans
f [n] are respectively upper bounded bŷkep,s and

k̂ep,f , thereby avoiding the possible over estimation of the
transfer constants (and thereby the KP maps). Thus, all the
kinetic parameters are estimated with low sensitivity to the
over estimation (saturation) issue. It should be noted that
the optimization problems (32), (37), and (38) involved in
estimating the kinetic parameters are all convex optimization
problems for which the solutions are guaranteed to be global
optimal [32]. The pseudo-code for the entire COKE algorithm
is given in Table I.

IV. SIMULATIONS

In this section, we study the performance of the proposed
COKE algorithm on synthetically generated DCE-MRI data.
This way of performance evaluation on synthetic data is very
important to study the validity of the estimates obtained byan
algorithm under test, as it may be the only means to verify
the effectiveness of an PK analysis algorithm, since exact
ground truths are not available for real DCE-MRI data. It
has been recently shown that the CAM-CM algorithm [18]
has better performance when compared to several existing
PK analysis algorithms. Moreover, unlike COKE and CAM-
CM, other algorithms such as IML-CM [19], and IQML [20],
assume tissue homogeneity which is seldom true in reality.
Hence in this section, the performance of the proposed COKE
algorithm will be solitarily compared with the performance
of CAM-CM algorithm. The two algorithms are evaluated for
their accuracies in estimating the flux rate constants (kep,f

and kep,s). The mean±standard deviation of the flux rate
constants estimated by the algorithms under test, over 50
independent runs, for each of the different scenarios is used as
the performance measure for the estimated flux rate constants.

The simulation settings for generating the synthetic data are
as follows: The AIFap is generated based on the population
average model4 [36], with a temporal resolution∆t = 4
seconds for7-min period (M = 105). Since the fast flow and
the slow flow TACs (given by (12)) are characterized bykep,f

andkep,s, respectively, they are generated based on the values
of kep,f and kep,s in each scenario. In this section, for the
sake of simulating different stages of prostate cancer, there are
three scenarios under consideration. Note that in the following
scenarios, the range for generating the kinetic parametersare

4The population average model is a well-known model used for artificially
generating the AIF. It is primarily used to synthesize the AIF (using candidate
TACs in two reference tissues) for PK analysis, in cases where the AIF cannot
be directly obtained from the DCE-MR images.

TABLE I
PSEUDOCODE FORCOKE ALGORITHM .

Given Observed DCE-MRI datax[n] ∈ R
M , n = 1 . . . , L, the

temporal resolution of the T1-weighted DCE-MR images
∆t, and a scaling factorα (sayα = 100).

Step 1. Compute the normalized data,x̄[n] for eachn = 1 . . . , L
by using (16).

Step 2. Obtain the dimension-reduced datax̄[n] from the normal-
ized datax̄[n] by using

x̄[n] = C
T (x̄[n]− d) ∈ R

2,

whereC andd are defined along with (19).
Step 3. Identify the pure pixel index corresponding to the normal-

ized AIF by

l̂p ∈ arg max
n∈I

‖x̄[n]‖2,

whereI is the set of pixel indices over the entire image.
Step 4. Identify the pure pixel indiceŝl2 and l̂3 by

l̂2 ∈ arg min
n=1,...,L

x̄
T [n]x̄[l̂p],

l̂3 ∈ arg min
n=1,...,L

x̄
T [n]d?,

whered? = P
⊥
b
x̄[l̂2], in which P

⊥
b

is given by (23).
Step 5. Computeρ2 and ρ3 given by (24). Assign̂lf = l̂2 and

l̂s = l̂3, if ρ2 > ρ3; else, l̂f = l̂3 and l̂s = l̂2.
Step 6. Define thelatent matrix D̃j ∈ R

M×M by specifying its
elements as following, for eachj ∈ {f, s}:

D̃j
m,n = D̃j

m+1,n+1

, d̃jm−n =

{
d̃jr , 0 ≤ r = m− n ≤ M − 1,

0, otherwise.

Then solve the convex problem given by (32) and obtain
the optimalD̃f∗ and D̃

s∗. Computecj = d̃j∗0 /∆t and
D̂

j = (1/cj ) · D̃
j∗, for eachj ∈ {f, s}.

Step 7. Compute the TACs:̂ap ≈ x(l̂p) andâj = D̂j âp, for each
j ∈ {f, s}.

Step 8. Solve the convex problem in (37) and obtain the flux rate
constants{k̂ep,s, k̂ep,f}.

Step 9. Obtain K̂[n] by solving the least-squares (convex) fitting
problem given in (38), for eachn = 1, ..., L.

Output The TACs (given byStep 7), the FRCs (given byStep 8),
and the KP maps (̂Ktrans

f
, K̂trans

s , K̂p) (defined by (14)
and (15), and given byStep 9).

chosen such that the assumptions(A1) and(A3) hold true for
the generated data set. The three scenarios under consideration
are:
Scenario 1 : Early-stage tumor with parameterskep,f =

1.625, and {K trans
f [n]}Ln=1 randomly generated

following a uniform distribution over the interval
[0.4, 0.6].
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Plasma Region Fast Flow Region Slow Flow Region Tumor ROI

Fig. 3. The fast flow, slow flow, plasma, and the tumor ROI (comprising
fast flow, slow flow, and plasma) regions, used in the simulations [18].
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Fig. 4. Typical TAC curves for fast flow (for differentkep,f values), slow
flow and plasma (AIF).

Scenario 2 : Moderate-stage tumor with parameterskep,f =
3.25, and {K trans

f [n]}Ln=1 randomly generated
following a uniform distribution over the interval
[0.8, 1.2].

Scenario 3 : Advanced-stage tumor with parameterskep,f =
6.5, and{K trans

f [n]}Ln=1 randomly generated fol-
lowing a uniform distribution over the interval
[1.7, 2.3].

In all the scenarioskep,s = 0.33, is set to be a constant. The
fast flow, slow flow, and the plasma regions are chosen as
in [18] and are shown in Figure 3. The tissue regions for
fast flow, slow flow, and plasma are not fully overlapped and
hence meet the pure pixel assumption(A4). The parameters
{K trans

s [n]}Ln=1 and{Kp[n]}
L
n=1 are uniformly generated over

the interval[0.08, 0.12] and [0.04, 0.06], respectively. Finally,
the synthetic data setx[n], for all n = 1, . . . , L, is obtained
following the linear mixing model in (11). For each data set
generated using the regions used in [18], the number of pixels
within the ROI is around5000, i.e., L ≈ 5000. The typical
TAC curves are shown in Figure 4 for reference, and will be
handy in comparing the results of real data experiments that
will be presented in Section V.

Then, the synthetically generated pixel vectorsx[n] are
added with Gaussian white noise with zero mean and covari-
ance matrixσ2

IM based on a given signal-to-noise ratio (SNR)
which is defined as

SNR,

∑L

n=1 ‖x[n]‖
2
2

σ2ML
. (39)

The SNR levels considered are 20 dB, 25 dB, 30 dB, 35 dB,
40 dB, and∞ (noise-free case).

The mean±standard deviation of the estimated FRCs (k̂ep,f
and k̂ep,s) obtained by the algorithms under test are tabulated
in Table II. It can be seen from Table II that in all the 3
scenarios, especially for lower SNR cases (high noise cases),
the COKE algorithm outperforms the state-of-the-art CAM-
CM algorithm (employed with the best possible parameter
set). Also, as the SNR increases, the mean values of the
estimates (obtained by COKE and CAM-CM) get closer to
the true values of the respective flux rate constants, and the
standard deviation approaches to zero. However, the CAM-
CM algorithm fails under the noise-free scenario, as the
algorithm is built under the premise of noise presence in
the observed DCE-MRI data. Thus, Table II demonstrates the
validity and superior efficacy of the proposed COKE algorithm
over the benchmark and state-of-the-art CAM-CM algorithm.
The performance of the proposed COKE algorithm using real
data will be demonstrated in the ensuing section.

V. EXPERIMENTAL RESULTS

Having demonstrated the efficacy of the COKE algorithm
using synthetic data sets, in this section, we apply the COKE
algorithm to four real DCE-MRI data obtained from four
different patients suffering from prostate cancer. The DCE-
MRI data sets were provided by Mackay Memorial Hospital,
Taipei, Taiwan and were acquired by usingPhilips Achieva
with a 3-Tesla magnetic field strength. The acquired three-
dimensional data set with4 mm slice thickness,0.45 mm pixel
spacing,10◦ field of view, and in-plane matrix size256×256,
was taken every30 seconds for a total of10 minutes after
the injection of Gadolinium DTPA, for each patient. The four
male patients referenced as Patients A, B, C, and D are aged
72, 75, 68, and 87, respectively. For all the four data sets,
the suspected abnormal areas were marked in a corresponding
T2-weighted image, by a radiologist, and those corresponding
areas in the T1-weighted DCE-MR images are considered for
marking the ROI for the real data experiments. It should be
mentioned that except for the AIF selection procedure (as
explained in Section V.A below), the application of COKE
algorithm is confined to this marked ROI in each slice of a
patient, and so are the ensuing results and discussions. The
biopsy tests have been conducted for all the four patients
and the test results for all the patients in the three regions
(anterior, middle, and posterior) of the prostate cancer, are
shown in Table III. The values indicated in Table III are the
percentage of cancerous tissues in the biopsy samples takenat
the respective locations. Specifically, the biopsy examination
has been conducted in 12 locations, for each patient; six
locations in the peripheral prostate region and six locations
in the central prostate regions. The biopsy observations are
made through the anus, and in the following discussions,
the anterior and posterior regions correspond to smaller and
larger slice numbers, respectively. It should be noted thatthe
biopsy results are based on samples obtained in some specific
locations (as it is not possible to extract biopsy samples inall
the different slices with the slice thickness set to4 mm, which
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TABLE II
MEAN±STANDARD DEVIATION OF THE ESTIMATED FLUX RATE CONSTANTS(k̂ep,f , k̂ep,s) OBTAINED BY COKE AND CAM-CM OVER
50 INDEPENDENT RUNS, FOR DIFFERENT RANDOM TISSUE MAPS AND DIFFERENTSNRS. kep,s = 0.33 IN ALL CASES (NA STANDS FOR

“NOT APPLICABLE”).

k̂ep
Early-stage tumor Moderate tumor Advanced tumor

SNR kep,f = 1.625 kep,f = 3.25 kep,f = 6.5
(dB) COKE CAM-CM COKE CAM-CM COKE CAM-CM

20 k̂ep,f 1.83±0.17 2.10±0.05 3.45±0.31 4.14±0.08 6.33±1.03 8.50±0.66
k̂ep,s 0.39±0.02 0.45±0.01 0.40±0.02 0.45±0.00 0.41±0.02 0.47±0.01

25 k̂ep,f 1.77±0.13 1.91±0.03 3.47±0.18 3.79±0.06 6.84±0.71 7.57±0.13
k̂ep,s 0.36±0.01 0.40±0.00 0.36±0.01 0.40±0.00 0.37±0.01 0.41±0.00

30 k̂ep,f 1.74±0.08 1.79±0.01 3.48±0.17 3.57±0.03 6.78±0.45 7.13±0.07
k̂ep,s 0.35±0.01 0.37±0.00 0.35±0.01 0.37±0.00 0.35±0.01 0.38±0.00

35 k̂ep,f 1.69±0.06 1.72±0.00 3.40±0.14 3.44±0.00 6.71±0.28 6.87±0.00
k̂ep,s 0.34±0.00 0.35±0.00 0.34±0.00 0.35±0.00 0.34±0.00 0.36±0.00

40 k̂ep,f 1.68±0.05 1.69±0.00 3.39±0.11 3.36±0.00 6.77±0.25 6.71±0.00
k̂ep,s 0.34±0.00 0.34±0.00 0.34±0.00 0.34±0.00 0.34±0.00 0.35±0.00

∞
k̂ep,f 1.63±0.00 NA 3.25±0.00 NA 6.50±0.00 NA
k̂ep,s 0.33±0.00 NA 0.33±0.00 NA 0.33±0.00 NA

is both painful and tedious), and hence could only serve as a
partial referencefor comparison with the respective KP maps
obtained for the different patients. Table III will be handy
in comparison and validation of the estimated KP maps in
Section V-C.

A. Estimation of Time Activity Curves

The proposed COKE algorithm, summarized in Table I, is
used to estimate the TACs (AIF, fast flow TAC, and slow flow
TAC), FRCs, and the KP maps (withα = 100), of interest5. As
discussed in Section II, here, the “purest pixel” corresponding
to the AIF is chosen from the entire scanned region (not just
confined to the ROI), for each tissue slice of a patient, basedon
(20). Furthermore, among the AIFs (purest pixels) chosen for
the different tissue slices of a patient, the purest pixel that has
the best visual match with the standard AIF (shown in Fig. 4)
is used universally for the estimation of fast flow and slow flow
TACs, of each tissue slice of that particular patient. The reason
behind choosing the AIF globally for all slices of a patient is
due to the practical fact that the AIF may not be explicitly
available / captured in each of the DCE-MRI slices of a patient.
For ease of visualization, for each Patient, the TACs estimated
by COKE algorithm for 5 affected tissue slices are shown in
Fig. 5 6, where the slice number represents the position of
the MRI scanner that scans the prostate region from bottom
to top. Also for the purpose of comparison and validation, the
purest pixels in the data i.e.,x[lf ] and x[ls], corresponding
to fast flow TAC and slow flow TAC, respectively are shown
(dotted lines) along with the estimated TACs (solid lines) for
various slices. It can be readily observed from Fig. 5 that for
most cases, the estimated TACs have shapes similar to those
of the respective purest pixels in the data. Moreover, while
the patterns of the TACs obtained by COKE for Patients A
and B are close to those of the ideal TAC curves (shown in

5For other values ofα = 500, 1000, the KP maps remain the same and
only the values in the color bars are different.

6High-resolution images of Figures 5 to 9, and additional simula-
tions using real AIFs estimated from the patients, are available at
http://www.ee.nthu.edu.tw/cychi/publications-e.html

Patient A Patient B Patient C Patient D

Slice 17Slice 17 Slice 14

Slice 16

Slice 18

Slice 20

Slice 22 Slice 27

Slice 19

Slice 19

Slice 19

Slice 21

Slice 21

Slice 21

Slice 23

Slice 23

Slice 23

Slice 25

Slice 25

Slice 25

Fig. 5. The fast flow TAC (green solid line) and the slow flow TAC(red
solid line) estimated by COKE algorithm, for different tissue slices of each
Patient. The associated fast flow pure pixelx[lf ] (green dotted line) and the
slow flow pure pixelx[ls] (red dotted line) in the data, are also shown.

Fig. 4), those deformations in TACs obtained for Patients C
and D could be attributed to the inevitable noise present in
the data, or due to the unavailability of a perfect pure pixel
corresponding to the AIF, fast flow TAC, slow flow TAC, or
all the above.

B. Estimation of Flux Rate Constants

Thek̂ep,f andk̂ep,s values obtained by the COKE algorithm
for the respective tissue slices for the four patients are also
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TABLE III
THE BIOPSY RESULTS(INFERRED PERCENTAGE OF TUMOR DISTRIBUTION) FOR PATIENTS A, B, C, AND D FOR DIFFERENT POSITIONS.

IN THIS TABLE, PERIPHERY AND CENTER LOCATIONS CORRESPOND TO THE PERIPHERAL AND CENTRAL PROSTATE REGIONS,
RESPECTIVELY.

Patients Locations Anterior-Left Anterior-Right Middle-Left Middle-Right Posterior-Left Posterior-Right

Patient A
Periphery 80% 95% 90% 90% 90% 90%

Center 90% 50% 45% 95% 85% 95%

Patient B Periphery 0% 10% 0% 5% 0% 0%
Center 0% 0% 0% 0% 0% 0%

Patient C Periphery 0% 35% 0% 40% 0% 20%
Center 0% 30% 0% 30% 0% 65%

Patient D Periphery 0% 95% 0% 95% 0% 95%
Center 0% 95% 0% 95% 0% 95%

tabulated in Table IV. Specifically, it can be observed from
Tables IV that the dynamic range of the FRCs estimated by
COKE is regulated between0 and2. It should be emphasized
that the estimated FRC values are dependent upon the imaging
device and the preset imaging intensity. Nevertheless, these
k̂ep,f and k̂ep,s values serve as a measure to identify the
intensity of cancer versus normal tissue.In fact, the larger the
difference between these two values, the severer is the cancer
intensity, and vice versa. As per this fact, for instance, based
on k̂ep,f andk̂ep,s estimated by COKE algorithm (from Table
IV), it can be concluded that slices 17 and 21 of Patient A,
slices 18 and 22 of Patient B, slices 23 and 27 of Patient C, and
slices 17 and 19 of Patient D, reveal advanced stage cancers.
This inference is also consistent with theGleason score[37]
(that ranges from 2 to 10) of the patients, which are 7, 6, 8,
and 8, for Patients A, B, C, and D, respectively, as a higher
Gleason score indicates advanced cancers [37].

C. Estimation of Kinetic Parameter Maps

The obtained KP maps (fast flow map̂Ktrans
f , slow flow

map K̂
trans
s , and plasma mapK̂p), within the manually

selected respective ROI, for different slices, are shown in
Figs. 6 to 9, for the four patients (Patient A to Patient D),
respectively. In Figs. 6 to 9, the ROIs in the prostate region
of a slice are shown along with the entire obtained DCE-MR
image in that slice position, to show the relative variations
of the ROI with respect to different slices, as the ROIs are
manually marked for each slice of a patient. The color bars in
Figs. 6 to 9, that are shown adjacent to the kinetic parameter
maps indicate the level of activeness of the particular tissue.
More specifically, if the colors in the map of slow flow tissue
are close to the maximum value (dark red) of its color bar, it
indicates that the tissue is quite normal. On the other hand,
if the colors in the map of fast flow tissue are close to the
maximum value (dark red) of its color bar, then it indicates
dominant detected cancer tissues. However, the seriousness
level of the detected cancer tissues can be decided only based
on the estimated FRC values (cf. Section V-B). As expected, it
can be observed that the slow flow and fast flow maps basically
complement each other in all the results shown in Figs. 6 to
9. It can also be observed that for each patient, the detected
tumor regions (fast flow maps) in each slice varies; indicating
the irregular spread of tumor tissues in and over the prostate
region.

The obtained KP maps are also consistent with the biopsy
results shown in Table III. For instance, for Patient A the
biopsy results suggest that the tumor is present almost in all
parts of the prostate, which is consistent with the obtainedKP
maps for Patient A (shown in Fig. 6). More importantly, the
obtained KP maps could yield more information (which is the
prime purpose for PK analysis) than the ones available only
based on the biopsy results. To see this, let us first consider
Patient B (Fig. 7). Slice 14 (anterior portion) reveals thatthere
is cancer on the left side of the slice, which coincides with
Table III. The biopsy results in Table III claim that there are
no cancers in other regions. However the other slices in Fig.
7 do indicate the irregular spread of the cancer to the other
regions of the prostate, which is also clinically verified by
the doctors team. Similar inference can be made for Patient
C (Fig. 8) and Patient D (Fig. 9). It is worth reiterating the
fact that the biopsy examination results can only serve as a
reference and more information regarding the actual spread
and distribution of the tumor can be obtained only through
PK analysis of the data. Also, one can observe from Figs. 6
to 9 that the fast flow KP maps associated with those slices
mentioned in Section V-B above (slices 17 and 21 of Patient
A, slices 18 and 22 of Patient B, slices 23 and 27 of Patient C,
and slices 17 and 19 of Patient D) indeed reveal the presence
of cancer tissues in the ROI.

D. Additional Discussions

The CAM-CM algorithm [18] has been designed for PK
analysis based on compartmental modeling (irrespective ofthe
type of cancers). However, the results (TACs, FRCs, and KP
maps) yielded by applying CAM-CM to real prostate data
are uninterpretable7. The reasons for the inapplicability of
CAM-CM for prostate tumor detection could be attributed to
the following: (i) The AIF estimation procedure for COKE
is more practical and realistic (cf. Section V-A), than the
AIF estimation procedure in CAM-CM. (ii) The ignorance
of the scaling constant and the local optimality effects due
to non-convexity of the problems involved in CAM-CM may
have significant impact on the results of real data experiments.
(iii) In addition, there are also quite some tuning parameters
involved in CAM-CM. The default tuning parameters are
based on the simulated data (where the true information about

7For reference, the PK analysis results using CAM-CM, for
the four patients and the respective slices are available at
http://www.ee.nthu.edu.tw/cychi/publications-e.html
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TABLE IV
THE FRCS (k̂ep,f , k̂ep,s) ESTIMATED BY COKE FOR PATIENT A, B, C, AND D FOR DIFFERENT SLICES

FRCs Slice 17 Slice 19 Slice 21 Slice 23 Slice 25
Patient A k̂ep,f 0.6495 0.5693 0.5779 0.3711 0.4802

k̂ep,s 0.1451 0.3012 0.1274 0.2262 0.1693
FRCs Slice 14 Slice 16 Slice 18 Slice 20 Slice 22

Patient B k̂ep,f 0.3289 0.3535 0.2986 0.2648 0.2834
k̂ep,s 0.2547 0.2067 0.0786 0.1435 0.0749
FRCs Slice 19 Slice 21 Slice 23 Slice 25 Slice 27

Patient C k̂ep,f 0.5437 1.1541 0.4831 0.3886 1.2377
k̂ep,s 0.4163 0.3154 0.0383 0.2512 0.1089
FRCs Slice 17 Slice 19 Slice 21 Slice 23 Slice 25

Patient D k̂ep,f 0.6049 0.6485 0.5470 0.4220 0.4363
k̂ep,s 0.1401 0.2730 0.2946 0.3896 0.3414
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Fig. 6. The KP Maps Estimated by COKE algorithm for Patient A in different
slices.

the TACs and FRCs is available), and hence for the simulated
data CAM-CM exhibited performance comparable to that of
COKE (cf. Table II). However, for the real data experiments on
prostate cancer, the optimal tuning parameters for CAM-CM
are unknown and difficult to find, and this is out of the scope
of this paper. Furthermore, as reported in [18], the CAM-
CM algorithm has been validated for the breast cancer data,
which are less prone tomotion effects, as the DCE-MR image
sequences were externally fixed. Whereas, the prostate cancer
data suffers from motion effects jointly due to the motion
caused through breathing and bowel movement. In addition
to the above mentioned algorithmic issues, such inevitable
motion effects and noise artifacts could also have resultedin
poor performance of the CAM-CM algorithm when applied to
the prostate cancer data.
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VI. CONCLUSION

We have presented an effective, convex optimization based
BSS algorithm, namely COKE algorithm for PK analysis of
prostate cancer using T1 weighted DCE-MRI data. We have
first transformed the three-tissue compartmental pharmacoki-
netic model to a latent variable model so that the PK analysis
can be reformulated into a BSS problem. Under the assump-
tion that the tumor is present in the prostate region, the COKE
algorithm, first applies normalization to the observed dataand
successively identifies the pure pixel indices corresponding
to the TACs of the fast flow, slow flow, and plasma. The
FRCs, which are the most important parameters that determine
the accuracy of the estimated KP maps, are then effectively
(without local optimality issue and with due considerations for
the scaling ambiguities) estimated by solving the originalnon-
convex FRCs estimation problem, by optimally solving the
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Fig. 8. The KP Maps Estimated by COKE algorithm for Patient C in different
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Fig. 9. The KP Maps Estimated by COKE algorithm for Patient D in different
slices.

corresponding convex optimization problems (32) and (37).
Finally, the KP maps are obtained by solving a pixel-wise
constrained least-squares optimization (also convex) problem
(38), subject to all the possible physical constraints. We have
evaluated the efficacy of the COKE algorithm with the syn-
thetic DCE-MRI data and real DCE-MRI data of four patients
with prostate cancer. Simulation results have shown that the
proposed COKE algorithm performs well for all the scenarios
(early-stage, moderate, and advanced tumor). For real data
experiments, we have detected the tumor regions together with
the estimated TACs and FRCs, which are consistent with the
Mackay Memorial Hospital experts team’s observations.

Like any other PK analysis algorithm, there is also scope
of extension for the proposed COKE algorithm. The proposed
COKE algorithm is based on the generalized compartmen-
tal model for slice-by-slice PK analysis of DCE-MRI data,
thus allowing the inter-slice heterogeneity (i.e., modeling
the flux rate constants such that they are allowed to vary
between slices, while remaining same within a slice). The
most challenging future extension of this work shall be the
joint modeling and consideration of both inter-slice and intra-
slice tumor heterogeneity (wherein the flux rate constants vary
within each slice and across slices). The automatic selection
of ROI, other modeling based or in situ based measurements
for AIF estimation, the reconstruction of 3-D cancer tissue
patterns over all the slices based on the observed fast flow KP
maps of multiple slices, and pharmacokinetic analysis using
the recently developed Magnetic Resonance Fingerprinting
(MRF) [38], are also some of the potential future research
directions. Finally, formulating and designing an algorithm
exclusively for detecting the presence or absence of cancer,
and the quantification of the tumor lesions (if identified as
cancer) will be of high practical interest.
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