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Abstract— Dynamic contrast enhanced magnetic resonance
imaging (DCE-MRI) is a powerful imaging modality to study
the pharmacokinetics in a suspected cancer / tumor tissue.
The pharmacokinetic (PK) analysis of prostate cancer incldes
the estimation of time activity curves (TACs) and thereby tre
corresponding kinetic parameters (KPs), and plays a pivotarole
in diagnosis and prognosis of prostate cancer. In this workwe
endeavor to develop a blind source separation algorithm, maely
convex optimization based KPs estimation (COKE) algorithm
for PK analysis based on compartmental modeling of DCE-MRI
data, for effective prostate tumor detection and its quantiication.
The COKE algorithm first identifies the best three representdive
pixels in the DCE-MRI data, corresponding to the plasma, fas
flow, and slow flow TACs, respectively. The estimation accuy
of the flux rate constants (FRCs) of the fast flow and slow
flow TACs directly affects the estimation accuracy of the KPs
that provide the cancer and normal tissue distribution maps
in the prostate region. The COKE algorithm wisely exploits
the matrix structure (Toeplitz, lower triangular, and exponential
decay) of the original non-convex FRCs estimation problem,
and reformulates it into two convex optimization problems,that
can reliably estimate the FRCs. After estimation of the FRCs
the KPs can be effectively estimated by solving a pixel-wise
constrained curve-fitting (convex) problem. Simulation results
demonstrate the efficacy of the proposed COKE algorithm. The
COKE algorithm is also evaluated with DCE-MRI data of four
different patients with prostate cancer and the obtained rsults
are consistent with clinical observations.

Index Terms— Cancer diagnosis, Compartmental model, Con-
vex Optimization, DCE-MRI, Kinetic parameters, Prostate can-
cer, Pharmacokinetic analysis, Time activity curve, Tumorchar-
acterization
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|I. INTRODUCTION

Prostate cancer is the most common cancer in elderly men
and the number of patients with prostate cancer is conditlera
increasing worldwide, and so is its mortality rate€ [L]-[3].
Early detected prostate cancers can be more easily treated
with standard therapy and the death rate can be significantly
reduced [[4]. Unfortunately, many patients are found to have
tumors that have already spread over other surroundingetiss
by the time of their initial diagnosis of prostate cancer.
Therefore, early detection of prostate tumor plays a alitic
role in the management of prostate cancer therapy.

Digital rectal examination (DRE) is the most common and
conventional method to identify prostate cancer by elalate
prostate-specific antigen (PSA) levels. The major limtati
of DRE is that it is unable to detect non-palpable tumors
or tumors localized in the central and transition zones ef th
prostate gland_|5]/[6]. Magnetic resonance (MR) imaging is
standard technique used for the evaluation of prostateetanc
However, it also suffers from some important limitations,
like, it is very difficult to identify the cancer in central dn
transition zones of the prostate gland, since the tumors are
visualized as weak signals with superimposed intensities o
MR images [[7], [8]. Dynamic contrast enhanced magnetic
resonance imaging (DCE-MRI) provides a noninvasive in vivo
method to evaluate tumor vasculature architectures based o
contrast accumulation and washout [9],][10]. In DCE-MRI,
a bolus of low molecular weight paramagnetic contrast agent
(CA) is used, usually gadolinium (Gd-DTPA) [11]. The CA
is transiently bounded with blood plasma and rapidly dif&is
into extravascular extracellular space (EES) throughlieapi
bed, where the relaxation processes of surrounding protons
are catalyzed, and the relaxation time is shortered [12] -
[15]. By their inherent nature, T1-weighted DCE-MRI data
are favored in the quantification of perfusion as they preduc
the strong signal intensity changes in the abnormal regions
when compared to the T2-weighted DCE-MRI data that have
longer acquisition time. In T1-weighted DCE-MRI, instedd o
acquiring only one contrast enhanced image, a series ofamag
is acquired with regular interval (approximately, every tb5
30 seconds one image will be captured), when the CA flows
in and out the concerned region of interest. Micro-vascular
growth will be high in the cancer region; therefore, in the
cancer region more CA passes between the vascular system

and the EES tissue. Regeated. MRI scans continue until the
s-permissions@ieee.org.



body metabolism filters out most of the CA from the bloogroposed COKE algorithm intends to estimate the parameters
plasma through the kidneys (a time period usually betweassociated with the prostate tumor through PK analysisef th
6-12 minutes), and hence T1-weighted DCE-MRI producesxCE-MRI data of the patient taken over different positions
time series of images of the region of interest (in this workslices), so as to analyze the seriousness level (canag)sta
the prostate region), and is the one considered in this workand distribution of the prostate cancer over the given regio
A signal intensity versus time curve is obtained for eaaobf interest.
pixel vector (pixel, for convenience) in the image cube and i Precisely, the proposed COKE algorithm first identifies the
varies in accordance with the accumulation and metabolismpure pixels (representative pixels) corresponding to théslT
CA, within the corresponding area of the prostate regdion [Skith provable theoretical guarantee. This idea is motiydtg
While DCE-MRI can potentially depict the intra-tumor heter our previous work in hyperspectral image analysis (for spéc
geneity of vascular permeability, the quantitative apgilin  signature identification of disparate minerals in hypetspe
of DCE-MRI has been hindered by its inability to reliablytral images for remote sensing applicatioris)| [23]. Sina& th
dissect vascular compartments with distinct pharmacdkine sum-to-one assumptidin hyperspectral image analysis [23],
For a cancerous region, the pharmacokinetic (PK) analyfsis[@4] is not intrinsically satisfied in DCE-MRI data, we first
the corresponding T1-weighted DCE-MRI data is to estimatermalize the DCE-MRI data and then successively estimate
the tissue specific time activity curves (TACs) correspogdd the pure pixels corresponding to the TACs. Once the pure
the plasma, fast flow (cancer), and slow flow (normal) regiongixels corresponding to the TACs are obtained, the COKE
and the associated kinetic parameter (KP) maps of the fissaégorithm then aims to estimate the flux rate constants (FRCs
(especially for the cancer and normal regions), for efiecti In existing methods, including the state-of-the-art CAMIC
tumor detection. However, the prime difficulty in the an#dys [18] algorithm and the recently proposed TAC estimation by
of the obtained T1-weighted DCE-MRI data arises due to tipeojection (TACE-Pro) algorithni [25], the FRCs are estietat
limited spatial resolution of the imaging modality and théy attempting to solve a non-convex optimization problem,
partial volume effec{PVE) in the observed images [10]. Suchhereby rendering the estimated FRCs not very reliable (due
a problem is formally referred to as the tissue heteroggneib local optimality issue) for KP estimation (cancer andmak
problem, by virtue of which the observed image intensity aissue distributions). Moreover, in existing methods,sbaling
each pixel of DCE-MRI data set, is a weighted compositicembiguities and some of the physical constraints are ighore
of time activities of more than one distinct tissue, irretpe  [18], [25], which may result in unreliable estimation of the
of the spatial resolution of the imaging device. This in@bie FRCs. The idea in COKE algorithm is to exploit the matrix
PVE in DCE-MRI data hinders the quantitative PK analysistructure (Toeplitz, lower triangular, and exponentiatalg of
of the DCE-MRI data. To investigate this issue of PVE, manyie non-convex curve fitting problem, which results in sodyi
model-based approaches and algorithms have been reportedfo convex optimization problems to effectively estiméte t
PK analysis of DCE-MRI data. They include the classical conFFRCs, and thereby the TACs. Finally, the estimation of the
partmental modeling (CM)_[16], cluster component analysiéPs using the obtained TACs can be formulated as a pixel-
(CCA) [17], convex analysis of mixtures with CM (CAM-CM) by-pixel convex constrained least-squares problem. Adl th
[18], iterative maximum likelihood CM (IML-CM)[[19], and convex optimization problems in the COKE algorithm can
the iterative quadratic maximum likelihood (IQML) estinmat  be effectively solved by available convex optimizatiorvens
[20]. In addition, modern methods such as(inl[21],/[22] haveuch asSeDuM [26] and CVX [27], and due to the inherent
also been suitably modified and applied to pharmacokinetiature of convex optimization problems, the obtained respe
analysis. However, their major limitations include the untive solutions are guaranteed to be globally optimal sohsi
realistic assumption on the compartmental model that thée simulation and experimental results are presented to
tissue kinetics are statistically independent] [21], ictahle demonstrate the efficacy of proposed COKE algorithm.
computational complexity, and sensitivity to initializat of The ensuing sections are organized as follows. The tissue
the unknown parameters (local optimality issuées) [22]. compartmental model is first presented in Secfidn 1l. The
The pharmacokinetic analysis problem has a lot in corransformation of the tissue compartmental model into a
mon with blind source separation (BSS), which is a signg@tent variable model, and the associated general and gaysi
processing methodology to extract the true sources (in Ri§sumptions are also presented in this section. The COKE
analysis, they are the TACs and the KP maps) from thggorithm for pharmacokinetic analysis of DCE-MRI data
mixed observations (T1-weighted DCE-MR images), devoid presented in Sectiopn Jll, where the idea of perspective
of (or with very limited) prior knowledge about the sourceprojection and successive estimation of the pure pixelciesli
and how those sources are mixed in the observations. In thig presented in detail, followed by the estimation of tesug
work, for the pharmacokinetic analysis of prostate cane&rgl specific FRCs and the estimation of the associated KPs. In
T1l-weighted DCE-MRI data, we propose an effective BSSection[1V, the proposed COKE algorithm is evaluated with
algorithm, namely convex optimization based KPs estinmatigynthetically generated data, under different noisy stesa
(COKE) algorithm, to estimate the tissues’ TACs and the KPs
associated with each slice of the DCE-MRI data, for cancerThe sum-to-one assumption is a common assumption in sonie &$S

detection. As in [15]__[20] this work is constructed undee t applications, wherein the combining coefficients (alsemefd to as sources)
" o the linear mixing model sum to unity, for all observatio®r instance,

. . . in.
premlsg that the pros'Fate cancer Is conflrmgq to be presen%'ﬁ‘yperspectral image analysis, these coefficients atedcabundances, and
the patient (through biopsy tests or other clinical meafiBg due to their physical constraints, they naturally sum to. one
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N where Cf(t), Cs(t), and C,(t) are respectively the tracer
\ s concentrations at timg in the fast flow pool, slow flow pool,
v v and in arterial (plasma) spac€ms(t) is the total measured
Q) Normal Cells Ry Cancer Cells ) Contrast Agentanizacellar  Extravascular tracer concentration at timeand is given by the T1-weighted

space (EES) DCE-MR image. The unidirectional transfer coefficientafro
plasma to fast and slow flow pools af€f*"™ and K" (in
min—'), respectively. The flux rate constants from fast and
slow flow pools to plasma aréep s and keps (in min~1),
respectively[[9],[[10]. It is straightforward to solve Edioas

and for different stages of cancer (early-stage, modesatet, (I)-(2) for Cy(¢) and Cs(?) [18]. Thus we have,

advanced). The COKE algorithm is then applied to real DCE- C (1) = K (4 ke ot 4
MRI data of four patients, and the results and discussioas ar 1(t) = K{™Cp(t) @ exp(—kepy t), (4)

Fig. 1. Schematic diagram of three-tissue compartmentaleino

presented in Section]V. Finally, Secti@n]VI provides some Cs(t) = K30y (1) @ exp(—keps 1) (5)

conclusions and future directions. For ease of ensuing presentation, let us define the follawing
The following notations are employed in the remainder a(t) 2 Cy(t) (©6)

of the paper.RM and Rf represent the set of real and P PR

non-negative reall/ x 1 vectors, respectivelyl y and Iy af(t) = Cp(t) @ exp(—kepy 1), (7)

represent theV x 1 all-one vector, and théV x N identity as(t) 2 Cyp(t) ® exp(—keps t). (8)

matrix, respectively® represents convolution operation and

|- |, represents the-norm. exp(-) stands for exponential 1"€N [3) becomes

function andn(x) denotes natural _Iogarithm of A;; denotes Clns () = Kpap () + K¥™®5ap(t) + K& %a,(t).  (9)

the (4,7)th element of the matrixA, and ¢;(R) denotes . )

the orthonormal eigenvector associated with itheprincipal L€t the temporal resolution of the T1-weighted DCE-MR
eigenvalue of the positive semidefinite matiix. A7 and images beAt, and the tracer concentration measured at time
aT represent the transpose of a matdx and a vectora, tm = (m — 1)At in the pixeln be Cms(n,tm). Then, by

respectively. P is the projection matrix for the subspacd®). the temporal patterns of a givenTtissuI?{ slice, at pixel
orthogonal to vectob. denoted asCms(1, 1), - . ., Cms(n, tar)]” € RY (wherelM is
the total number of sampling time points), can be expressed

as the following latent variable model [17], 18], I_‘ZQ:

[ Cms(natl)
1. SIGNAL MODEL AND PROBLEM STATEMENT Crns(n,12)
x[n] = : (10)
. . Cms(natM)
In this work, the proposed PK analysis of prostate tumor -
lesions using DCE-MRI time-series images is based on the ap(t1) ag(tr)  as(t1) K, [n]
well-known three-tissue compartmental model [1[7]] [1&R] _ ap(t2)  af(t2)  as(ta) K’t’rans in]
which is a generalization of the two-tissue compartmental B : : : K{”“S[n]
model proposed by Tofts et al., for the analysis of T1- | ap(tar) ap(tar) as(tar) s

weighted DCE-MRI datal [16], [28]. The generalized Toft's
compartmental model basically consists of three tissudspoo
namely fast flow pools (cancerous regions), slow flow pools
(normal tissue regions), and the vascular plasma (bloal), @here x[n] represents the pixel vector (will be sim-
depicted in Figure 1. ply referred to as pixel, for convenience) composed

As mentioned in Figure 1, the important parameters i®f temporal patterns of a given tissue slice, at pixel
volved in the compartmental model includes the unidirettio
f ptran he fl " | 2Note from [11) that unlike the original Toft's modél [16].gR(where both
trans_ er ConStamK 3’ the flux rate constan ép)' plasma e flux rate constants and the kinetic parameters are alldwevary from
fractional volume f{,,), and the extravascular extracellulapixel to pixel, and slice to slice), in the pixel-wise gerlimed model given

space (EES). The dynamic tracer concentrations of the -M_/_CEII), the flux rates are assumed to be constant for eagh&fliDCE-MRI
data, so that the flux rate constants and pixel-wise kinetrarpeters can be

Welghteq DCE'MR. |mage_s are gqvem_ed by. the fOIIC'ngffectively estimated from the associated time series data slice, in the
set of first-order differential equations involving the @&bo presence of measurement noise and other uncertainties.

=[a, a; a; | K[n]eRM vn=1,...L, (11)



n, a; = [a;(t1),...,a;(ta)]" €RY, j € {p, f,s} are the region of interest, it is assumed that in the entire imageethe
TACs for tissue typej € {p, f,s}, the kinetic parameter exists a pure artery pixel, possibly corresponding to one of
vector K[n] = [K[n], K§{**[n], Ktrans[p]]T is the vector the major arteries such as internal pudendal artery oriofer
containing the kinetic parameters in the pixgland L is the vesical artery or middle rectal artery, of the prostate argi
total number of pixels in the region of interest (ROI) of a

given tissue slice. Specificallp, € R} is the arterial input |11, CoNVEX OPTIMIZATION BASED KINETIC PARAMETER
function (AIF) which is the plasma TAC, and; € Rf ESTIMATION (COKE) ALGORITHM

M i
anda, € R are the TACs of fast and slow flow tissues, |, yhis section, we propose a BSS algorithm, namely COKE
respecuvely_. Furth_ermore, by expressing the convolution algorithm for the PK analysis of DCE-MRI data. The COKE
(7 and [8) in matrix formsa; anda, can be expressed as algorithm basically does the following: (i) Identifies tharp
aj = D(kep,j)ap, j € {f s}, (12) Pixels corresponding to the TACs, (i) Estimates the fast/flo
and slow flow FRCs so as to estimate the TACs, and (iii)
where D(z) is an M x M lower triangular matrix whose Estimates the KP maps corresponding to the tissues, which
(m,n)th entry is are presented in the following subsections, respectively.

Atef(mbfn)mAt7 m>n,
Dinn(2) = { 0, m < n. (13) A. Identification of Pure Pixel Indices

As will be seen in the ensuing sections, the judicious exloi  In this subsection, we demonstrate how COKE algorithm
tion of the above matrix structure will be one of the vitalpste can sequentially identify the pure pixel indices corresping

of the COKE algorithm. The COKE algorithm proposed in thi0 the TACs of plasma, fast flow, and slow flow regions,
work for PK analysis of prostate cancer using DCE-MRI datffom the DCE-MRI data. We begin by employing a pixel-wise
aims to estimate the TACs (i.e., AIF, TAC of fast flow, andiormalization, that makes the KPs of the normalized pixels,
TAC of slow flow) and the kinetic parameters vector assodiatéum to one (for all pixels), thereby facilitating the apption
with each pixeln from the observed tracer concentratio®f the ideas developed in_[23]._[30]. [31] to estimate the
vectorsx[1], ...,x[L], so as to generate the kinetic parametdure pixel indices. The pixel vector normalization can be
maps (plasma maj,, fast flow mapK'*"*, and slow flow represented as:

map K'""s), which are defined as

[n] 2 ;‘[”] e RM (16)
K, = [K,[1],..., K,[L]" € RY (14) 1yx[n] )
K;rans _ [K;rans[l]’ o K;rans[L]]T c RL, ] c {f’ S}. = kp[n]ép + kj[n]glf + ks[n]és, n = 1, ceny L, (by aﬂ))
(15) 17)
Some standard (non-statistical) assumptions that have bederea; = aj/(lﬂ_aj) for j € {p, f,s} denote the nor-
conventionally considered by the Toft's compartmental moghalized TACs, andk,[n] = K,[n](1};a,)/(13,x[n]) and
eling are as follows[[17]/125]: kjln] = K}m‘_ls[n](1}\F4aj)/(1}f{x[n]) for j € {f,s} are the
(A1) The components of the kinetic parameters vectors dt@malized kinetic parameters, such that
non-negative i.e K[n] € R3, for all n. Tl — 1 18
(A2) The TACsa,, ar, anda, are linearly independent. ie{pzfs} il ' (18)

(A3) (Physical assumptions): 0 < K,[n] <1, Vn,
kep.f > K;,rans [n] andkep, s > K295[n], Vn. In other words,
(A4) (Pure pixel assumption):

- In the entire image (with the set of indic&3, there
exists a pure artery pixe| indeﬁg7 c 7 such that Whereconv{-} denotes the convex hull of the set of vectors,
K}rans[lp] _ K‘Scrans[lp] =0 and Kp[lp] #0, thereby and with@ = [95, 6‘f, HP]T, it is defined as [32]
leading tox [I,] = K,[l,]a,.

- In the prostate gland, there exists an index s€pnv{as,as ap} = {X = Z 0;a;
{ls,1s} (i.e., “pure pixel” indices) such that[l,;] = i€{s.f.p}
Kjrns[l;]a; for j € {f, s}. The normalization procedure is visually illustrated in g

Assumptions(Al) - (A3) are the standard straightforwardd. It can be seen from Figufé 2 that the observed dadiad
assumptions that hold true in DCE-MRI data analysis [17(tepresented as green dots) are normalized (ukidg (16g8s so
[25]. The pure pixel assumptio(i4) stems from the fact that to satisfy the sum-to-one constraint of the normalized tiine
within the prostate gland the distributions of the fast alotvs parameters. On account of which, the normalized ddtd
flow tissues are not fully overlapped [25]. In other wordgrth (represented as red dots) are now confined to lie within the
exists at least a pixel location in the prostate gland sueh tleonv{a,,ar,a,} (blue triangle and its interior) with the three
it is purely a normal (slow flow) region (or purely a cancerousxtreme points (pure pixels) beirzg,as, anda,.

(fast flow) region). This is a practical assumption becatise i So far, the signal model considered [n](11) (and therefore
fails only when the entire prostate is normal or it is entirelalso in [1¥)) does not account for the noise, which is in&kta
affected by cancer. Since a major artery may not lie in the reality. Assuming an additive white Gaussian noise (Whic

X[n] € conv{a,,as,a,},

0cR} 116 = 1}.



sequentially obtained as:

~ ~

9 € arg Irlnn LwT[n]aE[ s (21)

o~

-~

l3 € arg Irlnn LwT [n]d*, (22)

whered* = Pi-[ly], in which

Pi =TI, — b(b’b)"'b?, (23)
and b = a’c[lAp] — :E[ZAQ]. The above procedure has been
theoretically proved to perfectly identify the pure pixetlices

[23], [25]. L o

From the estimated pure pixel indicfls, I3} = {lr,1s}, the
characteristics of the TACs of fast flow and slow flow pools
can be used to |dent|fg/f andl,. It is well known that the
TAC for fast flow has a sharp peak and then a sudden decay,
whereas the TAC of the slow flow has a gradual but steady
increase in activity levelT18][129]. Let; of x[I,],j € {2, 3}
be defined as

x|
Fig. 2. lllustration of the pixel-wise normalization pratee. The pixel- L H [‘7]H2 » {2 3} (24)
wise normalization projects the original datén] (shown as green dots) on Pi = ~ »J ’
theconv{as,ay,ap}. The projected pixels[n] are represented as red dots. X[ J']

Then based on the argumentslin [34]pjf> 03, thenlf =1
is the most commonly used noise distribution in PK analysiand s = Is, elsel; = I3 andi, = I,. Thus the pure pixel
[18]), a dimension-reduction procedure can be employed iftflices corresponding to the AIF, fast flow TAC, and slow
mitigate the noise effect and speed up the ensuing analy§igw TAC have been identified ds, Iy, andl;, respectively.
In this work, we employ the affine set fitting procedure
[33], by which the dimension-reduced normalized obseoveti g Estimation Offiep ; and kips

Vn are given b ~ ~
2[n], vn g y Given the pure pixel |nd|ce$lp, lr,l5} estimated above, by

z[n] = CT(xX[n] — d) € R, (19) (@), (12), andA4), we have
where C = [¢;(UU7), ¢.(UUT)], andd = L 2% x[n], a, = X[ly] , (25)
in which U = [ %[1] — d,....%[L] —d ] € RMXL_ With Kplly]
the dimension-reduced normalized data (given[by (19))eund x[ff] = tfans[lf] a; = K}Tans[ff] D(kepf) ap, (26)
(A1), (A2), and(A4), it has been theoretically proven in [23] ~ i

x[l.] = K"™9l,]a, = K'™9,] D(keps) 8p.  (27)
Substituting [(2b) into[(26) and (R7) yields

that the first pure pixel indek can be identified by

1, € arg max ||[n]||2, (20
nel R Ktransﬁ;_] R
1o _ ;
where 7 is the set of pixel indices over the entire image. x[l;] = K] D(kepj)x[lp], J€{f.s}, (28)

However, following the findings in[34] (where it has been T N
shown that the AIF has the maximum purity among all theherex|[l,], x[/;], andx[l,] are known. Let us emphasize that
time series pixels in a given DCE-MRI image), it can b@8) holds true only whew[l,], x[I;], andx[l,] are noise-free
concluded that the so identified pure pixel correspondséo ttheasurements and the observations follow the underlyipg si
normalized AlF i.e. lp = 1,. Having identified a pure pixel nal model in [(II). In practice, the unknown kinetic paramete
index corresponding to the AIF from the entire image, wean be estimated by solving the following least-squardaditt
now proceed to identify the pure pixel indices correspogdirproblem:
to the fast flow {¢) and slow flow {;) TACs from the prostate

region of interest. Following the footsteps of the proc@ur . ~ K}rans[lj] D(k P
in [23], [25] the pure pixel indicegly, ls} = {I;,1,} can be Krf[l;?] Z x[l;] = K0 (Kep.j )x[1p]
Ky, koogg, S o ’
3In this work, the reliable (with theoretical guarantee farfpct identi- kep,ts kep.s
fiability), reproducible (insensitive to initializatiopssimplex estimation by (29)

projection (SIMPLE-Pro) algorithm introduced in [23] isagsto identify the . ~
pure pixel indices. Other effective algorithms for pure gbixdentification subject to (s.t.) 0 < Kp[lp] <1,

include p-norm based pure pixel identification algorithm (TRI-P)J[2[85], trans’7 o

and volume maximization algorithms_[30]. 0< Kj s[l ] <k epjs J € {f’ S}'



However, the above problem is a non-convex curve Then, from [I1), [(IR), an@A4), the AIF and other TACs
fitting problem due to the fact that the unknownsre estimated as

{Kp[l;],K}Ta”S[ZAf],K;’H”S[ZAS],kepyf,k:ep_,s} are non-linearly S~ e

combined in the objective function. Existing algorithms fo a, Kply] = ’i[l?] ~ A, (35)
kinetic parameters estimation such as CAM-CM][18].][29] a; =D’ a,, je{f s} (36)
and TACE-Pro [[25], attempt to solvé (29) using availab

I . :
sequential quadratic programming (SQP) solvers and heﬁ e that the above estimated AIF (i.e., the plasma TAC)

suffer from local optimality issues in the estimation of FSRCSJ[I has a scaling ambiguity, a1, is still unknown. This

and the ensuing KP maps. Moreover, it is also true th%?_a“ng ambiguity also propagates & and a,. However,

the methods such as CAM-CM [18].[29], simply ignoreI is issue of scaling ambiguity will be appropriately hagdl

the constantk. [lA] in solving [29), which may result in while estimating the KP maps, which is discussed in the next
pL'p '

i At subsection.

inaccurate estimation of FRCs and KP maps (caused due Hg ;

scaling ambiguities). ince from [(IB)In Dy, ; = In At — kep j(m — 1)At, m =
Next, we will present a convex optimization based framd- M, 7 € {f,s}, from the estimatedD’, the flux rate

work to estimate the FRCs and KP maps. Basically, we wiPnstantske, r andk,, ;) can ‘be optalned by using available

exploit the structure oD (k.. ;) in the following. LetD/ £ convex optimization solvers [26], [27], to solve the foliog

¢jD(kep,j), j € {f. s}, wherec; = K¥[;]/K,[l,]. Since CONVEX problem:

D/ is a lower-triangle Toeplitz matrix, it has the following M . 2
structure: i I}llIkl Z Z Hln D}, —InAt 4 kep j(m — 1)AtH2
~ ep,J €p,s m=1 je{f,S}
o0 0 o )
dy dy 0 0 .
_ 1 9 oy st. 0<kepi, J€{f, s}
i— | db d) d? 0 MxM P 1515
D’ = . 2 ! .0 <R ' kep,s S kep,f-
0
& & @ 7] Once, the AIF estimateaf,), TAC estimatesd, anda,), and
M-1 M—2 M—-3 0 -~

(30) FRC estimates?k(ep_,f and k., ) are estimated, the KP maps
can be estimated as discussed next.
D’ can be expressed as if {31) (shown at the top of
next page), and based dn(30), the element®ofhave the ¢. Estimation of KP Maps

following relationship: . L . o .
g P Finally, the estimation of tissue distribution maps (ilég-,

DI = EjnH_nH netic parameter maps), based lon (11) boils down to the fellow
’ ' ~ ing convex least-squares fitting problem, foe=1,2,..., L:
N {dﬁ, 0<r=m-n<M-1, )
0, otherwise Kln] = arg pin||x[o] ~ afa,.ap.a K[| (38)
n 2

Then, the pharmacokinetic model fitting problem [inl(29) can

be rewritten as the following least-squares problem, widgch L,

st 0< K,[n]
>

<
convex inD/: K"n] >0, K{*n] >0,
~ ~ . o~ 2 Jtran < Ea . ran < Ea .
) min > xE - B @2 0] < kep.sy K] < kep. g
e JEsh 70, ML ey 2 The scaling parameter in (38) is used to alleviate the
st. dl=0, je{f s} Vr<o0 scaling ambiguity caused due to the unknolp(l,]. Setting

P G a suitable scaling factar (say a = 100), (38) can be solved
0<dj, diy <dj, je{f s} by using available convex optimization solvers ligeDuM
r=0,...,M—1 [26] and CVX [27]. If this scaling is not appropriately taken
into account, the KP maps estimated ky1(38) will be an

! © SUIV overestimation of the true KP maps, as the estimated KP vec-
available convex optimization solvers such $sDuM [26] 45 may reach their respective upper bounds (i.e., saarat

or CVX [27]. Let the optimal solution of(32) tl?:* Furtbse*r, levels) owing to the constraints of {38), thus violating the
to estimatek., ; and k., s from the obtainedD’* and D relationship amongy, [n], K*"n], and K"*]. It should

Problem [32) can be solved fdb?, j € {f,s} by using

respectively, we perform t_he following: be noted that the,[n], K}ranS{n], and K], estimated
Step 1: Obtain the scaling factor: are relative values of their respective true values, howeve
cj =dy" /At je{f s} (33) their relationships are maintained, by preventing thenmfro

reaching the saturation level. The only condition on chogsi
Step 2: Obtain the estimate ®@(k., ;) by removing the the value ofa is that it should be larger than the inverse of
scaling factorc;: K,[lp]. More importantly, such a value af will not affect
A ~ the distribution of the estimated KP maps, as will also be
D7 = (1/¢)D", j € {f, s} (34)  addressed in SectiodsJIV afd V, below. Also, it is worth



At 0 0 0
Ate=Feri At At 0 0
DI =, | Ate P28t AteFeri Bt At 0 31)
: : : . 0
Ate_kepvf(M_l)At Ate_kep’j(M_Q)At Ate_kepvf(M_?’)At .. At
D(kep, ;) defined by [(IB)
- Lo N tran TABLE |
mentioning that unlike in[[18], the estimation dt{*"n] PSEUDOCODE FORCOKE ALGORITHM.

and K}Tans[n] are respectively upper bounded Iy, , and

kep,r, thereby avoiding the possible over estimation of the Given  Observed DCE-MRI datx[n] € RM, n = 1..., L, the
transfer constants (and thereby the KP maps). Thus, all the temporal resolution of the T1-weighted DCE-MR images
kinetic parameters are estimated with low sensitivity te th At, and a scaling facto: (say a = 100).

. . _ . Step 1. Compute the normalized dat&[n| for eachn =1...,L
over estimation (saturation) issue. It should be noted that by using [16).
the optimization problemd (82)[(B7), and38) involved in Step 2. Obtain the dimension-reduced datén] from the normal-

estimating the kinetic parameters are all convex optirforat ized datax[n] by using

problems for which the solutions are guaranteed to be global #[n] = CT(x[n] — d) € R?,
pptlmal _34!]. The pseudo-code for the entire COKE algorithm where C andd are defined along Wit 719).
IS given In Tabldll. Step 3. Identify the pure pixel index corresponding to the normal-
ized AIF by
IV. SIMULATIONS Ip € arg max [Z[n]]2,
In this section, we study the performance of the proposed whereZ is the set of pixel indices over the entire image.

COKE algorithm on synthetically generated DCE-MRI data. Step 4. Identify the pure pixel indice$; andiz by
This way of performance evaluation on synthetic data is very

important to study the validity of the estimates obtainedahy L...L

algorithm under test, as it may be the only means to verify Is € argn:r{l’i_{l_’L@T[n}d*,

the effectiveness of an PK analysis algorithm, since exact R

ground truths are not available for real DCE-MRI data. It whered* = Py, 2[l2], in which Py, is given by [28).

has been recently shown that the CAM-CM algorithm] [18] SteP 5- Computeps and ps given by [23). Assigny = l» and

L. ls =13, if po > p3; else,l; =13 andls = la.
has better performance when compared to several eX|st|ngStep 6. DSefine thelatent matrix ﬁjf € RMx Msby specifying its

PK analysis algorithms. Moreover, unlike COKE and CAM- elements as following, for eache {f, s}:
CM, other algorithms such as IML-CM [19], and IQML [20],

. . . . . . 5‘7 = 5‘]
assume tissue homogeneity which is seldom true in reality. mn

m+1,n+1

Hence in this section, the performance of the proposed COKE 27 {d”m 0<r=m-n<M-1,
algorithm will be solitarily compared with the performance " 0, otherwise

of CAM-CM algorithm. The two algorithms are evaluated for Then solve the convex problem given §y](32) and obtain
their accuracies in estimating the flux rate constants the Optimalﬁfi and D**. Computec; = dj*/At and
and keps). The mearstandard deviation of the flux rate D7 = (1/¢;) - DI, for eachj € {f, s}.

constants estimated by the algorithms under test, over 505%P 7 ;.:Zm{‘}“t:’}the TACsa, ~ x(lp) anda; = D’a,, for each

independent runs, for each of the different scenarios id Bse  step 8. Solve the convex problem ifi{87) and obtain the flux rate
the performance measure for the estimated flux rate cosstant constants{kep,s, kep, 1 }-

The simulation settings for generating the synthetic dega a Step . Ort(’)tk‘;"lié‘nlf[?}eg%nsﬁé‘g?gf;?eeiia%s?“a'eLS (convex) fitting
as follows: The AlFa,, is generated based on the population g ?he TACS (given byStep 7, the FRCs (given bystep 8,
average mod@![36], with a temporal resolutiom\t = 4 and the KP mapsK‘ans, Kirans, K,) (defined by [(TH)
seconds fof7-min period (M = 105). Since the fast flow and and [I5), and given bgtep 9.
the slow flow TACs (given by[(12)) are characterizedHy
andkep s, respectively, they are generated based on the values
of keps and keps in each scenario. In this section, for the
sake of simulating different stages of prostate cancerethge chosen such that the assumpti¢Ad) and(A3) hold true for
three scenarios under consideration. Note that in theviligp the generated data set. The three scenarios under cotisidera
scenarios, the range for generating the kinetic paramaters are:

Scenario 1 : Early-stage tumor with parameterg,; =

4The 'population average quel isa weII-know_n model u;ed rhiﬁcﬂglly 1.625, and {thans[n] 1LL:1 randomly generated
generating the AlF. It is primarily used to synthesize th& flsing candidate followi ]{ distributi he i |
TACs in two reference tissues) for PK analysis, in cases evtiex AIF cannot ollowing a uniform distribution over the interva
be directly obtained from the DCE-MR images. [0.4,0.6].




The SNR levels considered are 20 dB, 25 dB, 30 dB, 35 dB,
40 dB, and~ (noise-free case).

The meag:standard deviation of the estimated FR@‘;@),(f
and@ew) obtained by the algorithms under test are tabulated

PlasmaRegion  Fast Flow Region ~ Slow Flow Region  Tumor ROI in Table[l. It can be seen from Tablel Il that in all the 3
scenarios, especially for lower SNR cases (high noise fpases

Fig. 3. The fast flow, slow flow, plasma, and the tumor ROI (casipg the COKE algorithm outperforms the state-of-the-art CAM-
fast flow, slow flow, and plasma) regions, used in the simuteti[18]. CM algorithm (employed with the best possible parameter
set). Also, as the SNR increases, the mean values of the
estimates (obtained by COKE and CAM-CM) get closer to
the true values of the respective flux rate constants, and the
standard deviation approaches to zero. However, the CAM-
CM algorithm fails under the noise-free scenario, as the
algorithm is built under the premise of noise presence in
the observed DCE-MRI data. Thus, Table Il demonstrates the
validity and superior efficacy of the proposed COKE alganith
over the benchmark and state-of-the-art CAM-CM algorithm.
The performance of the proposed COKE algorithm using real
data will be demonstrated in the ensuing section.
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V. EXPERIMENTAL RESULTS

0.01 I [lg-

Having demonstrated the efficacy of the COKE algorithm
‘ using synthetic data sets, in this section, we apply the COKE
0 ! 2 e s 6 7 algorithm to four real DCE-MRI data obtained from four
different patients suffering from prostate cancer. The BCE
! . . MRI data sets were provided by Mackay Memorial Hospital,
ka'f\’A', ‘;'nd B’;S";?;T(Qﬁ:)clurves for fast flow (for differertep 7 values), slow Taipei, Taiwan and were acquired by usiRfilips Achieva
with a 3-Tesla magnetic field strength. The acquired three-
dimensional data set withmm slice thickness).45 mm pixel
Scenario 2 : Moderate-stage tumor with parametéts ; = spacing,10° field of view, and in-plane matrix siz256 x 256,
3.25, and {K{*™{n]};_, randomly generated was taken everB0 seconds for a total of0 minutes after
following a umform distribution over the interval the injection of Gadolinium DTPA, for each patient. The four
[0.8,1.2]. male patients referenced as Patients A, B, C, and D are aged
Scenario 3 : Advanced-stage tumor with parametéeg r = 72, 75, 68, and 87, respectively. For all the four data sets,
6.5, and{ K{*"n]}:_; randomly generated fol- the suspected abnormal areas were marked in a corresponding
lowing a uniform distribution over the interval T2-weighted image, by a radiologist, and those correspandi
[1.7,2.3]. areas in the T1-weighted DCE-MR images are considered for
In all the scenariogep s = 0.33, is set to be a constant. Themarking the ROI for the real data experiments. It should be
fast flow, slow flow, and the plasma regions are chosen amntioned that except for the AIF selection procedure (as
in [18] and are shown in Figurel 3. The tissue regions f@xplained in Section V.A below), the application of COKE
fast flow, slow flow, and plasma are not fully overlapped analgorithm is confined to this marked ROI in each slice of a
hence meet the pure pixel assumptigat). The parameters patient, and so are the ensuing results and discussions. The
{K"n|}L_, and{K,[n]}L_, are uniformly generated overbiopsy tests have been conducted for all the four patients
the mtervaI[O 08,0.12] and[0.04,0.06], respectively. Finally, and the test results for all the patients in the three regions
the synthetic data set[n|, for all n = 1,..., L, is obtained (anterior, middle, and posterior) of the prostate cances, a
following the linear mixing model in[(11). For each data seshown in TabldTll. The values indicated in Taklg Ill are the
generated using the regions used in [18], the number of pixglercentage of cancerous tissues in the biopsy samples aaken
within the ROI is around000, i.e., L ~ 5000. The typical the respective locations. Specifically, the biopsy exationa
TAC curves are shown in Figuteé 4 for reference, and will beas been conducted in 12 locations, for each patient; six
handy in comparing the results of real data experiments thatations in the peripheral prostate region and six looatio
will be presented in Sectidn]V. in the central prostate regions. The biopsy observatiors ar
Then, the synthetically generated pixel vectors:)| are made through the anus, and in the following discussions,
added with Gaussian white noise with zero mean and covafie anterior and posterior regions correspond to smalldr an
ance matrix*I), based on a given signal-to-noise ratio (SNRhrger slice numbers, respectively. It should be noted tit
which is defined as biopsy results are based on samples obtained in some specific
locations (as it is not possible to extract biopsy sampleslin
the different slices with the slice thickness setttmm, which

kepy=1625

SNRA Zn ;]U;(é ]”2 (39)



TABLE Il P
MEAN+STANDARD DEVIATION OF THE ESTIMATED FLUX RATE CONSTANTS(kep, 7, kep,s) OBTAINED BY COKE AND CAM-CM OVER
50 INDEPENDENT RUNS FOR DIFFERENT RANDOM TISSUE MAPS AND DIFFERENBNRS. kep,s = 0.33 IN ALL CASES (NA STANDS FOR
“NOT APPLICABLE").

7 Early-stage tumor Moderate tumor Advanced tumor
SNR ep kop,f = 1.625 kop,f = 3.25 kop,f = 6.5
(dB) COKE CAM-CM COKE CAM-CM COKE CAM-CM
20 kep,f | 1.83£0.17 | 2.10+£0.05 | 3.45£0.31 | 4.14+0.08 | 6.33£1.03 | 8.50+0.66
kep,s | 0.39+0.02 | 0.45+0.01 | 0.40+0.02 | 0.45+0.00 | 0.41+0.02 | 0.47+0.01
o5 kep,s | 1.77£0.13 | 1.9140.03 | 3.47£0.18 | 3.79£0.06 | 6.84£0.71 | 7.57£0.13
kep,s | 0.36£0.01 | 0.40+0.00 | 0.36+0.01 | 0.40+0.00 | 0.37+0.01 | 0.414-0.00
30 kep,s | 1.74£0.08 | 1.79+0.01 | 3.48+0.17 | 3.570.03 | 6.78£0.45 | 7.13+£0.07
kep,s | 0.35£0.01 | 0.37+0.00 | 0.35+0.01 | 0.37+0.00 | 0.35+0.01 | 0.38+0.00
35 kep,s | 1.69£0.06 | 1.72£0.00 | 3.40£0.14 | 3.44£0.00 | 6.71£0.28 | 6.87+£0.00
kep,s | 0.34+0.00 | 0.35+0.00 | 0.34+0.00 | 0.35+0.00 | 0.34+0.00 | 0.36+0.00
40 kep,r | 1.68£0.05 | 1.69+-0.00 | 3.3%+0.11 | 3.36+0.00 | 6.77£0.25 | 6.71£0.00
kep,s | 0.34+0.00 | 0.34+0.00 | 0.34+0.00 | 0.34+0.00 | 0.34+0.00 | 0.35+0.00
o kep,s | 1.63£0.00 NA 3.25+0.00 NA 6.50+0.00 NA
kep,s | 0.33+0.00 NA 0.33£0.00 NA 0.33£0.00 NA

Patient A Patient B Patient C Patient D

is both painful and tedious), and hence could only serve as =~ ...
partial referencefor comparison with the respective KP map::- |\
obtained for the different patients. Tahlel Ill will be handy:: |.
in comparison and validation of the estimated KP maps

Section V-C.

A. Estimation of Time Activity Curves

The proposed COKE algorithm, summarized in Tdble I, i
used to estimate the TACs (AlF, fast flow TAC, and slow flov.
TAC), FRCs, and the KP maps (with= 100), of interedd. As
discussed in Sectidnl Il, here, the “purest pixel” corresjog
to the AIF is chosen from the entire scanned region (not ju
confined to the ROI), for each tissue slice of a patient, based
(20). Furthermore, among the AlFs (purest pixels) chosen fo
the different tissue slices of a patient, the purest pixat ttas
the best visual match with the standard AIF (shown in Fig. < |
is used universally for the estimation of fast flow and slowvflo |- £
TACs, of each tissue slice of that particular patient. Tresos
behind choosing the AIF globally for all slices of a patiesit i
due to the practical fact that the AIF may not be explicitljg,/

Time n .

Tena s
Slice 21 Slice 19

e
Slice 20

available / captured in each of the DCE-MRI slices of a patier ;| 4/\_~:
For ease of visualization, for each Patient, the TACs estitha |/ /1 P
by COKE algorithm for 5 affected tissue slices are shown | s < :/“A e -
Fig. 5[, where the slice number represents the position of :

the MRI scanner that scans the prostate region from bOttqir'E' 5. The fast flow TAC (green solid line) and the slow flow TA@d

to top. A!SO fo_r the purpose of comparison and validatiqa, thyolid line) estimated by COKE algorithm, for different tigsslices of each
purest pixels in the data i.ex[l;] andx][l,], corresponding Patient. The associated fast flow pure pixéi;] (green dotted line) and the

to fast flow TAC and slow flow TAC, respectively are ShOWﬁIOW flow pure pixelx[ls] (red dotted line) in the data, are also shown.
(dotted lines) along with the estimated TACs (solid linew) f

various slices. It can be readily observed from F.ig..5 that f%i .[4), those deformations in TACs obtained for Patients C
most cases, the estimated TACs have shapes similar to th D could be attributed to the inevitable noise present in

of the respective purest pixels in the data. Moreover, whi oo ;

! . e data, or due to the unavailability of a perfect pure pixel
the patterns of the TACs obtalne_d by COKE for Patients corresponding to the AIF, fast flow TAC, slow flow TAC, or
and B are close to those of the ideal TAC curves (shown I the above

‘‘‘‘‘‘‘‘‘‘

5For other values ofv = 500, 1000, the KP maps remain the same and
only the values in the color bars are different. B. Estimation of Flux Rate Constants
SHigh-resolution images of Figures 5 to 9, and additional wim -~ -~ . .
tions using real AIFs estimated from the patients, are abfl at Thekep, s and_kcxm_ values _Obtamed by the COK_E algorithm
http://www.ee.nthu.edu.tw/cychi/publications-e.html for the respective tissue slices for the four patients ase al
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TABLE Il
THE BIOPSY RESULTYINFERRED PERCENTAGE OF TUMOR DISTRIBUTIONFOR PATIENTS A, B, C, AND D FOR DIFFERENT POSITIONS
IN THIS TABLE, PERIPHERY AND CENTER LOCATIONS CORRESPOND TO THE PERIPHERAND CENTRAL PROSTATE REGIONS
RESPECTIVELY

Patients | Locations | Anterior-Left | Anterior-Right | Middle-Left | Middle-Right | Posterior-Left | Posterior-Right
Patient A Periphery 80% 95% 90% 90% 90% 90%
Center 90% 50% 45% 95% 85% 95%

) Periphery 0% 10% 0% 5% 0% 0%
Patient B —enter 0% 0% 0% 0% 0% 0%
Patient C Periphery 0% 35% 0% 40% 0% 20%

Center 0% 30% 0% 30% 0% 65%
Patient D Periphery 0% 95% 0% 95% 0% 95%
Center 0% 95% 0% 95% 0% 95%

tabulated in Tabl€IV. Specifically, it can be observed from The obtained KP maps are also consistent with the biopsy
Tables[1V that the dynamic range of the FRCs estimated bgsults shown in Table_lll. For instance, for Patient A the
COKE is regulated betwedhand?2. It should be emphasizedbiopsy results suggest that the tumor is present almost in al
that the estimated FRC values are dependent upon the imagiags of the prostate, which is consistent with the obtaked
device and the preset imaging intensity. Neverthelessethenaps for Patient A (shown in Fig. 6). More importantly, the
kep,s and k., s values serve as a measure to identify thebtained KP maps could yield more information (which is the
intensity of cancer versus normal tissirefact, the larger the prime purpose for PK analysis) than the ones available only
difference between these two values, the severer is theecartased on the biopsy results. To see this, let us first consider
intensity, and vice versas per this fact, for instance, basedPatient B (Fig. 7). Slice 14 (anterior portion) reveals tifi&re
on kep, r andkep, s €stimated by COKE algorithm (from Tableis cancer on the left side of the slice, which coincides with
[[V), it can be concluded that slices 17 and 21 of Patient Aable[Il. The biopsy results in Tablellll claim that theresar
slices 18 and 22 of Patient B, slices 23 and 27 of Patient C, amal cancers in other regions. However the other slices in Fig.
slices 17 and 19 of Patient D, reveal advanced stage canc@&rslo indicate the irregular spread of the cancer to the other
This inference is also consistent with tdeason scord37] regions of the prostate, which is also clinically verified by
(that ranges from 2 to 10) of the patients, which are 7, 6, 8y doctors team. Similar inference can be made for Patient
and 8, for Patients A, B, C, and D, respectively, as a high€r (Fig. 8) and Patient D (Fig. 9). It is worth reiterating the
Gleason score indicates advanced cancers [37]. fact that the biopsy examination results can only serve as a
reference and more information regarding the actual spread
and distribution of the tumor can be obtained only through
C. Estimation of Kinetic Parameter Maps PK analysis of the data. Also, one can observe from Figs. 6
: i rans to 9 that the fast flow KP maps associated with those slices
Therbtamed KP maps (fastArow mdﬁtf , Slow flow mentioned in Section VIB above (slices 17 and 21 of Patient
map K™, and plasma magk,), within the manually A gjices 18 and 22 of Patient B, slices 23 and 27 of Patient C,

selected respective ROI, for different slices, are shown ipq gjices 17 and 19 of Patient D) indeed reveal the presence
Figs. 6 to 9, for the four patients (Patient A to Patient D¢ cancer tissues in the ROI.

respectively. In Figs. 6 to 9, the ROIs in the prostate region
of a slice are shown along with the entire obtained DCE-MR . . .
image in that slice position, to show the relative variaﬂ;iorP' Additional Discussions
of the ROI with respect to different slices, as the ROIls are The CAM-CM algorithm [18] has been designed for PK
manually marked for each slice of a patient. The color bars @nalysis based on compartmental modeling (irrespectivieef
Figs. 6 to 9, that are shown adjacent to the kinetic parametgpe of cancers). However, the results (TACs, FRCs, and KP
maps indicate the level of activeness of the particulauéiss maps) yielded by applying CAM-CM to real prostate data
More specifically, if the colors in the map of slow flow tissu@re uninterpretablB. The reasons for the inapplicability of
are close to the maximum value (dark red) of its color bar, ®AM-CM for prostate tumor detection could be attributed to
indicates that the tissue is quite normal. On the other harile following: (i) The AIF estimation procedure for COKE
if the colors in the map of fast flow tissue are close to thé more practical and realistic (cf. Section _V-A), than the
maximum value (dark red) of its color bar, then it indicatedlF estimation procedure in CAM-CM. (ii) The ignorance
dominant detected cancer tissues. However, the sericaisriéfsthe scaling constant and the local optimality effects due
level of the detected cancer tissues can be decided only ba§enon-convexity of the problems involved in CAM-CM may
on the estimated FRC values (cf. SecfionV-B). As expectedhiave significant impact on the results of real data experigaen
can be observed that the slow flow and fast flow maps basicdfi§) In addition, there are also quite some tuning parameete
complement each other in all the results shown in Figs. 6 if/olved in CAM-CM. The default tuning parameters are
9. It can also be observed that for each patient, the deteck&ged on the simulated data (where the true informationtabou
tumor regions (fast flow maps) in each slice varies; indiati _ _

. . . For reference, the PK analysis results using CAM-CM, for
the.”regmar spread of tumor tissues in and over the PSt% four patients and the respective slices are available at
region. http://www.ee.nthu.edu.tw/cychi/publications-e.html
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TABLE IV
THE FRCs (Eep,f,Ecp,s) ESTIMATED BY COKE FORPATIENT A, B, C, AND D FOR DIFFERENT SLICES
FRCs | Slice 17 | Slice 19| Slice 21| Slice 23 | Slice 25
Patient A | kep ¢ 0.6495 0.5693 0.5779 0.3711 0.4802
kep,s 0.1451 0.3012 0.1274 | 0.2262 0.1693
FRCs | Slice 14 | Slice 16 | Slice 18 | Slice 20 | Slice 22
Patient B | kep_ ¢ 0.3289 0.3535 0.2986 0.2648 0.2834
kep,s 0.2547 0.2067 0.0786 0.1435 0.0749
FRCs | Slice 19 | Slice 21 | Slice 23 | Slice 25| Slice 27
Patient C | kep ¢ 0.5437 1.1541 0.4831 0.3886 1.2377
kep,s 0.4163 0.3154 0.0383 0.2512 0.1089
FRCs | Slice 17 | Slice 19| Slice 21 | Slice 23 | Slice 25
Patient D | kep_ ¢ 0.6049 0.6485 0.5470 | 0.4220 0.4363
kep,s 0.1401 0.2730 0.2946 0.3896 0.3414
f{t rans f(r/mh f(tmm

Slice 17

0.0301
0.0226
Slice 19 | 0.0151

0.0075
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0.0244
00163
0.0081
0

00353
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0.0088
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00171
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Fig. 6. The KP Maps Estimated by COKE algorithm for PatienhAlifferent
slices.

Fig. 7. The KP Maps Estimated by COKE algorithm for PatienhBlifferent
slices.

VI. CONCLUSION

the TACs and FRCs is available), and hence for the simulatedye have presented an effective, convex optimization based
data CAM-CM exhibited performance comparable to that @SS algorithm, namely COKE algorithm for PK analysis of
COKE (cf. Tablél). However, for the real data experiments oprostate cancer using T1 weighted DCE-MRI data. We have
prostate cancer, the optimal tuning parameters for CAM-Chtst transformed the three-tissue compartmental pharkiaco
are unknown and difficult to find, and this is out of the scopgetic model to a latent variable model so that the PK analysis
of this paper. Furthermore, as reported [in][18], the CAMean be reformulated into a BSS problem. Under the assump-
CM algorithm has been validated for the breast cancer daian that the tumor is present in the prostate region, the EOK
which are less prone tmotion effectsas the DCE-MR image algorithm, first applies normalization to the observed data
sequences were externally fixed. Whereas, the prostatercargccessively identifies the pure pixel indices correspundi
data suffers from motion effects jointly due to the motiofo the TACs of the fast flow, slow flow, and plasma. The
caused through breathing and bowel movement. In additieRCs, which are the most important parameters that determin
to the above mentioned algorithmic issues, such inevitahle accuracy of the estimated KP maps, are then effectively
motion effects and noise artifacts could also have resufted(without local optimality issue and with due considerasiéor
poor performance of the CAM-CM algorithm when applied téhe scaling ambiguities) estimated by solving the origirai-

the prostate cancer data. convex FRCs estimation problem, by optimally solving the
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corresponding convex optimization problenis](32) and (37).
Finally, the KP maps are obtained by solving a pixel-wise
constrained least-squares optimization (also convexjlpno
(38), subject to all the possible physical constraints. \&feeh
evaluated the efficacy of the COKE algorithm with the syn-
thetic DCE-MRI data and real DCE-MRI data of four patients
with prostate cancer. Simulation results have shown that th
proposed COKE algorithm performs well for all the scenarios
(early-stage, moderate, and advanced tumor). For real data
experiments, we have detected the tumor regions togetltier wi
the estimated TACs and FRCs, which are consistent with the
Mackay Memorial Hospital experts team’s observations.

Like any other PK analysis algorithm, there is also scope
of extension for the proposed COKE algorithm. The proposed
COKE algorithm is based on the generalized compartmen-
tal model for slice-by-slice PK analysis of DCE-MRI data,
thus allowing the inter-slice heterogeneity (i.e., moagli
the flux rate constants such that they are allowed to vary
between slices, while remaining same within a slice). The
most challenging future extension of this work shall be the
joint modeling and consideration of both inter-slice antlan
slice tumor heterogeneity (wherein the flux rate constaatg v
within each slice and across slices). The automatic selecti
of ROI, other modeling based or in situ based measurements
for AIF estimation, the reconstruction of 3-D cancer tissue
patterns over all the slices based on the observed fast flow KP
maps of multiple slices, and pharmacokinetic analysisgisin
the recently developed Magnetic Resonance Fingerprinting
(MRF) [38], are also some of the potential future research
directions. Finally, formulating and designing an aldgumit
exclusively for detecting the presence or absence of cancer
and the quantification of the tumor lesions (if identified as
cancer) will be of high practical interest.
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