
1

Identi�ability of the Simplex Volume Minimization
Criterion for Blind Hyperspectral Unmixing: The

No Pure-Pixel Case
Chia-Hsiang Liny, Wing-Kin Maz, Wei-Chiang Li�, Chong-Yung Chix, and ArulMurugan Ambikapathi}

Abstract� In blind hyperspectral unmixing (HU), the
pure-pixel assumption is well-known to be powerful in enabling
simple and effective blind HU solutions. However, the pure-
pixel assumption is not always satis�ed in an exact sense,
especially for scenarios where pixels are heavily mixed. In the
no pure-pixel case, a good blind HU approach to consider is
the minimum volume enclosing simplex (MVES). Empirical
experience has suggested that MVES algorithms can perform
well without pure pixels, although it was not totally clear why
this is true from a theoretical viewpoint. This paper aims to
address the latter issue. We develop an analysis framework
wherein the perfect endmember identi�ability of MVES is
studied under the noiseless case. We prove that MVES is indeed
robust against lack of pure pixels, as long as the pixels do
not get too heavily mixed and too asymmetrically spread. The
theoretical results are supported by numerical simulation results.

Index Terms� Hyperspectral unmixing, minimum volume
enclosing simplex, identi�ability, convex geometry, pixe l purity
measure

I. INTRODUCTION

Signal, image and data processing for hyperspectral imaging
has recently received enormous attention in remote sensing [1],
[2], having numerous applications such as environmental mon-
itoring, land mapping and classi�cation, and object detec-
tion. Such developments are made possible by exploiting the
unique features of hyperspectral images, most notably, their
high spectral resolutions. In this scope, blind hyperspectral
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unmixing (HU) is one of the topics that has aroused much
interest not only from remote sensing [3], but also from other
communities recently [4]�[7]. Simply speaking, the proble m
of blind HU is to solve a problem reminiscent of blind source
separation in signal processing, and the desired outcome is
to unambiguously separate the endmember spectral signatures
and their corresponding abundance maps from the observed
hyperspectal scene, with no or little prior information of the
mixing system. Being given little information to solve the
problem, blind HU is a challenging�but also fundamentally
intriguing�problem with many possibilities. Readers are r e-
ferred to some recent articles for overview of blind HU [3],
[4], and here we shall not review the numerous possible ways
to perform blind HU. The focus, as well as the contribution,
of this paper lie in addressing a fundamental question arising
from one important blind HU approach, namely, the minimum
volume enclosing simplex (MVES) approach.

Also called simplex volume minimization or minimum vol-
ume simplex analysis (MVSA) [8], the MVES approach adopts
a criterion that exploits the convex geometry structures of the
observed hyperspectral data to blindly identify the endmember
spectral signatures. In the HU context the MVES concepts
were �rst advocated by Craig back in the 1990’s [9], although
it is interesting to note an earlier work in mathematical
geology [10] which also described the MVES intuitions; see
also [4] for a historical note of convex geometry, and the
references therein. In particular, Craig’s work proposes the
use of simplex volume as a metric for blind HU, which is
later used in some other blind HU approaches such as simplex
volume maximization [11]�[13] and non-negative matrix fac -
torization [14]. The MVES criterion is to minimize the volume
of a simplex, subject to constraints that the simplex encloses
all hyperspectral data points. This amounts to a nonconvex
optimization problem, and unlike the simplex volume maxi-
mization approach we do not seem to have a simple (closed-
form) scheme for tackling the MVES problem. However,
recent advances in optimization have enabled us to handle
MVES implementations ef�ciently. The works in [8] and [6]
independently developed practical MVES optimization algo-
rithms based on iterative linear approximation and alternating
linear programming, respectively. The GPU-implementation of
the former is also considered very recently [15]. In addition,
some recent MVES algorithm designs deal with noise and
outlier sensitivity issues by robust formulations, such as the
soft constraint formulation in SISAL [16] and the chance-
constrained formulation in [17]; the pixel elimination method
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in [18] should also be noted. We should further mention that
MVES also �nds application in analytical chemistry [19],
and that fundamentally MVES has a strong link to stochastic
maximum-likelihood estimation [20].

What makes MVES special is that it seems to perform well
even in the absence of pure pixels, i.e., pixels that are solely
contributed by a single endmember. To be more accurate,
extensive simulations found that MVES may estimate the
ground-truth endmembers quite accurately in the noiseless
case and without the pure-pixel assumption; see, e.g., [6], [20],
[21]. At this point we should mention that while the pure-pixel
assumption is elegant and has been exploited by some other
approaches, such as simplex volume maximization (also [7]
for a more recent work on near-separable non-negative matrix
factorization), to arrive at remarkably simple blind HU algo-
rithms, it is also an arguably restrictive assumption in general.
In the HU context it has been suspected that MVES should
be resistant to lack of pure pixels, but it is not known to what
extent MVES can guarantee perfect endmember identi�abilit y
under no pure pixels. Hence, we depart from existing MVES
works, wherein improved algorithm designs are usually the
theme, and ask the following questions: can the endmember
identi�ability of the MVES criterion in the no pure-pixel ca se
be theoretically pinned down? If yes, how bad (in terms of how
heavy the data are mixed) can MVES withstand and where is
the limit?

The contribution of this paper is theoretical. We aim to
address the aforementioned questions through analysis. Pre-
viously, identi�ability analysis for MVES was done only for
the pure-pixel case in [6], and for the three endmember case in
the preliminary version of this paper [22]. This paper considers
the no pure-pixel case for any number of endmembers. We
prove that MVES can indeed guarantee exact and unique
recovery of the endmembers. The key condition for attaining
such exact identi�ability is that some measures concerning the
pixels’ purity and geometry (to be de�ned in Section III-A)
have to be above a certain limit. The condition mentioned
above is equivalent to the pure-pixel assumption for the case
of two endmembers, and is much milder than the pure-
pixel assumption for the case of three endmembers or more.
Numerical experiments will be conducted to support the above
claims.

This paper is organized as follows. The problem statement
is described in Section II. The MVES identi�ability analysi s
results and the associated proofs are given in Sections III and
IV, respectively. Numerical results are provided in Section V
to support our theoretical claims, and we conclude the paper
in Section VI.

Notations: R
n and R

m�n denote the sets of all real-
valued n-dimensional vectors and m-by-n matrices, respec-
tively (resp.); k�k denotes the Euclidean norm of a vector; xT

denotes the transpose of x and the same applies to matrices;
given a set A � R

n, we denote a�A and convA as the af�ne
hull and convex hull of A, resp. (see [23]), intA and bdA as
the interior and boundary of A, resp., and volA as the volume
of A; the dimension of a set A � R

n is de�ned as the af�ne
dimension of a�A; x � 0 means that x is elementwise non-
negative; I and 1 denote an identity matrix and all-one vector

of appropriate dimension, resp.; ei denotes a unit vector whose
ith element is [ei]i = 1 and jth element is [ei]j = 0 for all
j 6= i.

II. PROBLEM STATEMENT

In this section we review the background of the MVES
identi�ability analysis challenge.

A. Preliminaries

Before describing the problem, some basic facts about
simplex should be mentioned. A convex hull

convfb1; : : : ; bN g =

(

x =

N
X

i=1

�ibi

�

�

�

�

� � 0; 1
T � = 1

)

;

where b1; : : : ; bN 2 R
M , M � N � 1, is called an (N � 1)-

dimensional simplex if b1; : : : ; bN are af�nely independent.
The volume of a simplex can be determined by [24]

vol(convfb1; : : : ; bN g) =
1

(N � 1)!

q

det( �BT �B); (1)

where �B = [ b1�bN ; b2�bN ; : : : ; bN�1�bN ] 2 R
M�(N�1).

A simplex is called regular if the distances between any two
vertices are the same.

B. Blind HU Problem Setup

We adopt a standard blind HU problem formulation (readers
are referred to the literature, e.g., [3], [4], for coverage of
the underlying modeling aspects). Concisely, consider a hy-
perspectral scene wherein the observed pixels can be modeled
as linear mixtures of endmember spectral signatures

xn = Asn; n = 1; : : : ; L; (2)

where xn 2 R
M denotes the nth pixel vector of the observed

hyperspectral image, with M being the number of spectral
bands; A = [ a1; : : : ; aN ] 2 R

M�N is the endmember
signature matrix, with N being the number of endmembers;
sn 2 R

M is the abundance vector of the nth pixel; L is the
number of pixels. The problem is to identify the unknown
A from the observations x1; : : : ; xL, thereby allowing us to
unmix the abundances (also unknown) blindly. To facilitate the
subsequent problem description, the noiseless case is assumed.
The following assumptions are standard in the blind HU
context and will be assumed throughout the paper: (i) every
abundance vector satis�es sn � 0 and 1

T sn = 1 (i.e., the
abundance non-negativity and sum-to-one constraints); (ii) A

has full column rank; (iii) [ s1; : : : sL ] has full row rank; (iv)
N is known.

C. Minimum-Volume Enclosing Simplex

This paper concentrates on the MVES approach for blind
HU. MVES was inspired by the following intuition [9]: if
we can �nd a simplex that circumscribes the data points
x1; : : : ; xL and yields the minimum volume, then the vertices
of such a simplex should be identical to, or close to, the
true endmember spectral signatures a1; : : : ; aN themselves.
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Figure 1 shows an illustration for the aforementioned intuition.
Mathematically, the MVES criterion can be formulated as an
optimization problem

min
b1;:::;bN 2RM

vol(convfb1; : : : ; bN g)

s:t: xn 2 convfb1; : : : ; bN g; n = 1; : : : ; L;
(3)

wherein the solution of problem (3) is used as an estimate of
A. Problem (3) is NP-hard in general [25]; this means that
the optimal MVES solution is unlikely to be computationally
tractable for any arbitrarily given fxngL

n=1. Notwithstanding,
it was found that carefully designed algorithms for handling
problem (3), though being generally suboptimal in view of the
NP-hardness of problem (3), can practically yield satisfactory
endmember identi�cation performance; see, e.g., [6], [8], [19],
[20], and also [14], [16]�[18] for the noisy case. In this pap er,
we do not consider MVES algorithm design. Instead, we
study the following fundamental, and very important, question:
When will the MVES problem (3) provide an optimal solution
that is exactly and uniquely given by the true endmember
matrix A (up to a permutation)?

a1

a2

a3

T1
T2

Ta

Fig. 1. A geometrical illustration of MVES. The dots are the data points
fxng, the number of endmembers is N = 3, and T1, T2 and Ta are
data-enclosing simplices. In particular, Ta is actually given by Ta =
convfa1;a2;a3g. Visually, it can be seen that Ta has a smaller volume
than T1 and T2.

It is known that MVES uniquely identi�es A if the pure-
pixel assumption holds [6], that is, if, for each i 2 f1; : : : ; Ng,
there exists an abundance vector sn such that sn = ei.
However, empirical evidence has suggested that even when the
pure-pixel assumption does not hold, MVES (more precisely,
approximate MVES by the existing algorithms) may still be
able to uniquely identify A. In this paper, we aim at analyzing
the endmember identi�ability of MVES in the no pure-pixel
case.

III. MAIN RESULTS

This section describes the main results of our MVES iden-
ti�ability analysis. As will be seen soon, MVES identi�abil ity
in the no pure-pixel case depends much on the level of �pixel

purity� of the observed data set. To this end, we need to pre-
cisely quantify what �pixel purity� is. The �rst subsection will
introduce two pixel purity measures. The second subsection
will then present the main results, and the third subsection
will discuss their practical implications.

A. Pixel Purity Measures

A natural way to quantify pixel purity is to use the following
measure

� = max
n=1;:::;L

ksnk: (4)

Eq. (4) will be called the best pixel purity level in the sequel.
A large value of � implies that there exist abundance vectors
whose purity is high, while a small value of � indicates more
heavily mixed data. To see it, observe that ksk � 1 for any
s � 0, 1

T s = 1, and equality holds if and only if s = ek for
any k; that is, a pure pixel. Moreover, it can be shown that

1p
N

� ksk for any s � 0, 1
T s = 1, and equality holds if and

only if s = 1
N

1; that is, a heavily mixed pixel. Without loss
of generality (w.l.o.g.), we may assume

1p
N

< � � 1;

where we rule out � = 1p
N

, which implies s1 = : : : = sL =
1
N

1 and leads to a pathological case.
The previously de�ned pixel purity level re�ects the best

abundance purity among all the pixels, but says little on how
the pixels are spread geometrically with respect to (w.r.t.) the
various endmembers. We will also require another measure,
de�ned as follows

 = supfr � 1 j R(r) � convfs1; : : : ; sLgg; (5)

where

R(r) = fs 2 convfe1; : : : ; eNg j ksk � rg
= fs 2 R

N j ksk � rg \ convfe1; : : : ; eN g: (6)

We call (5) the uniform pixel purity level; the reason for this
will be illustrated soon. It can be shown that

1p
N

�  � �:

Also, if  = 1, then the pure-pixel assumption is shown to
hold.

To understand the differences between the pixel purity
measures in (4) and (5), we �rst illustrate how R(r) looks
like in Figure 2. As can be seen (and as will be shown), R(r)
is a ball on the af�ne hull a�fe1; : : : ; eNg if r � 1=

p
N � 1.

Otherwise, R(r) takes a shape like a vertices-cropped version
of the unit simplex convfe1; : : : ; eN g. In addition, it can be
shown that (4) equals

� = inffr j convfs1; : : : ; sLg � R(r)g:

In Figure 3, we give several examples with the abundances.
From the �gures, an interesting observation is that R(�) serves
as a smallest R(r) that circumscribes the abundance convex
hull convfs1; : : : ; sLg, while R() serves as a largest R(r)
that is inscribed in convfs1; : : : ; sLg. Moreover, we see that
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if the abundances are spread in a relatively symmetric manner
w.r.t. all the endmembers, then � and  are similar; this is the
case with Figures 3(a)-3(c). However, � and  can be quite
different if the abundances are asymmetrically spread; this is
the case with Figure 3(d) where some endmembers have pixels
of high purity but some do not. Hence, the uniform pixel purity
level  quanti�es a pixel purity level that applies uniformly to
all the endmembers, not just to the best.

e1

e3 e2

R(r)

(r � 1=
p
2)

(a)

e1

e3 e2

R(r)

(r > 1=
p
2)

(b)

Fig. 2. A geometrical illustration of R(r) in (6) for N = 3. We view R(r) by
adjusting the viewpoint to be perpendicular to the af�ne hul l of fe1; e2; e3g.

B. Provable MVES Identi�ability

Our provable MVES identi�ability results are described
as follows. To facilitate our analysis, consider the following
de�nition.

De�nition 1 (minimum volume enclosing simplex) Given
an m-dimensional set U � R

n, the notation MVES(U)

denotes the set that collects all m-dimensional minimum
volume simplices that enclose U and lie in a�U .

Now, let

Te = convfe1; : : : ; eN g � R
N ;

Ta = convfa1; : : : ; aN g � R
M ;

denote the (N �1)-dimensional unit simplex and the endmem-
bers’ simplex, respectively. Also, for convenience, let

XL = fx1; : : : xLg; SL = fs1; : : : sLg;

denote the sets of all the observed hyperspectral pixels and
abundance vectors, resp., and note their dependence xn =
Asn as described in (2). Under the above de�nition, the exact
and unique identi�ability problem of the MVES criterion in
(3) can be posed as a problem of �nding conditions under
which

MVES(XL) = fTag:

Our �rst result reveals that the MVES perfect identi�abilit y
does not depend on A (as far as A has full column rank):

Proposition 1 MVES(XL) = fTag if and only if
MVES(SL) = fTeg.

The proof of Proposition 1, as well as those of the theorems
to be presented, will be provided in the next section. Proposi-
tion 1 suggests that to analyze the perfect MVES identi�abil ity
w.r.t. the observed pixel vectors, it is equivalent to analyze the
perfect MVES identi�ability w.r.t. the abundance vectors. One
may expect that perfect identi�ability cannot be achieved f or
too heavily mixed pixels. We prove that this is indeed true.

Theorem 1 Assume N � 3. If MVES(SL) = fTeg, then the
best pixel purity level must satisfy � > 1p

N�1
.

To get some idea, consider the example in Figure 3(a). Since
Figure 3(a) does not satisfy the condition in Theorem 1, it fails
to provide exact recovery of the true endmembers. Theorem 1
is only a necessary perfect identi�ability condition. We al so
prove a suf�cient perfect identi�ability condition, descr ibed as
follows:

Theorem 2 Assume N � 3. If the uniform pixel purity level
satis�es  > 1p

N�1
, then MVES(SL) = fTeg.

Among the four examples in Figure 3, Figure 3(b) and Fig-
ure 3(c) are cases that satisfy the condition in Theorem 2 and
achieve exact and unique recovery of the true endmembers.

It is worthwhile to emphasize that the suf�cient identi�abi l-
ity condition in Theorem 2 is much milder than the pure-pixel
assumption (which is equivalent to  = 1) for N � 3. In
fact, the pixel purity requirement 1=

p
N � 1 diminishes as

N increases�which seems to suggest that MVES can handle
more heavily mixed cases as the number of endmembers
increases. Thus, Theorem 2 provides a theoretical justi�ca tion
on the robustness of MVES against lack of pure pixels.

One may be curious about how Theorem 2 is proven.
Essentially, the idea lies in �nding a connection between th e
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e1

e2e3

R(�)

R()

convfs1; : : : ; sLg

(a)  < 1=
p
2; � < 1=

p
2

e1

e2e3

R(�)

R() convfs1; : : : ; sLg

(b)  > 1=
p
2; � > 1=

p
2

e1

e2e3

convfs1; : : : ; sLg
= R(�) = R()

(c)  = � = 1

e1

e2e3

R(�)

R()

convfs1; : : : ; sLg

(d)  < 1=
p
2, � > 1=

p
2

Fig. 3. Examples with the abundance distributions and the corresponding best and uniform pixel purity levels.

MVES identi�ability conditions of SL and R() [cf. (5)-(6)].
In particular, it is shown that if MVES(R()) = fTeg, then
MVES(SL) = fTeg. Subsequently, the problem is to pin down
the MVES identi�ability condition of R(r). This turns out to
be the core part of our analysis, and the result is as follows.

Theorem 3 For any 1=
p

N � 1 < r � 1, we have
MVES(R(r)) = fTeg; i.e., there is only one MVES of R(r)
for 1=

p
N � 1 < r � 1 and that MVES is always given by

the unit simplex.

As an example, Fig. 2.(b) is an instance where Theorem 3
holds; by visual observation of Fig. 2.(b), we may argue that
the MVES of R(r) for N = 3 and r > 1=

p
2 should be the

unit simplex. Also, we should note that the geometric problem
in Theorem 3 is interesting in its own right, and the result
could be of independent interest in other �elds.

Before we �nish this subsection, we should mention the
case of N = 2. While the number of endmembers in practical
scenarios is often a lot more than two, it is still interesting to
know the identi�ability for N = 2.

Proposition 2 Assume N = 2. We have MVES(SL) = fTeg
if and only if the pure-pixel assumption holds.

We should recall that the pure-pixel assumption corresponds
to  = 1.

C. Further Discussion

We have seen that the uniform pixel purity level  provides a
key quanti�cation on when MVES achieves perfect endmem-
ber identi�ability. Nevertheless, one may have these furth er
questions: How is  related to the abundance pixel set SL

exactly? Can the relationship be characterized in an explicit
and practically interpretable manner? For example, as can be
observed in the three-endmember illustrations in Fig. 3, satis-
fying the suf�cient identi�ability condition  > 1=

p
N � 1 in

Theorem 2 seems to require some abundance pixels to lie on
the boundary of Te. However, from the de�nition of  in (5),
it is not immediately clear how such a result can be deduced
(e.g., how many pixels on the boundary, and which parts of
the boundary?). Unfortunately, explicit characterization of 
w.r.t. SL appears to be a dif�cult analysis problem. In fact,
even computing the value of  for a given SL is generally a
computationally hard problem1 [26].

Despite the aforementioned analysis bottleneck, our em-
pirical experience suggests that if every sn follows a con-
tinuous distribution that has a support covering R(r) for
r > 1=

p
N � 1 (e.g., Dirichlet distributions), and the number

of pixels L is large, there is a large probability for MVES

1More accurately, verifying whether or not a convex body (R(r) here)
belongs to a V-polytope (convSL here) has been shown to be coNP-
complete [26].



6

to achieve perfect identi�ability. The numerical results i n
Section V will support this. Moreover, we can study special,
but still meaningful, cases. Herein we show one that uses the
following assumption:

Assumption 1 For every i; j 2 f1; : : : ; Ng, i 6= j, there
exists a pixel, whose index is denoted by n(i; j), such that
its abundance vector takes the form

sn(i;j) = �ijei + (1 � �ij)ej ; (7)

for some coef�cient �ij that satis�es 1
2 < �ij � 1.

Assumption 1 means that we can �nd pixels that are consti-
tuted by two endmembers, with one dominating another as
determined by the coef�cient �ij > 1

2 . Also, the pixels in (7)
lie on the edges of Te. Fig. 4 gives an illustration for N = 3.
Note that Assumption 1 reduces to the pure-pixel assumption
if �ij = 1 for all i; j. Hence, Assumption 1 may be seen as
a more general assumption than the pure-pixel assumption. In
the example of N = 3 in Fig. 4, we see that  should increase
as �ij’s increase. In fact, this can be proven to be true for any
N � 2.

Theorem 4 Under Assumption 1 and for N � 2, the uniform
pixel purity level satis�es

 �
s

1

N

�

(N� � 1)2

N � 1
+ 1

�

;

where
� = min

i;j2f1;:::;Ng
i6=j

�ij

is the smallest value of �ij’s.

The proof of Theorem 4 is given in Section IV-F. Theorem 4
is useful in the following way. If we compare Theorems 2 and
4, we see that the condition

s

1

N

�

(N� � 1)2

N � 1
+ 1

�

>
1p

N � 1
;

implies exact unique identi�ability of MVES. It is shown tha t
the above equation is equivalent to

� >
2

N
;

for N � 3. By also noting 1
2 < � � 1 in Assumption 1,

and the fact that 1
2 � 2

N
for N � 4, we have the following

conclusion.

Corollary 1 Suppose that Assumption 1 holds. For N = 3,
the exact unique identi�ability condition MVES(SL) = fTeg
is achieved if �ij > 2

3 for all i; j. For N � 4, the condition
MVES(SL) = fTeg is always achieved (subject to 1

2 < �ij �
1 in Assumption 1).

The implication of Corollary 1 is particularly interesting
for N � 4�MVES for N � 4 always provides perfect
identi�ability under Assumption 1. However, we should also
note that this result is under the premise of Assumption 1. In

particular, it is seen that to satisfy Assumption 1 for general
�ij’s, the number of pixels L should be no less than N(N �1).
This implies that we would need more pixels to achieve perfect
MVES identi�ability as N increases.

We �nish with mentioning some arising open problems.
From the above discussion, it is natural to further question
whether (7) in Assumption 1 can be relaxed to combinations
of three endmembers, or more. Also, the whole work has so
far assumed the noiseless case, and sensitivity in the noisy
case has not been touched. These challenges are left as future
work.

e1

e2e3
sn(2;3)sn(3;2)

sn(1;3)

sn(3;1)

sn(1;2)

sn(2;1)

R(1=
p
2)

Fig. 4. Illustration of Assumption 1. N = 3, �ij = 2=3 for all i; j.

IV. PROOF OF THE MAIN RESULTS

This section provides the proof of the main results described
in the previous section. Readers who are more interested in
numerical experiments may jump to Section V.

A. Proof of Proposition 1

The following lemma will be used to prove Proposition 1:

Lemma 1 Let f(x) = Ax, where A 2 R
M�N , M � N ,

and suppose that A has full column rank.
(a) Let TG � R

N be an (N � 1)-dimensional simplex, and
suppose TG � a�fe1; : : : ; eNg. We have

vol(f(TG)) = � � vol(TG); (8)

where � =

q

det( �AT �A)
N

, and �A = [ a1 � aN ; a2 �
aN ; : : : ; aN�1 � aN ]. Also, it holds true that f(TG) �
a�fa1; : : : ; aNg:

(b) Let TH � R
M be an (N � 1)-dimensional simplex, and

suppose TH � a�fa1; : : : ; aN g. We have

vol(f�1(TH)) =
1

�
� vol(TH); (9)

and f�1(TH) � a�fe1; : : : ; eN g:

The proof of Lemma 1 is relegated to Appendix A. Now,
suppose that MVES(SL) = fTeg, but MVES(XL) 6= fTag.
Let TH be an MVES of XL. By the MVES de�nition (see
De�nition 1), we have

XL � TH ; TH � a�fx1; : : : ; xLg;

vol(TH) � vol(Ta):
(10)
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Recall that [s1; : : : ; sL ] is assumed to have full row rank
and satisfy 1

T sn = 1 for all n. From these assumptions,
one can prove that a�fs1; : : : ; sLg = a�fe1; : : : ; eN g, and
a�fx1; : : : ; xLg = a�fa1; : : : ; aNg; see [27, Lemma 1] for
example. Then, by applying Lemma 1.(b) to (10), we obtain

SL � f�1(TH); f�1(TH) � a�fe1; : : : ; eN g;

vol(f�1(TH)) � vol(f�1(Ta)) = vol(Te):

The above equation implies that Te is not the only MVES of
SL, which is a contradiction.

On the other hand, suppose that MVES(XL) = fTag, but
MVES(SL) 6= fTeg. This statement can be shown to be a
contradiction, by the same proof as above (particularly, the
incorporation of Lemma 1.(a)). The proof of Proposition 1 is
therefore complete.

B. Proof of Theorem 1

The proof is done by contradiction. Suppose that
MVES(SL) = fTeg, but � � 1p

N�1
. Recall

R(r) = Te \ fs 2 R
N j ksk � rg: (11)

The proof is divided into four steps.
Step 1: We show that any V 2 MVES(R(�)) is also an

MVES of SL. To prove it, note that

SL � R(�): (12)

Eq. (12) implies that

vol(U) � vol(V); for all U 2 MVES(SL), V 2 MVES(R(�)):
(13)

Also, since Te encloses R(�), we have

vol(V) � vol(Te); for all V 2 MVES(R(�)): (14)

Since we assume MVES(SL) = fTeg in the beginning, we
observe from (13) and (14) that vol(U) = vol(V) for all U 2
MVES(SL), V 2 MVES(R(�)). The above equality, together
with (12), implies that any V 2 MVES(R(�)) is an MVES of
SL (or satis�es V 2 MVES(SL)).

Step 2: We give an alternative representation of (N � 1)-
dimensional simplices on a�fe1; : : : ; eN g, which will fa-
cilitate the proof. The af�ne hull a�fe1; : : : ; eN g can be
equivalently expressed as

a�fe1; : : : ; eN g = fs = C� + d j � 2 R
N�1g; (15)

where

d =
1

N

N
X

i=1

ei =
1

N
1;

and C 2 R
N�(N�1) is the �rst N � 1 principal left singular

vectors of R = [ e1 � d; : : : ; eN � d ]; see [6], [27]. We note
that

R = I � 1

N
11

T ;

which, as a standard matrix result, its �rst N �1 principal left
singular vector can be shown to be any C such that

U =

�

C;
1p
N

1

�

(16)

is a unitary matrix. Or, equivalently, C is any semi-unitary
matrix such that CT d = 0.

Recall that an (N � 1)-dimensional simplex V �
a�fe1; : : : ; eN g can be written as

V = convfv1; : : : ; vN g;

where vi 2 a�fe1; : : : ; eN g for all i. By (15), each vi 2
a�fe1; : : : ; eN g can be represented by vi = Cwi + d for
some wi 2 R

N�1. Applying this result to convfv1; : : : ; vN g,
we obtain the following equivalent representation of V

V = fs = C� + d j � 2 Wg; (17)

where
W = convfw1; : : : ; wN g: (18)

Also, by the simplex volume formula (1) and the semi-unitarity
of C , the following relation is shown

vol(V) = vol(W): (19)

Step 3: We show that there are in�nitely many MVES of
R(�) for 1p

N
< � � 1p

N�1
. Consider the following lemma.

Lemma 2 Let

C(r) = a�fe1; : : : ; eN g \ fs 2 R
N j ksk � rg: (20)

denote a 2-norm ball on a�fe1; : : : ; eN g. If 1p
N

< r �
1p

N�1
, then R(r) in (11) equals C(r).

Proof of Lemma 2: Note that R(r) � C(r). Hence, to
prove Lemma 2, it suf�ces to show that C(r) � R(r). By
the equivalent af�ne hull representation in (15), we can wri te
C(r) = fs = C�+d j ksk � rg. By substituting s = C�+d

into ksk � r, we get, for any s 2 C(r),

ksk2 � r2 ()k�k2 + kdk2 � r2 (21a)

()k�k2 � r2 � 1

N
; (21b)

where (21a) is obtained by using the orthogonality in (16);
(21b) is by kdk2 = 1

N
. Hence, C(r) can be rewritten as

C(r) = fs = C� + d j k�k2 � r2 � 1=Ng: (22)

Moreover, by letting ci and ui denote the ith rows of C and
U respectively, we have

si = [ci]T � + di (23a)

� �kcikk�k +
1

N
(23b)

� �
r

N � 1

N
�
s

1

(N � 1) � N
+

1

N
= 0; (23c)

where (23b) is due to the Cauchy-Schwartz inequality; (23c) is
due to (21b), r � 1p

N�1
, and the fact that 1 = kuik2 = 1

N
+

kcik2 (see (16) and note its orthogonality). Eq. (23) suggests
that any s 2 C(r) automatically satis�es s � 0, and hence,
s 2 R(r). We therefore conclude that C(r) = R(r). �

By Lemma 2, we can replace R(�) by C(�) and consider
the MVES of the latter. Suppose that V 2 MVES(C(�)). Our
argument is that a suitably rotated version of V is also an
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MVES of C(�). To be precise, use the representation in (17)-
(18) to describe V . Comparing (17)-(18) and (22), we see that
C(�) � V is equivalent to

f� j k�k2 � �2 � 1=Ng � W : (24)

From W , let us construct another simplex

V 0 = fs = CQ� + d j � 2 Wg; (25)

where Q 2 R
(N�1)�(N�1) is a unitary matrix. Due to (24),

V 0 can be veri�ed to satisfy C(�) � V 0. Also, by observing
the semi-unitarity of CQ, the volume of V 0 is shown to equal

vol(V 0) = vol(W) = vol(V):

In other words, V 0 is also an MVES of C(�). In fact, the argu-
ment above holds for any unitary Q. Since there are in�nitely
many unitary Q for N � 3 (note that Q 2 R

(N�1)�(N�1)),
we also have in�nitely many MVESs of C(�) for N � 3.

Step 4: We combine the results in the above steps to draw
conclusion. Step 1 shows that any V 2 MVES(R(�)) is also
an MVES of SL, while Step 3 shows that R(�) has in�nitely
many MVESs for � � 1p

N�1
, N � 3. This contradicts the

assumption that there is only one MVES of SL. The proof of
Theorem 1 is therefore complete.

C. Proof of Theorem 2

To facilitate our proof, let us introduce the following fact.

Fact 1 Let C; D � R
n be two sets of identical dimension,

with C � D. If D � T for some T 2 MVES(C), then T 2
MVES(D) and MVES(D) � MVES(C).

Proof of Fact 1: Note that C � D implies that any T 0 2
MVES(D) is a simplex enclosing C. Since T is a minimum
volume simplex among all the C-enclosing simplices, we have

vol(T ) � vol(T 0) for all T 0 2 MVES(D): (26)

Moreover, the condition D � T implies that T is also a D-
enclosing simplex, and, as a result, equality in (26) holds. It
also follows that any T 0 2 MVES(D) is also an MVES of C.
�

Now we proceed with the main proof.
Step 1: We show that

Te 2 MVES(R(r)); for any r � 1p
N � 1

. (27)

Note from the de�nition of R(r) in (6) that

C
�

1p
N�1

�

= R
�

1p
N�1

�

� R(r) � Te; (28)

for any r 2 [1=
p

N � 1; 1], where the �rst equality is by
Lemma 2. We prove that

Lemma 3 The unit simplex Te is an MVES of C(1=
p

N � 1).

The proof of Lemma 3 is relegated to Appendix B. By
applying Fact 1 and Lemma 3 to (28), we obtain Te 2
MVES(R(r)) for r 2 [1=

p
N � 1; 1].

Step 2: We prove that

MVES(SL) � MVES(R()); for  � 1p
N � 1

. (29)

By the de�nition of  in (5), we have

R() � convSL � Te: (30)

Also, in Step 1, it has been identi�ed that Te 2 MVES(R(r))
for r 2 [1=

p
N � 1; 1]. Hence, for  � 1=

p
N � 1, we can

apply Fact 1 to (30) to obtain

MVES(convSL) � MVES(R()): (31)

Next, we use a straightforward fact in convex analysis: for a
convex set T , the condition C � T is the same as convC � T ,
and vice versa. In the context here, this implies that any MVES
of convSL also encloses SL, and the converse is also true.
Hence, we have

MVES(convSL) = MVES(SL): (32)

By combining (31) and (32), Eq. (29) is obtained.
Step 3: We prove that

MVES(R()) = fTeg; for  >
1p

N � 1
. (33)

It has been shown in Step 1 that Te 2 MVES(R()).
The question is whether there exists another MVES T 0 2
MVES(R()), with T 0 6= Te. By Theorem 3, such a T 0 does
not exist. Thus, (33) is obtained.

Step 4: We combine the results in Steps 2 and 3. Specif-
ically, by (29) and (33), we get MVES(SL) � fTeg. As SL

is enclosed by Te, we further deduce MVES(SL) = fTeg.
Theorem 2 is therefore proven.

D. Proof of Theorem 3

Let T 0 2 MVES(R(r)) be an arbitrary MVES of R(r) for
1=

p
N � 1 < r � 1. We prove Theorem 3 by showing that

T 0 = Te is always true. The proof is divided into three steps.
Step 1: We show that

T 0 2 MVES(R(1=
p

N � 1)):

To prove this, note that R(1=
p

N � 1) � R(r) for all
1=

p
N � 1 � r � 1. Also, it has been shown in (27) that

Te 2 MVES(R(r)) for all 1=
p

N � 1 � r � 1. Applying
Fact 1 to the above two results yields

MVES(R(r)) � MVES(R(1=
p

N � 1));

for all 1=
p

N � 1 � r � 1. Since T 0 2 MVES(R(r))
for 1=

p
N � 1 < r � 1, it follows that T 0 2

MVES(R(1=
p

N � 1)) is also true.
Step 2: To proceed further, we apply the equivalent repre-

sentation in (17)-(18) to rewrite Te as

Te = fs = C� + d j � 2 Weg (34)

for some (N�1)-dimensional simplex We � R
N�1. Similarly,

we can characterize T 0 by

T 0 = fs = C� + d j � 2 W 0g (35)
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for some (N �1)-dimensional simplex W 0 � R
N�1. Also, by

noting R(r) = Te \ C(r), the expression of C(r) in (22), and
R(r) = C(r) for r = 1=

p
N � 1 (see Lemma 2), R(r) can

be expressed as

R(r) =
(

fs = C� + d j � 2 B(
p

r2 � 1=N)g; r = 1p
N�1

fs = C� + d j � 2 We \ B(
p

r2 � 1=N)g; r > 1p
N�1
(36)

where
B(r) = f� 2 R

N�1 j k�k � rg: (37)

Now, by comparing (35)-(36), the following result can be
proven:

T 0 2 MVES(R(r)) ()

W 0 2

8

<

:

MVES

�

B(
p

r2 � 1=N)
�

; r = 1p
N�1

MVES

�

We \ B(
p

r2 � 1=N)
�

; r > 1p
N�1

(38)
The proof of (38) is analogous to that of Proposition 1, and
will not be repeated here.

Step 3: From the equivalent representation (38),
we further deduce the following results: i) We; W 0 2
MVES(B(

p

r2 � 1=N)) for r = 1=
p

N � 1, which is due
to Step 1 and (27); ii) We \ B(

p

r2 � 1=N) � W 0 for all
r > 1=

p
N � 1, which is due to the underlying assumption

that T 0 2 MVES(R(r)) for 1=
p

N � 1 < r � 1. Consider the
following lemma:

Lemma 4 Suppose that W ; W 0 2 MVES(B(r)), where B(r)
is de�ned in (37). Also, suppose that R = W \ B(�r) � W 0

for some �r > r > 0. Then we have W = W 0.

The proof of Lemma 4 is relegated to Appendix C. By
Lemma 4, we obtain We = W 0, and consequently, Te = T 0.

E. Proof of Proposition 2

Assume N = 2, and let convfb1; b2g be an MVES of
SL, where b1; b2 2 a�fe1; e2g � R

2. Using the simple fact
a�fe1; e2g = fs 2 R

2 j s1 + s2 = 1g, we can write

b1 =

�

�1

1 � �1

�

; b2 =

�

�2

1 � �2

�

;

for some coef�cients �1; �2 2 R. By the same spirit, every
abundance vector sn (for N = 2) can be written as

sn =

�

�n

1 � �n

�

; n = 1; : : : ; L;

where 0 � �n � 1. From the above expressions, it is easy to
show that the MVES enclosing property sn 2 convfb1; b2g
is equivalent to

�2 � �n � �1; n = 1; : : : ; L; (39)

where we assume �1 � �2 w.l.o.g. Moreover, from the simplex
volume formula in (1), the volume of convfb1; b2g is

vol(convfb1; b2g) = �1 � �2: (40)

From (39)-(40), it is immediate that convfb1; b2g is a mini-
mum volume simplex enclosing SL if and only if

�2 = min
n=1;:::;L

�n; �1 = max
n=1;:::;L

�n: (41)

Now, consider perfect identi�ability fb1; b2g = fe1; e2g,
which is equivalent to �1 = 1, �2 = 0. Putting the above
conditions into (41), we see that perfect identi�ability is
achieved if and only if the pure-pixel assumption holds; i.e.,
there exist two pixels, indexed by n1 and n2, such that
sn1

= e1 and sn2
= e2 (or �n1

= 1, �n2
= 0), resp.

F. Proof of Theorem 4

Let
pij = �ei + (1 � �)ej ; (42)

for i; j 2 f1; : : : ; Ng; i 6= j, and recall � = mini6=j �ij . It can
be veri�ed that each pij is a convex combination of sn(i;j)

and sn(j;i) in (7). Thus, every pij satis�es pij 2 convSL. For
notational convenience, let

P = fpijgi;j2f1;:::;Ng; i6=j

denote the set that collects all the pij’s. By the result pij 2
convSL, we have convP � convSL, and consequently,

R(r) � convSL (= R(r) � convP :

Applying the above implication to  in (5) yields

 � supfr� 1 j R(r) � convPg (43)

Eq. (43) has an explicit expression. To show it, let us �rst
consider the following lemma.

Lemma 5 For any � 2 (0:5; 1], convP is equivalent to

convP = fs 2 Te j si � �; i = 1; : : : ; Ng: (44)

The proof of Lemma 5 is relegated to Appendix E. By using
Lemma 5, and observing the expressions of R(r) in (5) and
convP in (44), we see the following equivalence

R(r) � convP () max
i=1;:::;N

si � � for all s 2 R(r)

() sup
s2R(r)

max
i=1;:::;N

si � �; (45)

for 1p
N

� r � 1 (note that R(r) = ; for r < 1p
N

). Next,
we solve the maximization problem in (45). The result is
summarized in the following lemma.

Lemma 6 Let

�?(r) = sup
s2R(r)

max
i=1;:::;N

si;

where N � 2 and 1p
N

� r � 1. The optimal value �?(r) has
a closed-form expression

�?(r) =
1 +

p

(N � 1)(Nr2 � 1)

N
:

The proof of Lemma 6 is shown in Appendix F. Now, by
applying Lemma 6 and (45) to (43), we get

 � supfr 2 [1=
p

N; 1] j �?(r) � �g: (46)
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By noting that �?(r) is an increasing function of r 2
[1=

p
N; 1], we see that if there exists an r 2 [1=

p
N; 1] such

that �?(r) = �, then that r attains the supremum in (46). It
can be veri�ed that the solution to �?(r) = � is

r =

s

1

N

�

(N� � 1)2

N � 1
+ 1

�

;

and the above r satis�es r 2 [1=
p

N; 1] for 0:5 < � � 1,
N � 2. Putting the above solution into (46), we obtain the
desired result in Theorem 4.

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical simulation results that
aim to support the theoretical MVES identi�ability results
proven in the previous section. The signals are generated
by the following way. The observed data set fx1; : : : ; xLg
follows the basic model in (2). The endmember signature
vectors a1; : : : ; aN are selected from the U.S. geological
survey (USGS) library [28], and the number of spectral bands
is M = 224. The generation of the abundance vectors is
similar to that in [6]. Speci�cally, we generate a large pool
of random vectors following a Dirichlet distribution with
parameter � = 1

N
1, and then select a number of L such

random vectors as the abundance set fs1; : : : ; sLg. During the
selection, we do not choose vectors whose 2-norm exceeds a
given parameter r; the reason of doing so is to allow us to
control the pixel purity level of fs1; : : : ; sLg at or below r in
the simulations. Note that if the number of pixels L is large,
then one should expect that r be close to the best pixel purity
level � and uniform pixel purity level . In the simulations,
we set L = 1; 000.

The simulation settings are as follows. MVES is imple-
mented by the alternating linear programming method in [6].
We measure its identi�cation performance by using the root-
mean-square (RMS) angle error

� = min
�2�N

v

u

u

t

1

N

N
X

i=1

�

arccos

�

aT
i â�i

kaik � kâ�i
k

��2

;

where fâ1; : : : ; âN g denotes the MVES estimate of the end-
members, and �N denotes the set of all permutations of
f1; : : : ; Ng. A number of 50 randomly generated realizations
were run to evaluate the means and standard deviations of �.

The obtained RMS angle error results are shown in Figure 5.
We see that zero RMS angle error, or equivalently, perfect
identi�ability, is attained when r > 1=

p
N � 1 � which is

a good match with the suf�cient MVES identi�ability result
in Theorem 2. Also, we observe non-zero errors for r �
1=

p
N � 1, which matches the necessary MVES identi�ability

result in Theorem 1.
Before closing this experiment section, we should mention

that previous papers, such as [6], [15], [17]�[21], have tog ether
provided a nice and rather complete coverage on MVES’s
performance under both synthetic and real-data experiments.
Hence, readers are referred to such papers for more experi-
mental results. The results reported therein also indicate that
MVES-based algorithms are robust against lack of pure pixels.
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Fig. 5. MVES performance with respect to the numerically control pixel
purity level r.
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The numerical (and also theoretical) results above further show
the limit of robustness� 1=

p
N � 1 with the uniform pixel

purity level.

VI. CONCLUSION

In this paper, a theoretical analysis for the identi�ablili ty of
MVES in blind HU was performed. The results suggest that
under some mild assumptions which are considerably more
relaxed than those for the pure-pixel case, MVES exhibits ro-
bustness against lack of pure pixels. Hence, our study provides
a theoretical explanation on why numerical studies usually
found that MVES can recover the endmembers accurately in
the no pure-pixel case.
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APPENDIX

A. Proof of Lemma 1

Let us �rst prove Lemma 1.(a). The set TG can be explicitly
represented by

TG = convfg1; : : : ; gN g;

where gi 2 R
N for all i. Also, by letting hi = Agi for all i,

one can easily show that

f(TG) = convfh1; : : : ; hN g:

Since TG � a�fe1; : : : ; eN g, we have gi 2 a�fe1; : : : ; eN g
for all i. This means that each gi satis�es 1

T gi = 1, or
equivalently, gi;N = 1 � PN�1

j=1 gi;j . Using the above fact,
we can write

gi = C�i + eN ;

where �i = [gi]1:(N�1), and

C =

�

I

�1
T

�

2 R
N�(N�1):

Let �G = [ g1 � gN ; : : : ; gN�1 � gN ]. We get

�G = C ��;

where �� = [ �1 � �N ; : : : ; �N�1 � �N ] 2 R
(N�1)�(N�1).

We therefore obtain

det( �GT �G) = det( ��T CT C ��) (47a)

= det( ��) det(CT C) det( ��) (47b)

= N � j det( ��)j2; (47c)

where (47b) is due to det(AB) = det(A) det(B) for square
A; B, and (47c) is due to the following result

det(CT C) = det(I + 11
T ) = N

(note that the matrix result det(I +qqT ) = kqk2 +1 has been
used). Likewise, by letting �H = [ h1 �hN ; : : : ; hN�1 �hN ],
we have

�H = A �G = AC �� = �A ��;

and
det( �HT �H) = det( �AT �A) � j det( ��)j2: (48)

Now, by (1), (47) and (48), Eq. (8) is obtained. Also, the
property f(TG) � a�fa1; : : : ; aN g can be easily proven by
the fact that H = AG and 1

T gi = 1 for all i.
Next, we prove Lemma 1.(b). The set TH can be written as

TH = convfh1; : : : ; hN g;

where hi 2 R
M for all i. Since TH � a�fa1; : : : ; aNg, we

have hi 2 a�fa1; : : : ; aN g for all i. Hence, each hi can be
expressed as hi = Agi, where gi 2 R

N , 1
T gi = 1. This

leads to

f�1(TH) = f x j Ax 2 convfh1; : : : ; hN g g (49a)

= f x j Ax = H�; � � 0; 1
T � = 1 g (49b)

= f x j Ax = AG�; � � 0; 1
T � = 1 g (49c)

= f x j x = G�; � � 0; 1
T � = 1 g (49d)

= convfg1; : : : ; gN g (49e)

� a�fe1; : : : ; eN g; (49f)

where (49d) is due to the full column rank condition of A,
and (49f) uses the structure 1

T gi = 1. The rest of the proof
is the same as that of Lemma 1.(a).

B. Proof of Lemma 3

Fix r = 1=
p

N � 1. From (22), C(r) can be re-expressed
as

C(r) = fs = C� + d j � 2 B(�)g; (50)

where � =
p

r2 � 1=N = 1=
p

(N � 1)N , and

B(r0) = f� 2 R
N�1 j k�k � r0g (51)

is a ball on R
N�1. Also, recall from (17)-(18) that an MVES

V 2 MVES(C(r)) can be written as

V = fs = C� + d j � 2 Wg; (52)

where W = convfw1; : : : ; wN g � R
N�1; and that vol(V) =

vol(W) (see (19)). From the expressions above, we can deduce
the following result: W must be an MVES of B(�) if V is an
MVES of C(r), and the converse is also true.

Next, we will use the following fact:

Fact 2 [29, Theorem 3.2] The volume of an (N � 1)-
dimensional simplex W enclosing B(r0) in (51) satis�es

vol(W) � 1

(N � 1)!
N

N

2 (N � 1)
1

2
(N�1)(r0)N�1 (53)

with equality only for the regular simplex.

Using Fact 2 and the result vol(V) = vol(W), we obtain

vol(V) =
1

(N � 1)!

p
N;

where we should note that the right-hand side of the above
equation is obtained by putting r0 = � = 1=

p

(N � 1)N into
(53). On the other hand, consider Te = convfe1; : : : ; eN g,
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which encloses C(r) (for r = 1=
p

N � 1). From the simplex
volume formula (1), one can show that

vol(Te) =
1

(N � 1)!

p
N:

Since Te attains the same volume as V , Te is an MVES of
C(r).

C. Proof of Lemma 4

The following lemma will be required:

Lemma 7 Let B(r) = f� 2 R
N�1 j k�k � rg, where

r > 0. For any W 2 MVES(B(r)), the boundaries of B(r)
and W have exactly N intersecting points. Also, by letting
ft1; : : : ; tN g = bdB(r)\bdW be the set of those intersecting
points, we have the following properties:

(a) The points t1; : : : ; tN are af�nely independent.
(b) The simplex W can be constructed from t1; : : : ; tN via

W =
N
\

i=1

�

� 2 R
N�1 j r2 � tT

i �
	

:

The proof of Lemma 7 is given in Appendix D. Let

ft1; : : : ; tN g = bdB(r) \ bdW ;

ft0
1; : : : ; t0

N g = bdB(r) \ bdW 0;

which, by Lemma 7, always exist. Since B(r) � W and
B(r) � W 0, the above two equations can be equivalently
expressed as

ft1; : : : ; tN g = bdB(r) n intW ; (54)

ft0
1; : : : ; t0

N g = bdB(r) n intW 0: (55)

Also, by Lemma 7.(b), we have W = W 0 if ft1; : : : ; tN g =
ft0

1; : : : ; t0
N g. In the following steps we focus on proving

ft1; : : : ; tN g = ft0
1; : : : ; t0

N g.
Step 1: We �rst prove

bd (W \ B(�r)) � bdW [ bdB(�r) (56)

by contradiction. Suppose that (56) does not hold, namely,
there exists an x 2 R

N�1 satisfying

x 2 bd (W \ B(�r)) , but (57)

x =2 bdW [ bdB(�r): (58)

Now, since W \ B(�r) is a closed set, (57) implies

x 2 W \ B(�r): (59)

Equations (58) and (59) imply that x 2 intW and that x 2
intB(�r). Thus, we have x 2 int(W \ B(�r)) which contradicts
(57). Hence, (56) must hold.

Step 2: We show that ft1; : : : ; tN g = bdB(r) \ bdR. Let
us �rst consider proving ft1; : : : ; tN g � bdB(r) \ bdR. We
observe from B(r) � B(�r) and B(r) � W that

B(r) � B(�r) \ W = R: (60)

Subsequently, the following inequality chain can be derived:

ft1; : : : ; tN g =bdB(r) n intW (61a)

�bdB(r) n (intW \ intB(�r)) (61b)

=bdB(r) n intR (61c)

=bdB(r) \ bdR; (61d)

where (61a) is by (54); (61c) is by int(W \ B(�r)) = intW \
intB(�r); (61d) is by (60).

Moreover, we have bdB(r)\bdR � ft1; : : : ; tN g, obtained
from the following chain:

bdB(r) \ bdR =bdB(r) \ bd(W \ B(�r)) (62a)

�bdB(r) \ (bdW [ bdB(�r)) (62b)

= (bdB(r) \ bdW) [ (bdB(r) \ bdB(�r))
(62c)

= (bdB(r) \ bdW) [ ; (62d)

=bdB(r) n intW (62e)

=ft1; : : : ; tN g; (62f)

where (62b) is by (56); (62d) is by �r > r; (62e) is by
bdB(r) � B(r) � W ; (62f) is by (54).

Step 3: We prove ft1; : : : ; tN g = ft0
1; : : : ; t0

N g. In Step 2,
it is shown that

ft1; : : : ; tN g = bdB(r) \ bdR: (63)

By the fact that t0
i 2 B(r) and by (60), we have

t0
i 2 R: (64)

Moreover, from the assumption that R � W 0, we have bdW 0\
intR = ;. But from (55), we note that t0

i 2 bdW 0. Thus we
can conclude t0

i =2 int(R), which together with (64) yields

t0
i 2 bdR: (65)

Combining t0
i 2 bdB(r) (cf. (55)) with (63) and (65), we

obtain t0
i 2 ft1; : : : ; tN g. Since Property (a) in Lemma 7 re-

stricts t0
1; : : : ; t0

N to be af�nely independent, the only possible
choice of t0

1; : : : ; t0
N is ft0

1; : : : ; t0
N g = ft1; : : : ; tN g. Lemma

4 is therefore proven.

D. Proof of Lemma 7

The proof of Lemma 7 requires several convex analysis
results. To start with, consider the following results:

Fact 3 Let W = convfw1; : : : ; wN g � R
N�1 denote an

(N � 1)-dimensional simplex. Also, let

P(g; H) = f� 2 R
N�1 j HT � + g � 0;

� (H1)T � + (1 � 1
T g) � 0g

(66)

denote a polyhedron, where (g; H) 2 R
N�1 �R

(N�1)�(N�1)

is given.

(a) Any W can be equivalently represented by P(g; H) via
setting

H = �W �T ; g = � �W �T wN ; (67)

where �W = [ w1 � wN ; : : : ; wN�1 � wN ].
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(b) Suppose that H has full rank. Under the above restric-
tion, the set P(g; H) for any (g; H) can be equivalently
represented by W , whose vertices w1; : : : ; wN can be
determined by solving the inverse of (67). Also, the
corresponding volume is

vol(P(g; H)) =
1

(N � 1)!
j det(H)j�1: (68)

The proof of Fact 3 has been shown in the literature [6],
[23]. Also, (68) is determined by the simplex volume formula
(1) and the relation in (67). From Fact 3, we derive several
convex analysis properties for proving Lemma 7.

Fact 4 Let W be an (N � 1)-dimensional simplex on R
N�1,

and consider the polyhedral representation of W in (66)-(67).
Also, recall the de�nition B(r) = f� 2 R

N�1 j k�k � rg.

(a) If B(r) � W , then the following equations hold

�rkhik + gi � 0; i = 1; : : : ; N � 1; (69a)

�rkH1k + (1 � 1
T g) � 0; (69b)

where hi and gi denote the ith column of H and ith
element of g, resp. Conversely, if (69) holds, then B(r) �
W .

(b) Suppose B(r) � W . The boundaries of B(r) and W
have at most N intersecting points. Speci�cally, we have
bdB(r) \ bdW � ft1; : : : ; tN g where

ti = � r

khik
hi; i = 1; : : : ; N � 1; (70a)

tN =
r

kH1kH1: (70b)

Also, if ti 2 bdB(r) \ bdW , then
�

�rkhik + gi = 0; i 2 f1; : : : ; N � 1g;
�rkH1k + (1 � 1

T g) = 0; i = N ;
(71)

otherwise
�

�rkhik + gi > 0; i 2 f1; : : : ; N � 1g;
�rkH1k + (1 � 1

T g) > 0; i = N:
(72)

Proof of Fact 4: The proof of Fact 4.(a) basically follows
the development in [23, pp.148-149], and is omitted here for
conciseness. To prove Fact 4.(b), observe that a point ~� 2
bdB(r) \ bdW satis�es i) k ~�k = r; and ii) either

hT
i

~� + gi = 0; (73)

for some i 2 f1; : : : ; N � 1g, or

�(H1)T ~� + (1 � 1
T g) = 0: (74)

Suppose that ~� satis�es (73). Recall that the assumption
B(r) � W implies

hT
i � + gi � 0; for all k�k � r, (75)

and that the left-hand side of (75) attains its minimum if and
only if � = �(r=khik)hi = ti. Thus, if (73) is to be satis�ed,
then ~� must equal ti, and subsequently (73) becomes

�rkhik + gi = 0: (76)

Likewise, it is shown that if ~� satis�es (74), then ~� =
(r=kH1k)H1 = tN is the only choice and (74) becomes

�rkH1k + (1 � 1
T g) = 0: (77)

We therefore complete the proof that ~� 2 bdB(r) \ bdW
implies ~� 2 ft1; : : : ; tN g.

We should also mention (71)-(72). From the proof above, it
is clear that ti 2 bdB(r)\bdW holds if and only if (76) holds
for i = 1; : : : ; N � 1, and (77) holds for i = N , respectively.
By considering (69) as well, we obtain the conditions in (71)-
(72). �

We are now ready to prove Lemma 7. Recall that W 2
MVES(B(r)) is assumed. By Fact 3.(a), we can write W =
P(g; H) for some (g; H), with H being of full rank. Then,
by Fact 4.(b), we obtain bdB(r) \ bdW � ft1; : : : ; tN g. We
consider two cases.

Case 1: Suppose that ti =2 bdB(r) \ bdW for some i 2
f1; : : : ; N � 1g. For simplicity but w.l.o.g., assume i = 1. By
Fact 4.(a)-(b), we have

�rkh1k + g1 > 0; (78a)

�rkhik + gi � 0; i = 2; : : : ; N � 1; (78b)

�rkH1k + (1 � 1
T g) � 0: (78c)

Let us construct another polyhedron, denoted by P(~g; ~H),
where the 2-tuple (~g; ~H) 2 R

N�1 �R
(N�1)�(N�1) is chosen

as

~g1 = g1 � N�; (79a)

~gi = gi + �; i = 2; : : : ; N � 1; (79b)

~H =

�

r + �

r

�

H ; (79c)

where

� =
�rkh1k + g1

2N
> 0; (80)

� =
�

maxfkh1k; : : : ; khN�1k; kH1kg > 0: (81)

The polyhedron P(~g; ~H) is also an (N � 1)-dimensional
simplex; this is shown by Fact 3.(b) and the fact that the rank
of ~H is the same as that of H (which is full). Now, we claim
that B(r) � P(~g; ~H) and vol(P(~g; ~H)) < vol(P(g; H)) =
vol(W). For the �rst claim, one can verify from (78)-(79) that

�rk~h1k + ~g1 � (N � 1)� � 0;

�rk~hik + ~gi � 0; i = 2; : : : ; N � 1;

�rk ~H1k + (1 � 1
T ~g) � � � 0;

where ~hi and ~gi denote the ith column of ~H and ith element of
~g, resp. The above equations, together with Fact 4.(a), implies
that B(r) � P(~g; ~H). The second claim follows from (68) in
Fact 3.(b) and (79c):

vol(P(~g; ~H)) =
1

(N � 1)!

�

r

r + �

�N�1

j det(H)j�1

<
1

(N � 1)!
j det(H)j�1 = vol(W); (82)
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for N � 2 (note that N = 1 is meaningless). The above two
claims contradicts the assumption that W is an MVES of B(r).

Case 2: Suppose that tN =2 bdB(r) \ bdW . The proof
is similar to that of Case 1. Very concisely, this case has
�rkH1k + (1 � 1

T g) > 0 and �rkhik + gi � 0 for all
i 2 f1; : : : ; N � 1g. By constructing a polyhedron P(~g; ~H)
where

~g = g + �1; ~H =

�

r + �

r

�

H ;

� =
�rkH1k + (1 � 1

T g)

2N
;

and � is the same as (81), we show that B(r) � P(~g; ~H) and
vol(P(~g; ~H)) < vol(W). The above two claims contradict the
MVES assumption with W .

The above two cases imply that bdB(r) \ bdW =
ft1; : : : ; tN g, the desired result. In addition to this, Property
(a) in Lemma 7 is obvious since the expression of ti’s
in (70), as well as (67), already suggest the af�ne inde-
pendence of t1; : : : ; tN . As for Property (b) in Lemma 7,
note that (71) are all satis�ed. It can be veri�ed that by
substituting (70) and (71) into (66), W can be rewritten as
W = \N

i=1

�

� 2 R
N�1 j r2 � tT

i �
	

.

E. Proof of Lemma 5

For notational convenience, denote

U(�) = fs 2 Te j si � �; i = 1; : : : ; Ng;

and recall that the aim is to prove convP = U(�). The
above identity is trivial for the case of � = 1, since we
have convP = Te � U(1) for � = 1. Hence, we focus on
0:5 < � < 1. The proof is split into three steps.

Step 1: We start with showing that s 2 convP =) s 2
U(�). Note that any s 2 convP can be written as

s =
X

j 6=i

�jipij ;

for some f�jig satisfying
P

j 6=i �ji = 1 and �ji � 0 for
all j; i, j 6= i. From the above equation and the expres-
sion of pij in (42), one can verify that s 2 Te, and that
sk � maxj 6=i[pij ]k � � for any k (here [pij ]k denotes the
kth element of pij). Thus, any s 2 convP also lies in U(�).

Step 2: We turn our attention to proving s 2 U(�) =)
s 2 convP . To proceed, suppose that s 2 U(�), and assume
s1 � s2 � : : : � sN w.l.o.g. From a given s, choose an index
k by the following way

k = maxfi 2 f1; : : : ; Ng j si � �ig; (83)

where �1 = 0, and

�i =
1 � � �PN

j=i+1 sj

i � 1
; i = 2; : : : ; N: (84)

From (83)-(84), the following properties can be shown.

i) It holds true that

s1 � �k;

...

sk � �k;

sk+1 < �k+1;

...

sN < �N :

(85)

ii) Suppose that 2 � k � N �1, and N � 3. Then s satis�es
PN

j=k+1 sj < 1 � �.
iii) For any s 2 U(�), the index k must satisfy k � 2.
iv) � � �k > 0 for any 0:5 < � � 1.

The proofs of the above properties are as follows. Property
i) follows directly from the de�nition of k and the ordering
of s. Property ii) is obtained by induction. Observe that if
k � N � 1, the last equation of (85) reads

sN < �N =
1 � �

N � 1
� 1 � �; (86)

and for k = N � 1 the proof is complete (trivially). For k <
N � 1, we wish to show from (86) that sN�1 + sN < 1 � �,
and then recursively,

PN

j=i sj < 1 � � from i = N � 2 to
i = k + 1. To put this induction into context, suppose that

N
X

j=i+1

sj < 1 � � (87)

for i 2 fk+1; : : : ; N �1g, and note that (87) already holds for
i = N � 1 due to (86). The task is to prove

PN

j=i sj < 1 � �.
The proof is as follows:

N
X

j=i

sj < �i +

N
X

j=i+1

sj (88a)

=
1 � �

i � 1
+

�

1 � 1

i � 1

� N
X

j=i+1

sj (88b)

< 1 � �; (88c)

where (88a) is obtained by si < �i in Property i); (88b) by
(84); (88c) by (87), and i � 1 � k > 1 for k � 2. Hence,
we conclude by induction that Property ii) holds. To prove
Property iii), note that s satis�es 1

T s = 1. Thus, s2 can be
written as

s2 = 1 � s1 �
N
X

j=3

sj

Since every s 2 U(�) satis�es si � � for any i, we get

s2 � 1 � � �
N
X

j=3

sj = �2:

The above condition implies that k � 2 must hold. To prove
Property iv), observe the following inequalities

� � �k � � � 1 � �

k � 1
� 2� � 1

k � 1
;
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here, the �rst inequality is done by applying (84), and the
second inequality by k � 2. From the above equation, we see
that � � �k > 0 for � > 0:5.

With the above properties, we are ready to show that
s 2 U(�) lies in convP . First, for each i 2 f1; : : : ; kg, we
construct a vector

�pi =
X

j 6=i

�jipij ;

where

�ji =

(

c; 1 � j � k; j 6= i
sj

1 � �
; k + 1 � j � N; N � 3;

c =
1

k � 1

 

1 �
PN

j=k+1 sj

1 � �

!

=
�k

1 � �
:

It can be veri�ed that �ji � 0,
P

j 6=i �ji = 1 (in particular,
Property ii) is required to verify c > 0); that is to say, every
�pi satis�es �pi 2 convP . Moreover, from the above equations,
�pi is shown to take the structure

�pi =

�

(� � �k)ei + �k1

sk+1:N

�

; (89)

where sk+1:N = [ sk+1; : : : ; sN ]T . Now, we claim that

s =

k
X

i=1

�i �pi; (90)

where

�i =
si � �k

� � �k

; i = 1; : : : ; k; (91)

and they satisfy
Pk

i=1 �i = 1, �i � 0 for all i. The above
claim is veri�ed as follows. The property �i � 0 directly
follows from Properties i) and iv). For the property

Pk

i=1 �i =
1, observe that

k
X

i=1

�i =

Pk

i=1 si � k�k

� � �k

=
1 �PN

j=k+1 sj � k�k

� � �k

=
(k � 1)�k + � � k�k

� � �k

= 1;

where the second equality is by 1
T s = 1, and the third

equality by (84). In addition, by substituting (89) and (91) into
the right-hand side of (90), and by using 1

T s = 1, one can
show that (90) is true. Eq. (90) and the associated properties
with �i suggest that s 2 convf �p1; : : : ; �pkg. This, together
with the fact that �pi 2 convP , implies s 2 convP .

Step 3: By combining the results in Step 1 and Step 2, we
get s 2 convP () s 2 U(�). Lemma 5 is therefore proven.

F. Proof of Lemma 6

Recall R(r) = fs 2 Te j ksk � rg, and notice that Te can
be rewritten as

Te = fs 2 R
N j s � 0; 1

T s = 1g:

Let s 2 R(r), and assume s1 � s2 � : : : � sN w.l.o.g. From
the above assumption, it is easy to verify that s1 � 1

N
. Also,

by denoting s2:N = [ s2; : : : ; sN ]T , we have

r2 � ksk2 = s2
1 + ks2:N k2

� s2
1 +

(1 � s1)2

N � 1
(92)

where the second inequality is owing to the norm inequality
Pn

i=1 jxij � p
nkxk for any x 2 R

n, and the fact that s � 0,
1

T s = 1. Moreover, equality in (92) holds if s takes the form
s = [ s1; 1�s1

N�1 1
T ]T (which lies in Te). Hence, �?(r) can be

simpli�ed to

�?(r) = sup s1 (93a)

s:t: s2
1 +

(1 � s1)2

N � 1
� r2 (93b)

1

N
� s1 � 1: (93c)

By the quadratic formula, the constraint in (93b) can be
reexpressed as

(s1 � a) (s1 � b) � 0; (94)

where

a =
1 +

p

(N � 1)(Nr2 � 1)

N
;

b =
1 �

p

(N � 1)(Nr2 � 1)

N
:

From (93c) and (94), it can be shown that for 1p
N

� r � 1,

b � 1

N
� s1 � a � 1:

Hence, the optimal solution to problem (93) is simply s?
1 = a,

and the proof is complete.
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