IPT544000 Selected Topics in Ultrafast Optics

Generation and Applications of Optical Frequency Combs

Robin (Chen-Bin) Huang

Institute of Photonics Technologies National Tsing Hua University, Taiwan

Beautiful picture \Leftrightarrow Bright future

• RF linking optical and vise versa?

Motivations

- The definition of one second affects our daily life
 - Internet, GPS, cell phones....
- Other units related to a second
 - SI base units: meter, ampere, candela
 - SI derived units: volt (kg*m²/A*s³), Newton,.....
- Physical constants
 - α decay rate, speed of light,.....
- High quality time and frequency standards an important task throughout the world

Definition of a second

- 2000 B.C., Egyptians: divided day and night into 12 hours
- 1000, Muslims: counting the moon, (1/60)² of an hour
- 1670, Huygens pendulum
- 1956, the Ephemeris second: 1/31,556,925.9747 of Earth's one rotation around the Sun (a year in 1900) by the 11th General Conference on Weights and Measures
- 1967, the atomic time: 1/9,192,631,770 duration of ¹³³Cs ground-state transition by 13th General Conference on Weights and Measures
- 1980's, laser cooling made possible improved frequency stability in Cs clocks (Cs fountains)

$$\sigma_{y}(\tau) \approx \frac{\Delta \upsilon}{\upsilon_{0} SNR}$$

Clocks-Evolution

Atomic clock: ¹³³Cs

Α

Cs oven

Think of it as polarization control in photonics

S.A. Diddams, et.al., Science 306, 1318 (2004)

Doppler shifts, collisions

Optical clock?

- What benefits do we gain?
- How to realize it?
- Problems?

$$\sigma_{y}(\tau) \approx \frac{\Delta \upsilon}{\upsilon_{0} SNR}$$

How to "read" optical frequencies accurately?

Optical frequency comb

T. Udem, Holzwarth, Hänsch, Nature 416, 233 (2002)

• So, if we have a pulse train, are we guaranteed a comb?

Conversely, if we have a comb, are we guaranteed with a pulse train?

Mode-locking \Leftrightarrow frequency comb?

• Well, not quite

Realization of a "Comb"

- 1917, Einstein laid foundation for MASER and LASER
- 1953, Townes and students invented MASER
- 1957-60's, LASER theory developed by Townes and Schawlow
- 1960, first working laser (Ruby) by Maiman
- 1962, first semiconductor (GaAs) LD by R.N. Hall
- 1978, optical frequency comb envisioned
- 1998, frequency comb realized
- Explosion on this research field and it's applications

John L. Hall of NIST/JILA at Boulder, Colorado and Theodor W. Hänsch of Max-Plank Institute, Garching, Germany. (www.nobel.org)

What took so long?

What took so long?

- Laser introduced
 - Spectroscopy: CW laser
 - Nonlinearity: ultrafast community
- Late 1970's: spectroscopy using sub-picosecond
 - ~800 GHz "comb" that suffered huge frequency shift
- Kerr-lens mode-locking introduced in 1991
 - 60 fs pulses directly from Ti:S. But no one looked in frequency domain
- 1997, white light coherence of supercontinuum observed by Hänsch
- 1999, octave spanning spectrum with photonic crystal fiber
- 2004, intrinsic octave-spanning Ti:S

(CONFIDENTIAL)

Proposal for a universal optical frequency comb synthesizer

T. W. Hänsch Max-Planck-Institut für Quantenoptik

(March 30, 1997)

Abstract

An optical frequency synthesizer is proposed which produces a wide comb of absolutely known equidistant marker frequencies throughout the infrared, visible, and ultraviolet spectral range. To this end, a white light continuum with pulse repetition rate f_p is produced by focusing the output of a mode-locked femtosecond laser into an optical fiber or bulk medium with a third order nonlinear susceptibility. The rate of phase slippage of the laser carrier relative to the pulse envelope f_q is monitored by observing a beat signal between the white light continuum and the second harmonic of the laser.

read and understood

Rpril 4, 1997 Martin Vetr April 4, 1997 T. Uden

http://nobelprize.org/nobel_prizes/physics/laureates/2005/hansch-lecture.html

Comb vs. Pulses

- Frequency-domain vs. time-domain
- Comb frequency offset directly linked to carrier-envelop phase!

T. Udem, Holzwarth, Hänsch, Nature 416, 233 (2002)

Testing of comb spacing uniformity

- Experimental uniformity: 3x10⁻¹⁷
 - SFG of first and second diode lasers, SHG of third diode laser
 - Observing the beat of the intermediate line with third phase-locked laser

$\Delta \Phi_{CE}$ measurement: cavity length control

- Silica wedge in the laser
- Inteferometric intensity "cross"-correlation
 - Sub-10 fs Ti:S laser, f_{rep}=100 MHz
 - Correlator dispersion compensated
 - Laser not stabilized

Why vacuum tube?

Xu et.al, Opt. Lett. 21, 2008 (1996).

∆ψ-2kπ

Do you see problems?

Cross-correlation

D. J. Jones, et.al., Science 288, 635 (2000)

Comb stabilization: principle

• You need to measure something before you can stabilize it!

$$v_m = mf_{rep} + \varepsilon$$

• Self-referencing (v-to-2v)

T. Udem, Holzwarth, Hänsch, Nature 416, 233 (2002)

Supercontinuum generation

http://nobelprize.org/nobel_prizes/physics/laureates/2005/hansch-lecture.html

ε measurement: self-referencing

S.T. Cundiff, J. Phys. D 35, R43 (2002).

Comb stabilization: self-referencing

- Block diagram
- Ti:S with 2mm crystal
 - ΔΦ_{CE}~100π
 - ε~50f_{rep}

$$\upsilon_m(t) = mf_{rep}(t) + \varepsilon(t)$$

$$\upsilon_m(t) = mf_{rep} + \varepsilon(t)$$

$$\mathcal{U}_m = mf_{rep} + \mathcal{E}$$

Can you think of other approaches?

A. M. Weiner, Ultrafast Optics (Wiley, 2009)

Comb stabilization: controls

- Ti: Sapphire
 - End mirror tilt: ε, f_{rep}
 - End mirror translation: f_{rep}

Elastic tape model

J. Reichert, et.al., Opt. Comm. 172, 59 (1999)

D.J. Jones, et.al., Science 288, 635 (2000)

Synchronization between two combs

Comb stitching

Check: A. Wirth, et.al, Science **334**, 195 (2011)

A Time domain

Shelton et.al,, Science 293, 1286 (2001)

Comb and progress to octave spanning

- Mode-locked Ti:Sapphire laser
 - Does not need octave 3-db bandwidth

T. Udem, Holzwarth, Hänsch, Nature 416, 233 (2002)

(c,e) Ye, Cundiff, Femtosecond optical frequency comb: principle, operation and application (Springer, 2005)
(b) Matos, et.al. Opt. Lett. 29, 1683 (2004)

Comb applications

- Metrology: 1978...
- Optical clock
- Synthesis of ultra-purity optical and RF frequencies
- Remote transfer of time/frequency standards
- Precision spectroscopy
- Feel free to dream!

Frequency metrology: frequency chain

- Multiplicative up-conversion
 - Complicated
 - Expensive
 - Not affordable unless \$\$\$
 - Three labs, two buildings

H. Schnatz, et.al., Phys. Rev. Lett. 76, 18 (1996)

Optical frequency chain

J. L. Hall & J. Ye, "NIST 100th birthday", Optics & Photonics News 12, 44, Feb. 2001

Optical metrology: using combs

- How frequency "ruler" helps
 - Optical frequencies linked through 2 microwave frequencies
- Larger comb spacing better

$$V_{unknown} = mf_{rep} + \varepsilon \pm f_{beat}$$

How to remove sign ambiguity? How to get the right *m*?

$$\upsilon_m = mf_{rep} + \varepsilon$$

fs comb measured frequencies

•	Ca	657 nm	Schnatz – PTB	PRL 1 Jan '96
•	C_2H_2	1.5 μm	Nakagawa - NRLM	JOSA-B Dec '96
•	Sr⁺	674 nm	Bernard – NRC	PRL 19 Apr '99
•	In+	236 nm	v. Zanthier - MPQ	Opt.Comm. Aug'99
•	Н	243 nm	Reichert - MPQ	PRL 10 Apr '00
•	Rb	778 nm	D. Jones - JILA	Science 28 Apr 00
•	I_2	532 nm	Diddams - JILA	PRL 29 May '00
•	Н	243 nm	Niering - MPQ	PRL 12 June '00
•	Yb+	467 nm	Roberts - NPL	PRA 7 July '00
•	ln+	236 nm	v. Zanthier – MPQ	Opt. Lett. 1 Dec.'00
•	Ca	657 nm	Stenger – PTB	PRA 17 Jan '01
•	Hg⁺	282 nm	Udem – NIST	PRL 28 May '01
•	Ca	657 nm	Udem – NIST	PRL 28 May '01
•	Yb⁺	435 nm	Stenger – PTB	Opt. Lett.15 Oct '01

http://nobelprize.org/nobel_prizes/physics/laureates/2005/hall-lecture.html

Optical clock

- 1950's: ¹³³Cs at 9,192,631,770 Hz
- 2000: optical clock
 - Narrow linewidth oscillator
 - Narrow quantum transition
 - Probe laser
 - Frequency counter
- Much better instability: 10⁵ better ideally
- Shorten measurement time
- Choices
 - Atom (Ca, Sr, Mg, H...)
 - Ion (Hg⁺, Yb⁺, In⁺, Sr⁺...)
 - Molecule (I₂, CH₄, CO₂...)

Allan deviation

$$\sigma_{y}(\tau) = \frac{\Delta v}{\pi v_{0}} \sqrt{\frac{T}{2N\tau}}$$

Optical Cavity

Periodic table

GROUP PERIODIC TABLE OF THE ELEMENTS																				
	-	1 IA					2	<u> </u>	77		\overline{F}	$\overline{\mathcal{H}}$		http	://www.ktf-	split.hr/per	iodni/en/		18 VIIIA	
Q	1	I 1.00/9	RELATIVE ATOMIC MASS (1) GROUP JUPAC GROUP CAS				Me	etal 📔	Semimetal	[] Nonme	etal									
PER	_	HYDROGEN						Alkali metal					13 11A 14 1/A 15 1/A 16 1/A 17 1/1A							
		3 6.941	4 9.0122	ATOMIC N		10.811			aline earth m	etal s	17 Haloge	oas		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180	\geq
	2	Li	Be	s	YMBOL -	B	/ /		Lanthanide	STAN	DARD STATE	(25 °C; 101	kPa)	В	С	N	0	F	Ne	
		LITHIUM	BERTLENM	\geq		BORON			Actinide	Ne	- gas	Fe - solid		BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON	Γ
~	-	11 22.990	12 24.305		ELE	MENT NAME	/		/	Ga	- liquid	TC - synthe	tic	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948	1
	3	Na	Mg	Y_{-}		/		/		– VIIB –				Al	Si	P	S	Cl	Ar	
	4	SODIUM	MAGNESIUM	3 IIIB	4 IVB	5 VB	6 /VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON	
	4	V	Co	So	T:	23 50.942	24 51.990	25 54.936	E O	27 56.955	20 58.693	29 63.546	30 65.39 7n	SI 69.725	52 12.04	33 14.922	54 76.90	D	30 83.80	\geq
		DOTASSIUM	Ca	SCANDUM	II.	VANADUIM	CHROMIUM		re	COBALT	INI	COPPER		Ga	GERMANUM	AS	SELENIUM	DI		
/		37 85.468	38 87.52	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29	
_	5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe	\geq
		RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CHONNELL	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON	
	_	55 132.91	50 107.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 201.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)	
	6	Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	-
		CAESIUM 87 (223)	BARIUM 88 (226)	Lanchamde	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON	\sim
	7	Fr	Ra Ra	89-103 Ac-Lr	TD (P	IDIb	Sa	IRIh	TEL	MIA	11 111100	ПТпппп	II Innlb		ΠΪηη <i>σ</i> η					
		I'I FRANCIUM	RADIUM	Actinide		DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM		UNUNNILIUM	UNUNUNIUM	UNUNBIUM		MICANDAN ON					
													2110							
(1)	Pure	Appl. Chem., 7	LANTHANIDE						60 144 24 61 (145) 62 150 36 63 151 96 64 157 25				65 158 93	Copyright © 1998 2005 EriG (ori@ktf-split.hr) 65 158 93 66 162 50 67 164 92 68 167 29 69 168 97 70 173 00 71 174 92						
/	Relati signifi	elative atomic mass is shown with five gnificant figures. For elements have no stable		La	Ce	Pr	Nd	TPmn	Sm	En	Cd	Th	Dv	Ho	Er	Tm	Vh	Ln	\sim	
	nuclides, the value enclosed in brackets indicates the mass number of the longest-lived			ngest-lived	LANTHANUM	CERIUM	PRASECOYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM	
	Howe do ha	vever three such elements (Th, Pa, and U) have a characteristic terrestrial isotopic		ACTINIDE			/												1	
	compa abula	emposition, and for these an atomic weight is bulated.			89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
					Ac	Th	Pa	U	ND	Pu	Alm.	Cm	IRIK	Cf	1Ľs	Tk.DDD	MIQ	NO	Lr	
Editor: Aditya Vardhan (adivar@nettlinx.com)					ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM	I.

- HeNe Laser w CH_4 Absorber 3.39 μm
- HeNe vis Laser w I₂ Absorber ~5 vis λ 's
- CO₂ Laser w CO₂ Absorber
- CO₂ Laser w OsO₄ Absorber
- Ar⁺ Laser w I_2 Absorber
- Nd:YAG Laser w I₂ Absorber
- Nd:YAG Laser w C_2HD Abs.
- Yb:YAG Laser w C_2H_2 Abs.
- Diode Lasers w C_2H_2 Abs.

- 10.6 μm 10.6 μm 514 nm 1064 nm
- 1064 nm
- 1030 nm
- 1550 nm

Hg⁺ optical clock

 $Q = v_0 / \Delta v \sim 10^{14}$

- Cooled ion that provides atomic transition (282 nm)
- Stabilized probe laser that provides the "clock tick"
- Optical frequency comb that provides an "optical" frequency divider

S.A. Diddams, et.al., Science 306, 1318 (2004).

Optical clocks: some results

Ye, Cundiff, Femtosecond optical frequency comb: principle, operation and application (Springer, 2005)

Low-noise frequency synthesis

- RF → optical
- RF → RF
- Optical → optical
- Optical → RF

$$f_{rep} = \frac{\upsilon_{opt} + f_{beat} - \varepsilon}{m}$$

Extremely low phase noise RF signals

J. Ye et.al., PRL 87, 270801 (2001).

Phase noise issue

- Transfer of RF reference onto optical: disastrous
- Optical reference a better choice

Ye, Cundiff, Femtosecond optical frequency comb: principle, operation and application (Springer, 2005)

Difference frequency generation

Sum frequency generation with an optical standard

Comb as transfer oscillator

- Comb can be un-stabilized!
- Ratio of widely separated optical frequencies or microwave

H.R. Telle, et.al., Appl. Phys. B 74, 1 (2002).

Remote transfer

S.M. Foreman, et. al., Rev. Sci. Instr. 78, 021101 (2007).

Comb alternatives

- Fiber laser combs
- Externally-modulated CW comb
 - Simple phase modulator
 - Dual-electrode intensity modulator
- Optical frequency comb generator
 - Actually dominated large-span optical frequency difference measurements during 1993-1998
- Compact comb generator using micro-toroid

Fiber laser combs

- Compact, high power (>10 W)
- Different wavelength windows
 - Er (1.5μm), Yb (1.05μm)

Best phase stability ever reported

Cladding pumped CPA linear amplification avoids nonlinearity induced phase and amplitude noise

Fiber laser combs (cont.)

RBW: 1 kHz

- Unlocked
 - Fast f_0 linewidth < 10 kHz, record for fiber systems (~50 kHz)
 - Long term (~min) f_0 linewidth < 100 kHz (Ti:S ~MHz)
- Locked $f_0 < 1 \text{ mHz}$
- Frequency comparison with Ti:S
 - < 1 mHz (1.05 ks time)</p>

T.R. Schibli et.al., Nat. Photonics 2, 355 (2008)

Externally modulated laser combs

Phase or dual-electrode intensity modulation

Not self-pulsing

Dual electrode intensity modulator A₁ sin ωt $-\Delta \theta$ RF-a Bias E_{in} Eout λο RF-b Bias λο $\Delta \theta$ A₂ sin ωt (a) Spectral density, 10 dB/div (b) -20 -10 0 10 20 Harmonic order

$$\frac{P_k}{P_{in}} = \frac{1}{2\pi\overline{A}} \{1 + \cos(2\Delta\theta)\cos(2\Delta A) + [\cos(2\Delta\theta) + \cos(2\Delta\theta)]\cos[2\overline{A} - \frac{(2k+1)\pi}{2}]\}$$

$$\overline{A} \equiv (A_1 + A_2)/2$$
 $\Delta A \equiv (A_1 - A_2)/2$ $\Delta \theta \equiv (\theta_1 - \theta_2)/2$

OFCG

- Phase modulation inside cavity
 - Smooth spectrum: exponential
 - Wide bandwidth

Micro-toroid comb generator

- Extremely high-Q cavity
- χ^3 nonlinearity: four-wave mixing
- Large comb spacing!

Comb spacing uniformity: 7.3x10⁻¹⁸

P. Del'Haye, et.al., Nature 450, 1214 (2007)
P. Del'Haye, et.al., PRL 101, 053903 (2008)
P. Del'Haye, et.al., Nat. Photonics 3, 529 (2009)
Ferdous, et.al., Nat. Photonics 6, xxx (2011)
Kippenberg, el.al., Science 332, 555 (2011)

Summary

- History of a second and optical frequency comb explained
- Derivation and method for measuring the carrier-envelop phase slippage discussed
- Stabilization of OFC
 - Self-referencing
- Applications of OFC
 - Optical frequency metrology, optical clock,
- Alternative OFC generation methods