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6.2

Joint Probability Distribution

Definition

The joint probability mass function of the discrete
random variables X and Y, denoted as fXY(x, y), satisfies
• fXY(x, y) ≥ 0
•
∑

x
∑

Y fXY(x, y) = 1
• fXY(x, y) = P(X = x,Y = y)

Definition

Let A be any set consisting pairs of (x, y) values. Then the
probability P[(x, y) ∈ A] is obtained by summing the joint
pmf over pairs in A:

P[(x, y) ∈ A] =
∑

(x,y)∈A

P(x, y)
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6.3

Example: Joint Probability Distribution

Example

A large insurance agency services a number of
customers who have purchased both a homeowner’s
policy and an automobile policy. For each type of policy, a
deductible amount must be specified. For automobile
policy, the choices are $100 and $200, whereas for
homeowner’s policy, the choices are 0, $100, and $200.
Let X = the deductible amount of the auto policy and Y =
the deductible amount of the homeowner’s policy. The
joint pmf for possible (X,Y) are summarized in the
following table:

P(x, y) y = 0 y = 100 y = 200
x = 100 0.20 0.10 0.20
x = 200 0.05 0.15 0.30
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6.4

Example: Joint Probability Distribution

• The total probability∑
x

∑
y

P(x, y) = 1

• The probability of $100 deductible on both policies is

P(X = 100,Y = 100) = 0.1

• The probability of Y ≥ 100 is

P(Y ≥ 100) = 0.1 + 0.2 + 0.15 + 0.3 = 0.75

which corresponds to the (X,Y) pairs (100, 100),
(100, 200), (200, 100), and (200, 200).
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6.5

Marginal Probability Distribution

Definition

If X and Y are discrete random variables with joint
probability mass function fXY(x, y), then the marginal
probability mass function of X and Y are

fX(x) = P(X = x) =
∑

y

fXY(x, y) (1)

and
fY(y) = P(Y = y) =

∑
x

fXY(x, y) (2)
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6.6

Example: Joint Probability Distribution (Con’t)

• The probability of X = 100 and X = 200, are
computing row totals in the joint probability table:

P(X = 100) = 0.2 + 0.1 + 0.2 = 0.5

and
P(X = 200) = 0.05 + 0.15 + 0.3 = 0.5

P(x, y) y = 0 y = 100 y = 200
x = 100 0.20 0.10 0.20 0.5
x = 200 0.05 0.15 0.30 0.5

0.25 0.25 0.5
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6.7

Conditional Probability

Definition

Given discrete random variables X and Y with joint
probability mass function fXY(x, y), the conditional
probability mass functions of Y given X = x is

fY|x(y) = fXY(x, y)/fX(x), fX(x) > 0 (3)

Note that a conditional probability function fY|x(y) is also a
probability mass function. The following properties are
satisfied:
• fY|x(y) ≥ 0
•
∑

y fY|x(y) = 1
• P(Y = y|X = x) = fY|x(y)
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6.8

Example: Joint Probability Distribution (Con’t)

• Let us fix the random variable X and find the
conditional probability mass function of Y:

fY(y|x) y = 0 y = 100 y = 200
x = 100 0.2

0.5 = 0.4 0.1
0.5 = 0.2 0.2

0.5 = 0.4
x = 200 0.05

0.5 = 0.1 0.15
0.5 = 0.3 0.3

0.5 = 0.6
• Let us fix the random variable Y and find the

conditional probability mass function of X:
fX(x|y) y = 0 y = 100 y = 200

x = 100 0.2
0.25 = 0.8 0.1

0.25 = 0.4 0.2
0.5 = 0.4

x = 200 0.05
0.25 = 0.2 0.15

0.25 = 0.6 0.3
0.5 = 0.6
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6.9

Conditional Mean and Variance

Definition

The conditional mean of Y given X = x, denoted as
E(Y|x) or µY|x, is

E(Y|x) =
∑

y

yfY|x(y) (4)

and the conditional variance of Y given X = x, denoted
as V(Y|x) or σY|x, is

V(Y|x) =
∑

y

(
y− µY|x

)2 fY|x(y) =
∑

y

y2fY|x(y)− µ2
Y|x (5)
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6.10

Example: Joint Probability Distribution (Con’t)

• Find the conditional mean and variance of Y given
X = 100:

E(Y|100) = 0× 0.4 + 100× 0.2 + 200× 0.4 = 100

and

V(Y|100) = 0×0.4+1002×0.2+2002×0.4−1002 = 8000

• Find the conditional mean and variance of X given
Y = 200:

E(X|200) = 100× 0.4 + 200× 0.6 = 160

and

V(X|200) = 1002 × 0.4 + 2002 × 0.6− 1602 = 2400
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6.11

Independence

Definition

For discrete random variables X and Y, if any one of the
following properties is true, the others are also true. X
and Y are independent.

1 fXY(x, y) = fX(x)fY(y) for all x and y

2 fY|x(y) = fY(y) for all x and y with fX(x) > 0

3 fX|y(x) = fX(x) for all x and y with fY(y) > 0

4 P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) for any sets A
and B in the range of X and Y, respectively

In previous insurance example, consider

P(100, 100) = 0.1 6= 0.5× 0.25 = PX(X = 100)PY(Y = 100),

so X and Y are not independent. Independence of X and
Y requires every entry in the joint probability table be the
product of the corresponding row and column marginal
probabilities.



Joint Probability
Distributions

Ching-Han Hsu,
Ph.D.

Joint Probability of
Discrete RVs

Joint Probability of
Continuous RVs

Covariance and
Correlation

Bivariant Normal
Distribution

Linear Functions of
Random Variables

6.12

Multiple Discrete Random Variables

Definition (Joint Probability Mass Function)

The joint probability mass function of X1,X2, . . . ,Xp is

fX1,X2,...,Xp(x1, x2, . . . , xp)

= P(X1 = x1,X2 = x2, . . . ,Xp = xp) (6)

for all points (x1, x2, . . . , xp) in the range of X1,X2, . . . ,Xp.
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6.13

Multiple Discrete Random Variables

Definition (Marginal Probability Mass Function)

If X1,X2, . . . ,Xp are discrete random variables with joint
probability mass function fX1,X2,...,Xp(x1, x2, . . . , xp), the
marginal probability mass function of any Xi is

fXi(xi) = P(Xi = xi) =
∑
xj,j 6=i

fX1,X2,...,Xp(x1, x2, . . . , xp) (7)

where the sum is over all points in the range of
X1,X2, . . . ,Xp for which Xi = xi.
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6.14

Multiple Discrete Random Variables

Definition (Mean and Variance)

The mean E(Xi) and variance V(Xi) for i = 1, 2, . . . , p can
be determined as follows:

E(Xi) =
∑

x1,x2,...,xp

xifX1,X2,...,Xp(x1, x2, . . . , xp) (8)

V(Xi) =
∑

x1,x2,...,xp

(xi − µXi)
2fX1,X2,...,Xp(x1, x2, . . . , xp) (9)

where the sum is over all points in the range of
X1,X2, . . . ,Xp.
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6.15

Multiple Discrete Random Variables

Definition (Independence)

Discrete random variables X1,X2, . . . ,Xp are independent
if and only if

fX1,X2,...,Xk(x1, x2, . . . , xk) = fX1(x1)fX2(xk) · · · fXk(xk) (10)

for any 2 ≤ k ≤ p.
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6.16

Multiple Discrete Random Variables

Definition (Distribution of a Subset of RVs)

If X1,X2, . . . ,Xp are discrete random variables with joint
probability mass function fX1,X2,...,Xp(x1, x2, . . . , xp), the joint
probability mass function of X1,X2, . . . ,Xk , k < p, is

fX1,X2,...,Xk(x1, x2, . . . , xk)

= P(X1 = x1,X2 = x2, . . . ,Xk = xk)

=
∑

P(X1 = x1,X2 = x2, . . . ,Xk = xk) (11)

where the sum is over all points in the range X1,X2, . . . ,Xp

for which X1 = x1,X2 = x2, . . . ,Xk = xk.
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6.17

Joint Probability Distribution

Definition

A joint probability density function for the continuous
random variables X and Y, denoted as fXY(x, y), satisfies
the following properties
• fXY(x, y) ≥ 0, ∀x, y
•
∫∞
−∞

∫∞
−∞ fXY(x, y)dxdy = 1

• For any region R of two-dimensional space

P((X,Y) ∈ R) =

∫∫
R

fXY(x, y)dxdy
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6.18

Example: Continuous Joint Probability Distribution

Example

Let the random variable X denote the time until a
computer server connects to your machines, and let Y
denote the time until the server authorizes you as a valid
user. Each of these random variables measures the wait
from a common starting time and X < Y. Assume that the
joint probability density function for X and Y is

fXY(x, y) = 6× 10−6 exp(−0.001x− 0.002y), 0 < X < Y

Determine the probability that X < 1000 and Y < 2000.
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6.19

Example: Continuous Joint Prob. Distribution (Con’t)

The probability that X < 1000 and Y < 2000 is determined
by

P(X < 1000,Y < 2000) =

∫ 1000

0

∫ 2000

x
fXY(x, y)dydx

=

∫ 1000

0

∫ 2000

x
6× 10−6 exp(−0.001x− 0.002y)dydx

= 6× 10−6
∫ 1000

0

(
e−0.002x − e−4

0.002

)
e−0.001xdx

= 0.003
∫ 1000

0

(
e−0.003x − e−4e−0.001x) dx

= 0.003
[(

1− e−3

0.003

)
− e−4

(
1− e−1

0.001

)]
= 0.915
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6.20

Joint Probability Distribution

Definition (Marginal Probability Density Function)

If the joint probability density function of continuous
random variables X and Y is fXY(x, y), the marginal
probability density functions of X and Y, are

fX(x) =

∫
y

fXY(x, y)dy (12)

and
fY(y) =

∫
x

fXY(x, y)dx (13)
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6.21

Example: Continuous Joint Prob. Distribution (Con’t)

• Find the marginal probability density function of Y:

fY(y) =

∫ y

0
fXY(x, y)dx

=

∫ y

0
6× 10−6e(−0.001x−0.002y)dx

= 6× 10−6e−0.002y
∫ y

0
e−0.001xdx

= 6× 10−6e−0.002y
(

1− e−0.001y

0.001

)
= 6× 10−3 (e−0.002y − e−0.003y)

• Determine the marginal distribution of X.
• Calculate the probability that Y exceeds 2000

milliseconds.
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6.22

Joint Probability Distribution

Definition (Conditional Probability Density Function)

Given continuous random variables X and Y is with joint
probability density function fXY(x, y), the conditional
probability density functions of Y given X = x is

fY|x(y) =
fXY(x, y)

fX(x)
, fX(x) > 0 (14)

The conditional probability density function fY|x(y) is a
probability density function for all and satisfies the
following properties:
• fY|x(y) ≥ 0
•
∫

fY|x(y)dy = 1
• P(Y ∈ B|X = x) =

∫
B fY|x(y)dy



Joint Probability
Distributions

Ching-Han Hsu,
Ph.D.

Joint Probability of
Discrete RVs

Joint Probability of
Continuous RVs

Covariance and
Correlation

Bivariant Normal
Distribution

Linear Functions of
Random Variables

6.23

Example: Continuous Joint Prob. Distribution (Con’t)

• Determine the marginal distribution of X.

fX(x) =

∫ ∞
x

fXY(x, y)dy

=

∫ ∞
x

6× 10−6e(−0.001x−0.002y)dy

= 6× 10−6e−0.001x
∫ ∞

x
e−0.002ydy

= 6× 10−6e−0.001x
(

e−0.002x

0.002

)
= 0.003e−0.003x, x > 0

This is an exponential distribution with λ = 0.003.
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6.24

Example: Continuous Joint Prob. Distribution (Con’t)

• The conditional probability density function of Y given
X = x is

fY|x(y) =
fXY(x, y)

fX(x)

=
6× 10−6e(−0.001x−0.002y)

0.003e−0.003x

= 0.002e(0.002x−0.002y), 0 < x < y

• Calculate the probability that Y exceeds 2000
milliseconds given x = 1500.

P(y > 2000|x = 1500) =

∫ ∞
2000

fY|1500(y)dy

=

∫ ∞
2000

0.002e(0.002(1500)−0.002y)dy

= 0.002e3 e−4

0.002
= 0.368
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6.25

Joint Probability Distribution

Definition (Conditional Mean and Variance)

The conditional mean of Y given X = x, denoted as
E(Y|x) or µY|x, is

E(Y|x) =

∫
yfY|x(y)dy (15)

and the conditional variance of Y given X = x, denoted
as V(Y|x) or σY|x, is

V(Y|x) =

∫
(y−µY|x)

2fY|x(y)dy =

∫
y2fY|x(y)dy−µ2

Y|x (16)
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6.26

Example: Continuous Joint Prob. Distribution (Con’t)

• The conditional mean of Y given x = 1500 is

E(Y|X = 1500) =

∫ ∞
1500

yfY|1500(y)dy

=

∫ ∞
1500

y0.002e(0.002(1500)−0.002y)dy

= 0.002e3
∫ ∞

1500
ye−0.002ydy

= 2000
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6.27

Joint Probability Distribution

Definition (Independence)

For continuous random variables X and Y, if one of the
following properties is true, the others are also true, and
X and Y are said to be independent:

1 fXY(x, y) = fX(x)fY(y) for all x and y

2 fY|x(y) = fY(y) for all x and y with fX(x) > 0

3 fX|y(x) = fX(x) for all x and y with fY(y) > 0

4 P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) for any sets A
and B in the range of X and Y, respectively
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6.28

Example: Independence

• Assume that the joint probability density function for
X and Y is

fXY(x, y) = 6×10−6 exp(−0.001x−0.002y), 0 < X < Y

• The marginal density functions of X and Y are

fX(x) = 0.003e−0.003x

fY(y) = 6× 10−3 (e−0.002y − e−0.003y)
• X and Y are NOT independent, because

fXY(x, y) 6= fX(x)fY(y)
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6.29

Example: Independence

• Assume that the joint probability density function for
X and Y is

fXY(x, y) = 2× 10−6 exp(−0.001x− 0.002y)

where 0 < X and 0 < Y.
• The marginal density functions of X and Y are

fX(x) =

∫ ∞
0

2× 10−6e−0.001x−0.002ydy

= 0.001e−0.001x

fY(y) =

∫ ∞
0

2× 10−6e−0.001x−0.002ydx

= 0.002e−0.002y

• X and Y are independent, because

fXY(x, y) = fX(x)fY(y)
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6.30

Expected Value of a Function

Definition (Expected Value of a Function)

The expected value of a function h(X,Y) of two random
variables

E[h(X,Y)] =

{∑∑
h(x, y)fXY(x, y) discrete∫∫

h(x, y)fXY(x, y)dxdy continuous
(17)
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6.31

Example: Concert Tickets

Example

Five friends have purchased tickets to a certain concert. If
the tickets are for seats 1− 5 and the tickets are randomly
distributed among the five. What is the expected number
of seats separating any particular two of the five?

• Let X and Y denote the seat numbers of the first and
second individuals, respectively. Possible (X,Y) pairs
are:

x
h(x, y) 1 2 3 4 5

1 − 0 1 2 3
2 0 − 0 1 2

y 3 1 0 − 0 1
4 2 1 0 − 0
5 3 2 1 0 −
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6.32

Example: Concert Tickets

• The joint pmf of (X,Y) is

fXY(x, y) =

{
1

20 , x, y = 1, 2, 3, 4, 5; x 6= y
0 otherwise

• The number of seats separating the two individuals is

h(X,Y) = |X − Y| − 1

• The expected value of h(X,Y) is

E[h(X,Y)] =
∑
(x,y)

h(x, y)fXY(x, y)

=

5∑
x=1

5∑
y=1,y6=x

(|x− y| − 1) · 1
20

= 1
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6.33

Covariance

Definition (Covariance)

The covariance between two random variables X and Y,
denoted as cov(X,Y) or σXY , is

σXY = E[(X − µX)(Y − µY)] = E(XY)− µXµY (18)

• The covariance between X and Y describes the
variation between the two random variables.

• Covariance is a measure of linear relationship
between the random variables.
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6.34

Covariance

E[(X − µX)(Y − µY)]

=

∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y− µY)fXY(x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

[xy− µXy− xµY + µXµY ] fXY(x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

xyfXY(x, y)dxdy− µXµY − µXµY + µXµY

= E(XY)− µXµY

µXµY =

∫ ∞
−∞

∫ ∞
−∞

xµY fXY(x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

yµXfXY(x, y)dxdy
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Covariance between X and Y

Figure 1: Joint probability distributions and the sign of
covariance between X and Y.
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Correlation Coefficient

Definition (Correlation Coefficient)

The correlation coefficient between two random
variables X and Y, denoted as ρXY , is

ρXY =
cov(X,Y)√
V(X)V(Y)

=
σXY

σXσY
(19)

• For any two random variables X and Y −1 ≤ ρXY ≤ 1.
• Correlation is dimensionless.
• If the points in the joint probability distribution of X

and Y that receives positive prbability tend to fall
along a line of positive (or negative) slope, ρXY is
near +1 (or −1).

• If X and Y are independent random variables,
σXY = ρXY = 0. σXY = ρXY = 0 does not imply that X
and Y are independent.
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Example: Covariance of Two Discrete RVs

Example

Suppose that the random variable X has the following
distribution: P(X = 1) = 0.2, P(X = 2) = 0.6,
P(X = 3) = 0.2. Let Y = 2X + 5, i.e., P(Y = 7) = 0.2,
P(Y = 9) = 0.6, P(Y = 11) = 0.2. Determine ρXY .

• E(X) = 1× 0.2 + 2× 0.6 + 3× 0.2 = 2
• E(X2) = 1× 0.2 + 22 × 0.6 + 32 × 0.2 = 4.4
• V(X) = E(X2)− (E(X))2 = 4.4− 22 = 0.4
• E(Y) = 7× 0.2 + 9× 0.6 + 11× 0.2 = 9
• E(Y2) = 72 × 0.2 + 92 × 0.6 + 112 × 0.2 = 82.6
• V(Y) = E(Y2)− (E(Y))2 = 82.6− 92 = 1.6
• E(XY) = 1× 7× 0.2 + 2× 9× .6 + 3× 11× 0.2 = 18.8
• σXY = E(XY)− µXµY = 18.8− 2× 9 = 0.8
• ρXY = σXY

σXσY
= 0.8√

0.4×1.6
= 0.8

0.8 = 1
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Bivariant Normal Distribution

Definition (Bivariant Normal Distribution)

The probability density function of a bivariant normal
distribution random variables

fXY(x, y;µX, µY , σX, σY , ρXY) =

1
2πσXσY

√
1−ρ2

XY

exp
{

−1
2(1−ρ2

XY)
(20)[

(x−µX)2

σ2
X
− 2ρXY(x−µX)(y−µY)

σXσY
+ (y−µY)2

σ2
Y

]}
for −∞ < x <∞ and −∞ < y <∞, with parameters
−∞ < µx <∞, −∞ < µY <∞, σX > 0, σY > 0, and
−1 < ρXY < 1.
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Bivariant Normal Distribution: ρXY = 0

Figure 2: Bivariate Normal Distribution with ρXY = 0.
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Bivariant Normal Distribution: ρXY = 0.5

Figure 3: Bivariate Normal Distribution with ρXY = 0.5.
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Bivariant Normal Distribution: ρXY = 0.95

Figure 4: Bivariate Normal Distribution with ρXY = 0.95.
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Bivariant Normal Distribution: ρXY = −0.95

Figure 5: Bivariate Normal Distribution with ρXY = −0.95.
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Bivariant Normal Distribution

If X and Y are bivariant normal distribution with joint
probability density fXY(x, y;µX, µY , σX, σY , ρXY),
• the marginal probability distribution of X and Y are

X ∼ N(µX, σ
2
X) and Y ∼ N(µY , σ

2
Y), respectively;

• the conditional probability distribution of Y given
X = x is normal with mean

µY|x = µY − µXρ
σY

σX
+
σY

σX
ρx

and variance
σ2

Y|x = σ2
Y(1− ρ2);

• the correlation between X and Y is ρ;
• with ρ = 0, X and Y are independent.
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Bivariant Normal Distribution: Independence and
Uncorrelation

fXY(x, y;µX, µY , σX, σY , ρXY = 0) =
1

2πσXσY

√
1− ρ2

XY

exp
{

−1
2(1− ρ2

XY)
·[

(x− µX)2

σ2
X

− 2ρXY(x− µX)(y− µY)

σXσY
+

(y− µY)2

σ2
Y

]}
=

1
2πσXσY

exp
{
−1
2

[
(x− µX)2

σ2
X

+
(y− µY)2

σ2
Y

]}
=

1
σX
√

2π
exp

{
−(x− µX)2

2σ2
X

}
· 1

σY
√

2π
exp

{
−(y− µY)2

2σ2
Y

}
= fX(x;µX, σX) · fY(y;µY , σY)
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Linear Combination

Definition (Linear Combination)

Given random variables X1,X2, . . .Xp and constants
c1, c2, . . . cp,

Y = c1X1 + c2X2 + · · ·+ cpXp (21)

is a linear combination of X1,X2, . . .Xp.
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Mean of a Linear Combination

Theorem

If Y = c1X1 + c2X2 + · · ·+ cpXp, then

E(Y) = c1E(X1) + c2E(X2) + . . .+ cpE(Xp) (22)

E(Y) = E(c1X1 + c2X2 + · · ·+ cpXp)

=
∑
· · ·
∑

[(c1x1 + c2x2 + . . .+ cpxp)·

fX1,X2,...Xp(x1, x2, . . . , xp)
]

= c1

[∑
· · ·
∑

x1 · fX1,X2,...Xp(x1, x2, . . . , xp)
]

+ c2

[∑
· · ·
∑

x2 · fX1,X2,...Xp(x1, x2, . . . , xp)
]

· · ·
+ cp

[∑
· · ·
∑

xp · fX1,X2,...Xp(x1, x2, . . . , xp)
]

= c1E(X1) + c2E(X2) + . . .+ cpE(Xp)
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Variance of a Linear Combination

Theorem

If X1,X2, . . .Xp are random variables, and
Y = c1X1 + c2X2 + · · ·+ cpXp, then in general

V(Y) = c2
1V(X1) + c2

2V(X2) + · · ·+ c2
pV(Xp)

+ 2
∑
i<j

∑
cicjcov(Xi,Xj). (23)

If X1,X2, . . .Xp are independent,

V(Y) = c2
1V(X1) + c2

2V(X2) + · · ·+ c2
pV(Xp) (24)
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Example: Error Propagation

Example

A semiconduction production consists of three layers. If
the variances in thickness of the first, sencond and third
layers are 25, 40, and 30 nanometers squared, what is the
vairance of the thickness of the final product?

• Let X1,X2,X3 and X are random variables denoting
the thickness of the respective layers, and the final
product.

• Then X = X1 + X2 + X3.
• The variance of X according to the Eq. is

V(X) = V(X1) + V(X2) + V(X3)

= 25 + 40 + 30 = 95 nm2

eq:mr5-37
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Mean and Variance of an Average

Theorem

If X1,X2, . . .Xp are random variables with
E(Xi) = µ, i = 1, . . . , p, then the random variable

X̄ = (X1 + X2 + · · ·+ Xp)/p (25)

has the mean
E(X̄) = µ (26)

If X1,X2, . . .Xp are also independent with variance
V(Xi) = σ2, i = 1, . . . , p, then

V(X̄) =
σ2

p
(27)
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Reproductive Property of Normal Dist.

Theorem

If X1,X2, . . .Xp are independent, normal random variables
with E(Xi) = µi,V(Xi) = σ2

i , i = 1, . . . , p, then

Y = c1X1 + c2X2 + · · ·+ cpXp (28)

is a normal random variable with

E(Y) = c1µ1 + c2µ2 + · · ·+ cpµp (29)

and
V(Y) = c2

1σ
2
1 + c2

2σ
2
2 + · · ·+ c2

pσ
2
p (30)
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