The Normal Distribution

(continued)

- Bell Shaped
- Symmetrical
- Mean, Median and Mode are Equal

Location is determined by the mean, μ

Spread is determined by the standard deviation, σ

The random variable has an infinite theoretical range:

 $+\infty$ to $-\infty$

The Normal Distribution

(continued)

- The normal distribution closely approximates the probability distributions of a wide range of random variables
- Distributions of sample means approach a normal distribution given a "large" sample size
- Computations of probabilities are direct and elegant
- The normal probability distribution has led to good business decisions for a number of applications

Many Normal Distributions

By varying the parameters μ and σ , we obtain different normal distributions

The Normal Distribution Shape

Given the mean μ and variance σ^2 we define the normal distribution using the notation

 $X \sim N(\mu, \sigma^2)$

The Normal Probability Density Function

 The formula for the normal probability density function is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

Where e = the mathematical constant approximated by 2.71828

 π = the mathematical constant approximated by 3.14159

 μ = the population mean

 σ^2 = the population variance

x = any value of the continuous variable, $-\infty < x < \infty$

Cumulative Normal Distribution

• For a normal random variable X with mean μ and variance σ^2 , i.e., X~N(μ , σ^2), the cumulative distribution function is

$$\mathsf{F}(\mathsf{x}_0) = \mathsf{P}(\mathsf{X} \leq \mathsf{x}_0)$$

Finding Normal Probabilities

The probability for a range of values is measured by the area under the curve

$$P(a < X < b) = F(b) - F(a)$$

Copyright © 2013 Pearson Education

Finding Normal Probabilities

(continued)

$$F(a) = P(X < a)$$

$$a \qquad \mu \qquad b$$

Copyright © 2013 Pearson Education

The Standard Normal Distribution

 Any normal distribution (with any mean and variance combination) can be transformed into the standardized normal distribution (Z), with mean 0 and variance 1

 Need to transform X units into Z units by subtracting the mean of X and dividing by its standard deviation

$$Z = \frac{X - \mu}{\sigma}$$

Example

 If X is distributed normally with mean of 100 and standard deviation of 50, the Z value for X = 200 is

$$Z = \frac{X - \mu}{\sigma} = \frac{200 - 100}{50} = 2.0$$

 This says that X = 200 is two standard deviations (2 increments of 50 units) above the mean of 100.

Comparing X and Z units

Note that the distribution is the same, only the scale has changed. We can express the problem in original units (X) or in standardized units (Z)

Finding Normal Probabilities

Probability as Area Under the Curve

The total area under the curve is 1.0, and the curve is symmetric, so half is above the mean, half is below

The Standard Normal Table

(continued)

For negative Z-values, use the fact that the distribution is symmetric to find the needed probability:

Example:

P(Z < -2.00) = 1 - 0.9772= 0.0228

Ch. 5-14

General Procedure for Finding Probabilities

To find P(a < X < b) when X is distributed normally:

Draw the normal curve for the problem in terms of X

- Translate X-values to Z-values
- Use the Cumulative Normal Table

Finding Normal Probabilities

- Suppose X is normal with mean 8.0 and standard deviation 5.0
- Find P(X < 8.6)

Copyright © 2013 Pearson Education

Finding Normal Probabilities

(continued)

• Suppose X is normal with mean 8.0 and standard deviation 5.0. Find P(X < 8.6)

$$Z = \frac{X - \mu}{\sigma} = \frac{8.6 - 8.0}{5.0} = 0.12$$

Copyright © 2013 Pearson Education

Ch. 5-17

Solution: Finding P(Z < 0.12)

Standardized Normal Probability Table (Portion)

Z	F(z)
.10	.5398
.11	.5438
.12	.5478
.13	.5517

Upper Tail Probabilities

- Suppose X is normal with mean 8.0 and standard deviation 5.0.
- Now Find P(X > 8.6)

Copyright © 2013 Pearson Education

Upper Tail Probabilities

(continued)

• Now Find P(X > 8.6)...

$$P(X > 8.6) = P(Z > 0.12) = 1.0 - P(Z \le 0.12)$$

= 1.0 - 0.5478 = 0.4522

Finding the X value for a Known Probability

- Steps to find the X value for a known probability:
 - 1. Find the Z value for the known probability
 - 2. Convert to X units using the formula:

$$X=\mu+Z\sigma$$

Finding the X value for a Known Probability

(continued)

Example:

- Suppose X is normal with mean 8.0 and standard deviation 5.0.
- Now find the X value so that only 20% of all values are below this X

Find the Z value for 20% in the Lower Tail

1. Find the Z value for the known probability

Standardized Normal Probability Table (Portion)

Copyright © 2013 Pearson Education

 20% area in the lower tail is consistent with a Z value of -0.84

Z	F(z)	
.82	.7939	
.83	.7967	
.84	.7995	
.85	.8023	

Finding the X value

2. Convert to X units using the formula:

$$X = \mu + Z\sigma$$

= 8.0 + (-0.84)5.0
= 3.80

So 20% of the values from a distribution with mean 8.0 and standard deviation 5.0 are less than 3.80

Normal Distribution Approximation for Binomial Distribution

- Recall the binomial distribution:
 - n independent trials
 - probability of success on any given trial = P
- Random variable X:
 - X_i =1 if the ith trial is "success"
 - X_i =0 if the ith trial is "failure"

$$E[X] = \mu = nP$$

$$E[X] = \mu = nP$$

$$Var(X) = \sigma^2 = nP(1-P)$$

Normal Distribution Approximation for Binomial Distribution

(continued)

- The shape of the binomial distribution is approximately normal if n is large
- The normal is a good approximation to the binomial when nP(1-P) > 5
- Standardize to Z from a binomial distribution:

$$Z = \frac{X - E[X]}{\sqrt{Var(X)}} = \frac{X - np}{\sqrt{nP(1-P)}}$$

Normal Distribution Approximation for Binomial Distribution

(continued)

- Let X be the number of successes from n independent trials, each with probability of success P.
- If nP(1 P) > 5,

$$P(a < X < b) = P\left(\frac{a - nP}{\sqrt{nP(1-P)}} \le Z \le \frac{b - nP}{\sqrt{nP(1-P)}}\right)$$

Binomial Approximation Example

• 40% of all voters support ballot proposition A. What is the probability that between 76 and 80 voters indicate support in a sample of n = 200 ?

```
• E[X] = \mu = nP = 200(0.40) = 80
• Var(X) = \sigma^2 = nP(1 - P) = 200(0.40)(1 - 0.40) = 48
( note: nP(1 - P) = 48 > 5 )
```

$$\begin{split} P(76 < X < 80) = P & \left(\frac{76 - 80}{\sqrt{200(0.4)(1 - 0.4)}} \le Z \le \frac{80 - 80}{\sqrt{200(0.4)(1 - 0.4)}} \right) \\ = P(-0.58 < Z < 0) \\ = F(0) - F(-0.58) \\ = 0.5000 - 0.2810 = 0.2190 \end{split}$$