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Section 6.3 Sampling Distributions of 

Sample Proportions
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Sampling Distributions of Sample 

Proportions

P = the proportion of the population having some 

characteristic

• Sample proportion ˆ( )p provides an estimate of P:

number of itemsin thesample having thecharacteristicof interest
ˆ

samplesize

X
p

n
= =

• ˆ0 ?p 

• p̂ has a binomial distribution, but can be approximated

by a normal distribution when 5( )1Pn P− 
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Sampling Distribution of p Hat

• Normal approximation:

Properties:
ˆ

(1 )
ˆ( ) p

P P
E p P

n


−
= =and

(where P = population proportion)
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Z-Value for Proportions

Standardize p̂ to a Z value with the formula:

ˆ

?

(1 )p

p P p P
Z

P P

n



− −
= =

−

Where the distribution of Z is a good approximation

to the standard normal distribution if ( )1 5nP P− 
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Example 2 (1 of 3)

• If the true proportion of voters who support 

Proposition A is P = 0.4, what is the probability 

that a sample of size 200 yields a sample 

proportion between 0.40 and 0.45?

• i.e.: if P = 0.4 and n = 200, what is

( )ˆ0.40 0.45 ?P p 
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Example 2 (2 of 3)

• if P = 0.4 and n = 200, what is

( )ˆ0.40 0.45 ?P p 

Find ˆ :p
ˆ

(1 ) .4(1 .4)
.03464

200
p

P P

n


− −
= = =

Convert to 

standard 

normal:

.40 .40 .45 .40
(.40 .45)

.03464 .03464

(0 1.44

ˆ

)

P

P

pP Z

Z

− − 
  =   

 

=  



Copyright ©  2020 Pearson Education Ltd. All Rights Reserved. Slide - 34

Example 2 (3 of 3)

• if P = 0.4 and n = 200, what is

( )ˆ0.40 0.45 ?P p 

Use standard normal table: ( )0 1.44 .4251P Z  =
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Section 6.4 Sampling Distributions of 

Sample Variances
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Sample Variance

• Let 1 2, ,..., nx x x be a random sample from a

population. The sample variance is

2 2

1

1
( )

1

n

i

i

s x x
n =

= −
−


• the square root of the sample variance is called 

the sample standard deviation

• the sample variance is different for different 

random samples from the same population
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Sampling Distribution of Sample 

Variances

• The sampling distribution of
2s has mean

2

2 2( )E s =

• If the population distribution is normal, then

4
2 2

( )
1

Var s
n


=

−
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Chi-Square Distribution of Sample 

and Population Variances

• If the population distribution is normal then

2
2

1 2

( 1)
n

n s



−

−
=

has a chi-square 2( ) distribution

with n − 1 degrees of freedom
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The Chi-Square Distribution

• The chi-square distribution is a family of distributions, 

depending on degrees of freedom:

• d.f. = n − 1

• Text Appendix Table 7 contains chi-square probabilities
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Degrees of Freedom (df)

Idea: Number of observations that are free to vary after 

sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n − 1 = 3 − 1 = 2

(2 values can be any numbers, but the third is not free to vary for a given 

mean)
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Chi-Square Example (1 of 2)

• A commercial freezer must hold a selected temperature 

with little variation. Specifications call for a standard 

deviation of no more than 4 degrees
2   16 ( .)a variance of degrees

• A sample of 14 freezers is to be tested

• What is the upper limit (K) for 

the sample variance such that 

the probability of exceeding this 

limit, given that the population 

standard deviation is 4, is less 

than 0.05?
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Finding the Chi-Square Value

2
2

2

( 1)n s




−
=

Is chi-square distributed with ( 1 13)n − =

degrees of freedom

• Use the the chi-square distribution with area 0.05 in the 

upper tail:

.05? 14 1 13? .22.36 ( ) = − ==2

13
and d f
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Chi-Square Example (2 of 2)

22.36 ( .05 14 1 13 . .)= = − =2

13
 and d f

So:
2

2 2

13

( 1)
( ) 0.05

16

n s
P s K P 

 −
 =  = 

 

or ( 1)
22.36

16

n K−
= (where n = 14)

so
(22.36)(16)

27.52
(14 1)

K = =
−

If
2 s from the sample of size n = 14 is greater than 27.52, there is

strong evidence to suggest the population variance exceeds 16.
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