Section 6.3 Sampling Distributions of Sample Proportions

Sampling Distributions of Sample Proportions

P = the proportion of the population having some characteristic

• Sample proportion (\hat{p}) provides an estimate of *P*:

 $\hat{p} = \frac{X}{n} = \frac{\text{number of items in the sample having the characteristic of interest}}{\text{sample size}}$

• $0 \leq p \leq$

Pearson

• \hat{p} has a binomial distribution, but can be approximated by a normal distribution when nP(1-P) > 5

Sampling Distribution of *p* Hat

Normal approximation:

Z-Value for Proportions

Standardize \hat{p} to a Z value with the formula:

$$Z = \frac{\hat{p} - P}{\sigma_{\hat{p}}} = \frac{p - P}{\sqrt{\frac{P(1 - P)}{n}}}$$

Where the distribution of *Z* is a good approximation to the standard normal distribution if nP(1-P) > 5

Example 2 (1 of 3)

- If the true proportion of voters who support Proposition A is P = 0.4, what is the probability that a sample of size 200 yields a sample proportion between 0.40 and 0.45?
- i.e.: if P = 0.4 and n = 200, what is $P(0.40 \le \hat{p} \le 0.45)$?

• if P = 0.4 and n = 200, what is $P(0.40 \le \hat{p} \le 0.45)$?

Find
$$\sigma_{\hat{p}}$$
: $\sigma_{\hat{p}} = \sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{.4(1-.4)}{200}} = .03464$

Convert to standard normal: $P(.40 \le \hat{p} \le .45) = P\left(\frac{.40 - .40}{.03464} \le Z \le \frac{.45 - .40}{.03464}\right)$ $= P(0 \le Z \le 1.44)$

Example 2 (3 of 3)

• if P = 0.4 and n = 200, what is $P(0.40 \le \hat{p} \le 0.45)$?

Use standard normal table: $P(0 \le Z \le 1.44) = .4251$

Section 6.4 Sampling Distributions of Sample Variances

Sample Variance

• Let $x_1, x_2, ..., x_n$ be a random sample from a population. The sample variance is

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- the square root of the sample variance is called the sample standard deviation
- the sample variance is different for different random samples from the same population

Sampling Distribution of Sample Variances

• The sampling distribution of s^2 has mean σ^2

$$E(s^2) = \sigma^2$$

• If the population distribution is normal, then

$$Var(s^2) = \frac{2\sigma^4}{n-1}$$

Chi-Square Distribution of Sample and Population Variances

• If the population distribution is normal then

$$\chi^2_{n-1} = \frac{(n-1)s^2}{\sigma^2}$$

has a chi-square (χ^2) distribution with n - 1 degrees of freedom

The Chi-Square Distribution

- The chi-square distribution is a family of distributions, depending on degrees of freedom:
- d.f. = *n* − 1

Pearson

• Text Appendix Table 7 contains chi-square probabilities

Degrees of Freedom (df)

Idea: Number of observations that are free to vary after sample mean has been calculated

Example: Suppose the mean of 3 numbers is 8.0

Here, n = 3, so degrees of freedom = n - 1 = 3 - 1 = 2

Pearson

(2 values can be any numbers, but the third is not free to vary for a given mean)

Copyright $\ensuremath{\mathbb{C}}$ 2020 Pearson Education Ltd. All Rights Reserved.

Chi-Square Example (1 of 2)

- A commercial freezer must hold a selected temperature with little variation. Specifications call for a standard deviation of no more than 4 degrees (a variance of 16 degrees²).
- A sample of 14 freezers is to be tested
- What is the upper limit (*K*) for the sample variance such that the probability of exceeding this limit, given that the population standard deviation is 4, is less than 0.05?

Finding the Chi-Square Value

 $\chi^2 = \frac{(n-1)s^2}{\sigma^2}$ Is chi-square distributed with (n-1) = 13 degrees of freedom

• Use the the chi-square distribution with area 0.05 in the upper tail:

$$\chi^{2}_{13} = 22.36 \ (\alpha = .05 \ \text{and} \ 14 - 1 = 13 \ \text{df.})$$

Chi-Square Example (2 of 2)

Pearson

$$\chi^{2}_{13} = 22.36 \ (\alpha = .05 \text{ and } 14 - 1 = 13 \text{ d.f.})$$

So:
$$P(s^2 > K) = P\left(\frac{(n-1)s^2}{16} > \chi^2_{13}\right) = 0.05$$

or $\frac{(n-1)K}{16} = 22.36$ (where $n = 14$)
so $K = \frac{(22.36)(16)}{(14-1)} = (27.52)$

If s^2 from the sample of size n = 14 is greater than 27.52, there is strong evidence to suggest the population variance exceeds 16.