Confidence Intervals (1 of 2)

Contents of this chapter:

- Confidence Intervals for the Population Mean, μ
- when Population Variance σ^{2} is Known
- when Population Variance σ^{2} is Unknown
- Confidence Intervals for the Population Proportion, P (large samples)
- Confidence interval estimates for the variance of a normal population
- Finite population corrections
- Sample-size determination

Section 7.1 Properties of Point Estimators

- An estimator of a population parameter is
- a random variable that depends on sample information. . .
- whose value provides an approximation to this unknown parameter
- A specific value of that random variable is called an estimate

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about variability

Point Estimates

We can estimate a Population Parameter ...		with a Sample Statistic (a Point Estimate)
Mean	μ	\bar{x}
Proportion	P	\hat{p}

Unbiasedness (1 of 2)

- A point estimator $\hat{\theta}$ is said to be an unbiased estimator of the parameter θ if its expected value is equal to that parameter:

$$
E(\hat{\theta})=\theta
$$

- Examples:
- The sample mean \bar{x} is an unbiased estimator of μ
- The sample variance S^{2} is an unbiased estimator σ^{2}
- The sample proportion \hat{p} is an unbiased estimator of P

Unbiasedness (2 of 2)

- $\hat{\theta}_{1}$ is an unbiased estimator, $\hat{\theta}_{2}$ is biased:

Bias

- Let $\hat{\theta}$ be an estimator of θ
- The bias in $\hat{\theta}$ is defined as the difference between its mean and $\boldsymbol{\theta}$

$$
\operatorname{Bias}(\vec{\theta})=E(\theta)-\theta
$$

- The bias of an unbiased estimator is 0

Most Efficient Estimator

- Suppose there are several unbiased estimators of $\boldsymbol{\theta}$
- The most efficient estimator or the minimum variance unbiased estimator of $\boldsymbol{\theta}$ is the unbiased estimator with the smallest variance
- Let $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ be two unbiased estimators θ, based on the same number of sample observations. Then,
- $\hat{\theta}_{1}$ is said to be more efficient than $\hat{\theta}_{2}$ if $\operatorname{Var}\left(\hat{\theta}_{1}\right)<\operatorname{Var}\left(\theta_{2}\right)$
- The relative efficiency of $\hat{\theta}_{1}$ with respect to $\hat{\theta}_{2}$ is the ratio of their variances:

$$
\text { Relative Efficiency }=\frac{\operatorname{Var}\left(\hat{\theta}_{2}\right)}{\operatorname{Var}\left(\hat{\theta}_{1}\right)}
$$

Confidence Interval Estimation

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence interval estimates

Confidence Interval Estimate

- An interval gives a range of values:
- Takes into consideration variation in sample statistics from sample to sample
- Based on observation from 1 sample
- Gives information about closeness to unknown population parameters
- Stated in terms of level of confidence
- Can never be 100% confident

Confidence Interval and Confidence Level

- If $P(a<\boldsymbol{\theta}<b)=1-\boldsymbol{\alpha}$ then the interval from a to b is called a $100(1-\alpha) \%$ confidence interval of θ.
- The quantity $100(1-\alpha) \%$ is called the confidence level of the interval
- $\boldsymbol{\alpha}$ is between 0 and 1
- In repeated samples of the population, the true value of the parameter $\boldsymbol{\theta}$ would be contained in $100(1-\boldsymbol{\alpha}) \%$ of intervals calculated this way.
- The confidence interval calculated in this manner is written as $a<\boldsymbol{\theta}<b$ with $100(1-\alpha) \%$ confidence

Estimation Process

Confidence Level, Left Parenthesis 1 Minus Alpha Right Parenthesis

- Suppose confidence level = 95\%
- Also written $(1-\boldsymbol{\alpha})=0.95$
- A relative frequency interpretation:
- From repeated samples, 95\% of all the confidence intervals that can be constructed of size n will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
- No probability involved in a specific interval

General Formula

- The general form for all confidence intervals is:

$$
\hat{\theta} \pm M E
$$

Point Estimate \pm Margin of Error

- The value of the margin of error depends on the desired level of confidence

Confidence Intervals (2 of 2)

Section 7.2 Confidence Interval Estimation for the Mean (Sigma Squared Known)

- Assumptions
- Population variance σ^{2} is known
- Population is normally distributed
- If population is not normal, use large sample
- Confidence interval estimate:

$$
\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
$$

(where $Z_{\frac{\alpha}{2}}$ is the normal distribution value for a probability of $\frac{\alpha}{2}$ in each tail)

Confidence Limits

- The confidence interval is

$$
\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
$$

- The endpoints of the interval are

$$
\begin{array}{ll}
\mathrm{UCL}=\bar{x}+z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} & \text { Upper confidence limit } \\
\mathrm{LCL}=\bar{x}-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} & \text { Lower confidence limit }
\end{array}
$$

Margin of Error (1 of 2)

- The confidence interval,

$$
\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
$$

- Can also be written as $\bar{x} \pm M E$ where $M E$ is called the margin of error

$$
M E=Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
$$

- The interval width, w, is equal to twice the margin of error

Reducing the Margin of Error

$$
M E=z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
$$

The margin of error can be reduced if

- the population standard deviation can be reduced ($\sigma \downarrow$)
- The sample size is increased ($n \uparrow$)
- The confidence level is decreased, $(1$? $\alpha) \downarrow$

Finding Z of Start Expression Start Fraction Alpha over 2 End Fraction End Expression

- Consider a 95\% confidence interval:

- Find $Z_{.025}= \pm 1.96$ from the standard normal distribution table

Common Levels of Confidence

- Commonly used confidence levels are 90\%, 95\%, 98\%, and 99\%

Confidence Level	Confidence Coefficient, $1-\alpha$	$Z_{{ }_{\alpha}}$ value
80%	.80	1.28
90%	.90	1.645
95%	.95	1.96
98%	.98	2.33
99%	.99	2.58
99.8%	.998	3.08
99.9%	.999	3.27

Intervals and Level of Confidence

Sampling Distribution of the Mean

Example 1 (1 of 2)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Example 1 (2 of 2)

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is .35 ohms.
- Solution:

$$
\begin{aligned}
& \bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \\
& =2.20 \pm 1.96\left(\frac{.35}{\sqrt{11}}\right) \\
& =2.20 \pm .2068 \\
& 1.9932<\mu<2.4068
\end{aligned}
$$

Interpretation (1 of 2)

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Section 7.3 Confidence Interval Estimation for the Mean (Sigma Squared Unknown)

(From normally distributed populations)

Student's \boldsymbol{t} Distribution (1 of 3)

- Consider a random sample of n observations
- with mean \bar{X} and standard deviation s
- from a normally distributed population with mean μ
- Then the variable

$$
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}
$$

follows the Student's t distribution with $(n-1)$ degrees of freedom

Student's t Distribution (2 of 3)

- The t is a family of distributions
- The t value depends on degrees of freedom (d.f.)
- Number of observations that are free to vary after sample mean has been calculated

$$
\text { d.f. }=n-1
$$

Student's \boldsymbol{t} Distribution (3 of 3)

Note: $t \rightarrow Z$ as n increases

Student's t Table

t Distribution Values

With comparison to the Z value

Confidence Level	\boldsymbol{t} (10 d.f.) $)$	\boldsymbol{t} (20 d.f.) $)$	\boldsymbol{t} (30 d.f.)	\mathbf{z}
.80	1.372	1.325	1.310	1.282
.90	1.812	1.725	1.697	1.645
.95	2.228	2.086	2.042	1.960
.99	3.169	2.845	2.750	2.576

Note: $t \rightarrow Z$ as n increases

Confidence Interval Estimation for the Mean (Sigma Squared Unknown) (1 of 2)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval Estimation for the Mean (Sigma Squared Unknown) (2 of 2)

- Assumptions
- Population standard deviation is unknown
- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$
\bar{x} \pm t_{n-1, \frac{\alpha}{2}} \frac{s}{\sqrt{n}}
$$

where $t_{n-1, \frac{\alpha}{2}}$ is the critical value of the t distribution with $n-1$ d.f.
and an area of $\frac{\alpha}{2}$ in each tail: $P\left(t_{n-1}>t_{n-1, \frac{\alpha}{2}}\right)=\frac{\alpha}{2}$

Margin of Error (2 of 2)

- The confidence interval,

$$
\bar{x} \pm t_{n-1, \frac{\alpha}{2}} \frac{s}{\sqrt{n}}
$$

- Can also be written as $\bar{X} \pm M E$
where ME is called the margin of error:

$$
M E=t_{n-1, \frac{\alpha}{2}} \frac{s}{\sqrt{n}}
$$

Example 2

A random sample of $n=25$ has $\bar{x}=50$ and $s=8$. Form a 95\% confidence interval for μ

$$
\text { - d.f. }=n-1=24 \text {, so } t_{n-1, \frac{\alpha}{2}}=t_{24,025}=2.0639
$$

The confidence interval is

$$
\begin{gathered}
\bar{x} \pm t_{n-1, \frac{\alpha}{2}} \frac{s}{\sqrt{n}} \\
50 \pm(2.0639) \frac{8}{\sqrt{25}} \\
46.698<\mu<53.302
\end{gathered}
$$

