Confidence Interval Estimation

 for Population Proportion

Confidence Interval Estimation for Population Proportion

- An interval estimate for the population proportion (P) can be calculated by adding an allowance for uncertainty to the sample proportion ($\hat{\mathrm{p}}$)

Confidence Intervals for the Population Proportion

- Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$
\sigma_{\mathrm{P}}=\sqrt{\frac{\mathrm{P}(1-\mathrm{P})}{\mathrm{n}}}
$$

- We will estimate this with sample data:

Confidence Interval Endpoints

- The confidence interval for the population proportion is given by

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

- where
- $\mathrm{z}_{\alpha / 2}$ is the standard normal value for the level of confidence desired
- \hat{p} is the sample proportion
- n is the sample size
- $\mathrm{nP}(1-\mathrm{P})>5$

Example

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95\% confidence interval for the true proportion of left-handers

Example

- A random sample of 100 people shows that 25 are left-handed. Form a 95\% confidence interval for the true proportion of left-handers.

$$
\begin{aligned}
& \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
& \frac{25}{100} \pm 1.96 \sqrt{\frac{.25(.75)}{100}} \\
& 0.1651<\mathrm{P}<0.3349
\end{aligned}
$$

Interpretation

- We are 95% confident that the true proportion of left-handers in the population is between 16.51% and 33.49%.
- Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

Confidence Interval Estimation for the Variance

Confidence Intervals for the Population Variance

- Goal: Form a confidence interval for the population variance, σ^{2}
- The confidence interval is based on the sample variance, s^{2}
- Assumed: the population is normally distributed

Confidence Intervals for the Population Variance

(continued)
The random variable

$$
\chi_{n-1}^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}
$$

follows a chi-square distribution with $(\mathrm{n}-1)$ degrees of freedom

Where the chi-square value $\chi_{n-1, \alpha}^{2}$ denotes the number for which

$$
\mathrm{P}\left(\chi_{\mathrm{n}-1}^{2}>\chi_{\mathrm{n}-1, \alpha}^{2}\right)=\alpha
$$

Confidence Intervals for the Population Variance

The 100(1- α)\% confidence interval for the population variance is given by

$$
\begin{aligned}
& \mathrm{LCL}=\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{n-1, \alpha / 2}^{2}} \\
& \mathrm{UCL}=\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1,1-\alpha / 2}^{2}}
\end{aligned}
$$

Example

You are testing the speed of a batch of computer processors. You collect the following data (in Mhz):

```
Sample size
Sample mean Sample std dev17
3004
74
```


> Assume the population is normal. Determine the 95\% confidence interval for $\sigma_{x}{ }^{2}$

Finding the Chi-square Values

- $n=17$ so the chi-square distribution has $(n-1)=16$ degrees of freedom
- $\alpha=0.05$, so use the the chi-square values with area 0.025 in each tail:

$$
\begin{aligned}
& \chi_{\mathrm{n}-1, a / 2}^{2}=\chi_{16,0.025}^{2}=28.85 \\
& \chi_{\mathrm{n}-1,1-a / 2}^{2}=\chi_{16,0.975}^{2}=6.91
\end{aligned}
$$

Calculating the Confidence Limits

- The 95% confidence interval is

$$
\begin{aligned}
\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1, \alpha / 2}^{2}}<\sigma^{2} & <\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\mathrm{n}-1,1-\alpha / 2}^{2}} \\
\frac{(17-1)(74)^{2}}{28.85}<\sigma^{2} & <\frac{(17-1)(74)^{2}}{6.91} \\
3037 & <\sigma^{2}<12680
\end{aligned}
$$

Converting to standard deviation, we are 95\% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz

Confidence Interval Estimation: Finite Populations

- If the sample size is more than 5% of the population size (and sampling is without replacement) then a finite population correction factor must be used when calculating the standard error

Finite Population Correction Factor

- Suppose sampling is without replacement and the sample size is large relative to the population size
- Assume the population size is large enough to apply the central limit theorem
- Apply the finite population correction factor when estimating the population variance

$$
\text { finite population correction factor }=\frac{\mathrm{N}-\mathrm{n}}{\mathrm{~N}-1}
$$

Estimating the Population Mean

- Let a simple random sample of size n be taken from a population of N members with mean μ
- The sample mean is an unbiased estimator of the population mean μ
- The point estimate is:

$$
\overline{\mathrm{x}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}
$$

Finite Populations: Mean

- If the sample size is more than 5% of the population size, an unbiased estimator for the variance of the sample mean is

$$
\hat{\sigma}_{\bar{x}}^{2}=\frac{s^{2}}{n}\left(\frac{N-n}{N-1}\right)
$$

- So the 100(1- α)\% confidence interval for the population mean is

$$
\bar{x} \pm t_{n-1, \alpha / 2} \hat{\sigma}_{\bar{x}}
$$

Estimating the Population Total

- Consider a simple random sample of size n from a population of size N
- The quantity to be estimated is the population total $N \mu$
- An unbiased estimation procedure for the population total $N \mu$ yields the point estimate $\mathrm{N} \overline{\mathrm{x}}$

Estimating the Population Total

- An unbiased estimator of the variance of the population total is

$$
N^{2} \hat{\sigma}_{\bar{x}}^{2}=N^{2} \frac{s^{2}}{n}\left(\frac{N-n}{N-1}\right)
$$

- A $100(1-\alpha) \%$ confidence interval for the population total is

$$
N \bar{x} \pm t_{n-1, \alpha / 2} N \hat{\sigma}_{\bar{x}}
$$

Confidence Interval for Population Total: Example

A firm has a population of 1000 accounts and wishes to estimate the value of the total population balance

A sample of 80 accounts is selected with average balance of $\$ 87.60$ and standard deviation of $\$ 22.30$

Find the 95% confidence interval estimate of the total balance

Example Solution

$$
\mathrm{N}=1000, \quad \mathrm{n}=80, \quad \overline{\mathrm{x}}=87.6, \quad \mathrm{~s}=22.3
$$

$$
\begin{aligned}
& N^{2} \hat{\sigma}_{\bar{x}}^{2}=N^{2} \frac{s^{2}}{n} \frac{(N-n)}{N-1}=(1000)^{2} \frac{(22.3)^{2}}{80} \frac{920}{999}=5724559.6 \\
& N \hat{\sigma}_{\bar{x}}=\sqrt{5724559.6}=2392.6
\end{aligned}
$$

$N \bar{x} \pm t_{79,0.025} N \hat{\sigma}_{\bar{x}}=(1000)(87.6) \pm(1.9905)(2392.6)$

$$
82837.53<N \mu<92362.47
$$

The 95\% confidence interval for the population total balance is $\$ 82,837.53$ to $\$ 92,362.47$

Estimating the Population Proportion: Finite Population

- Let the true population proportion be P
- Let \hat{p} be the sample proportion from n observations from a simple random sample
- The sample proportion, \hat{p}, is an unbiased estimator of the population proportion, P

Confidence Intervals for Population Proportion: Finite Population

- If the sample size is more than 5% of the population size, an unbiased estimator for the variance of the population proportion is

$$
\hat{\sigma}_{\hat{p}}^{2}=\frac{\hat{p}(1-\hat{p})}{n}\left(\frac{N-n}{N-1}\right)
$$

- So the 100(1- α)\% confidence interval for the population proportion is

$$
\hat{p} \pm z_{\alpha / 2} \hat{\sigma}_{\hat{p}}
$$

Sample-Size Determination

Sample-Size Determination: Large Populations

Large
 Populations

For the Mean
(Known population
variance)
Margin of Error (sampling error)

Sample-Size Determination: Large Populations

For the

Mean
(Known population
variance)

$$
\mathrm{ME}=\mathrm{z}_{\mathrm{\alpha} / 2} \frac{\sigma}{\sqrt{\mathrm{n}}} \Rightarrow \begin{aligned}
& \text { Now solve } \\
& \text { for } \mathrm{n} \text { to get }
\end{aligned} \Rightarrow \mathrm{n}=\frac{\mathrm{z}_{\mathrm{\alpha} / 2}^{2} \sigma^{2}}{M E^{2}}
$$

Sample-Size Determination

- To determine the required sample size for the mean, you must know:
- The desired level of confidence (1- α), which determines the $z_{\alpha / 2}$ value
- The acceptable margin of error (sampling error), ME
- The population standard deviation, σ

Required Sample Size Example

If $\sigma=45$, what sample size is needed to estimate the mean within ± 5 with 90% confidence?

$$
\mathrm{n}=\frac{\mathrm{z}_{\alpha / 2}^{2} \sigma^{2}}{M E^{2}}=\frac{(1.645)^{2}(45)^{2}}{5^{2}}=219.19
$$

$$
\text { So the required sample size is } \mathbf{n}=\mathbf{2 2 0}
$$

(Always round up)

Sample Size Determination: Population Proportion

Large
 Populations

Sample Size Determination: Population Proportion

(continued)

Large
 Populations

For the
 Proportion

$M E=z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
$\hat{p}(1-\hat{p})$ cannot be larger than 0.25 , when $\hat{p}=$ 0.5

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Substitute } \\
0.25 \text { for } \hat{p}(1-\hat{p}) \\
\text { and solve for } \\
n \text { to get }
\end{array}
\end{array} \Rightarrow n=\frac{0.25 z_{\alpha / 2}^{2}}{M E^{2}}
$$

Sample Size Determination: Population Proportion

- The sample and population proportions, \hat{p} and P, are generally not known (since no sample has been taken yet)
- $P(1-P)=0.25$ generates the largest possible margin of error (so guarantees that the resulting sample size will meet the desired level of confidence)
- To determine the required sample size for the proportion, you must know:
- The desired level of confidence (1- α), which determines the critical $z_{\alpha / 2}$ value
- The acceptable sampling error (margin of error), ME
- Estimate $P(1-P)=0.25$

Required Sample Size Example: Population Proportion

How large a sample would be necessary to estimate the true proportion defective in a large population within $\pm 3 \%$, with 95% confidence?

Required Sample Size Example

Solution:

For 95% confidence, use $z_{0.025}=1.96$

$$
\mathrm{ME}=0.03
$$

Estimate $P(1-P)=0.25$

$$
\begin{aligned}
\mathrm{n}=\frac{0.25 \mathrm{z}_{\alpha / 2}^{2}}{\mathrm{ME}^{2}}=\frac{(0.25)(1.96)^{2}}{(0.03)^{2}} & =1067.11 \\
& \text { So use } \mathrm{n}=1068
\end{aligned}
$$

Sample-Size Determination: Finite Populations

Finite Populations

For the Mean

1. Calculate the required sample size n_{0} using the prior formula:

$$
n_{0}=\frac{z_{a / 2}^{2} \sigma^{2}}{M E^{2}}
$$

2. Then adjust for the finite population:

$$
\mathrm{n}=\frac{\mathrm{n}_{0} \mathrm{~N}}{\mathrm{n}_{0}+(\mathrm{N}-1)}
$$

Sample-Size Determination: Finite Populations

A finite population correction factor is added:

1. Solve for n :

$$
\mathrm{n}=\frac{\mathrm{NP}(1-\mathrm{P})}{(\mathrm{N}-1) \sigma_{\hat{p}}^{2}+\mathrm{P}(1-\mathrm{P})}
$$

2. The largest possible value for this expression (if $P=0.25$) is:

$$
\mathrm{n}=\frac{0.25(1-\mathrm{P})}{(\mathrm{N}-1) \sigma_{\hat{p}}^{2}+0.25}
$$

3. A 95\% confidence interval will extend $\pm 1.96 \sigma_{\hat{p}}$ from the sample proportion

Example: Sample Size to Estimate Population Proportion

How large a sample would be necessary to estimate within $\pm 5 \%$ the true proportion of college graduates in a population of 850 people with 95% confidence?

Required Sample Size Example

(continued)

Solution:

- For 95% confidence, use $z_{0.025}=1.96$
- ME $=0.05$

$$
1.96 \sigma_{\hat{p}}=0.05 \Rightarrow \sigma_{\hat{p}}=0.02551
$$

$$
\mathrm{n}_{\max }=\frac{0.25 \mathrm{~N}}{(\mathrm{~N}-1) \sigma_{\hat{p}}^{2}+0.25}=\frac{(0.25)(850)}{(849)(0.02551)^{2}+0.25}=264.8
$$

$$
\text { So use } n=265
$$

