

Confidence Interval Estimation for Population Proportion

 An interval estimate for the population proportion (P) can be calculated by adding an allowance for uncertainty to the sample proportion (p̂)

Confidence Intervals for the Population Proportion

 Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation

$$\sigma_{\rm P} = \sqrt{\frac{P(1-P)}{n}}$$

• We will estimate this with sample data:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Confidence Interval Endpoints

The confidence interval for the population proportion is given by

$$\hat{p} \pm z_{\alpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

- where
 - $z_{\alpha/2}$ is the standard normal value for the level of confidence desired
 - p̂ is the sample proportion
 - n is the sample size
 - nP(1−P) > 5

- A random sample of 100 people shows that 25 are left-handed.
- Form a 95% confidence interval for the true proportion of left-handers

Example

 A random sample of 100 people shows that 25 are left-handed. Form a 95% confidence interval for the true proportion of left-handers.

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
$$\frac{25}{100} \pm 1.96 \sqrt{\frac{.25(.75)}{100}}$$
$$\frac{100}{100} = 0.1651 < P < 0.334$$

9

Interpretation

- We are 95% confident that the true proportion of left-handers in the population is between 16.51% and 33.49%.
- Although the interval from 0.1651 to 0.3349 may or may not contain the true proportion, 95% of intervals formed from samples of size 100 in this manner will contain the true proportion.

Confidence Intervals for the Population Variance

- Goal: Form a confidence interval for the population variance, σ^2
 - The confidence interval is based on the sample variance, s²
 - Assumed: the population is normally distributed

Confidence Intervals for the Population Variance

(continued)

The random variable

$$\chi^{2}_{n-1} = \frac{(n-1)s^{2}}{\sigma^{2}}$$

follows a chi-square distribution with (n - 1) degrees of freedom

Where the chi-square value $\chi^2_{n-1,\alpha}$ denotes the number for which

$$\mathsf{P}(\chi^2_{\mathsf{n}-1}>\chi^2_{\mathsf{n}-1,\,\alpha})=\alpha$$

Confidence Intervals for the Population Variance (continued)

The $100(1 - \alpha)$ % confidence interval for the population variance is given by

LCL =
$$\frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}}$$

$$UCL = \frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}}$$

Assume the population is normal. Determine the 95% confidence interval for σ_x^2

Finding the Chi-square Values

- n = 17 so the chi-square distribution has (n 1) = 16 degrees of freedom
- α = 0.05, so use the the chi-square values with area
 0.025 in each tail:

$$\chi^{2}_{n-1, \alpha/2} = \chi^{2}_{16, 0.025} = 28.85$$

$$\chi^{2}_{n-1, 1-\alpha/2} = \chi^{2}_{16, 0.975} = 6.91$$
probability
$$\alpha/2 = .025$$

$$\chi^{2}_{16} = 6.91$$

$$\chi^{2}_{16} = 28.85$$

$$\chi^{2}_{16} = 28.85$$

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Calculating the Confidence Limits

The 95% confidence interval is

$$\frac{(n-1)s^2}{\chi^2_{n-1, \alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{n-1, 1-\alpha/2}}$$

$$\frac{(17-1)(74)^2}{28.85} < \sigma^2 < \frac{(17-1)(74)^2}{6.91}$$

 $3037 < \sigma^2 < 12680$

Converting to standard deviation, we are 95% confident that the population standard deviation of CPU speed is between 55.1 and 112.6 Mhz

Confidence Interval Estimation: Finite Populations

 If the sample size is more than 5% of the population size (and sampling is without replacement) then a finite population correction factor must be used when calculating the standard error

7.6

Finite Population Correction Factor

- Suppose sampling is without replacement and the sample size is large relative to the population size
- Assume the population size is large enough to apply the central limit theorem
- Apply the finite population correction factor when estimating the population variance

finite population correction factor = $\frac{N-n}{N-1}$

Estimating the Population Mean

- Let a simple random sample of size n be taken from a population of N members with mean µ
- The sample mean is an unbiased estimator of the population mean µ
- The point estimate is:

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

Finite Populations: Mean

If the sample size is more than 5% of the population size, an unbiased estimator for the variance of the sample mean is

$$\hat{\sigma}_{\overline{x}}^2 = \frac{s^2}{n} \left(\frac{N-n}{N-1} \right)$$

So the 100(1-α)% confidence interval for the population mean is

$$\overline{x} \pm t_{n\text{-}1,\alpha/2} \hat{\sigma}_{\overline{x}}$$

Estimating the Population Total

- Consider a simple random sample of size
 n from a population of size N
- The quantity to be estimated is the population total Nµ
- An unbiased estimation procedure for the population total Nµ yields the point estimate Nx

Estimating the Population Total

 An unbiased estimator of the variance of the population total is

$$N^2 \hat{\sigma}_{\overline{x}}^2 = N^2 \frac{s^2}{n} \left(\frac{N - n}{N - 1} \right)$$

A 100(1 - α)% confidence interval for the population total is

$$N\overline{x} \pm t_{n-1,\alpha/2}N\hat{\sigma}_{\overline{x}}$$

Confidence Interval for Population Total: Example

A firm has a population of 1000 accounts and wishes to estimate the value of the total population balance

A sample of 80 accounts is selected with average balance of \$87.60 and standard deviation of \$22.30

Find the 95% confidence interval estimate of the total balance

Example Solution

$$N = 1000, n = 80, \overline{x} = 87.6, s = 22.3$$

 $N^2 \hat{\sigma}_{\overline{x}}^2 = N^2 \frac{s^2}{n} \frac{(N-n)}{N-1} = (1000)^2 \frac{(22.3)^2}{80} \frac{920}{999} = 5724559.6$
 $N \hat{\sigma}_{\overline{x}} = \sqrt{5724559.6} = 2392.6$

$$N\overline{x} \pm t_{79,0.025}N\hat{\sigma}_{\overline{x}} = (1000)(87.6) \pm (1.9905)(2392.6)$$

$$82837.53 < N\mu < 92362.47$$

The 95% confidence interval for the population total balance is \$82,837.53 to \$92,362.47

Estimating the Population Proportion: Finite Population

- Let the true population proportion be P
- Let p̂ be the sample proportion from n observations from a simple random sample
- The sample proportion, p̂, is an unbiased estimator of the population proportion, P

Confidence Intervals for Population Proportion: Finite Population

If the sample size is more than 5% of the population size, an unbiased estimator for the variance of the population proportion is

$$\hat{\sigma}_{\hat{p}}^2 = \frac{\hat{p}(1-\hat{p})}{n} \left(\frac{N-n}{N-1}\right)$$

So the 100(1-α)% confidence interval for the population proportion is

$$\hat{p}\pm z_{\alpha/2}\hat{\sigma}_{\hat{p}}$$

Sample-Size Determination

(continued)

- To determine the required sample size for the mean, you must know:
 - The desired level of confidence (1 α), which determines the z_{α/2} value
 - The acceptable margin of error (sampling error), ME
 - The population standard deviation, σ

Required Sample Size Example

If σ = 45, what sample size is needed to estimate the mean within ± 5 with 90% confidence?

$$n = \frac{z_{\alpha/2}^2 \sigma^2}{ME^2} = \frac{(1.645)^2 (45)^2}{5^2} = 219.19$$

So the required sample size is n = 220

(Always round up)

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Sample Size Determination: Population Proportion

(continued)

- The sample and population proportions, p̂ and P, are generally not known (since no sample has been taken yet)
- P(1 P) = 0.25 generates the largest possible margin of error (so guarantees that the resulting sample size will meet the desired level of confidence)
- To determine the required sample size for the proportion, you must know:
 - The desired level of confidence (1α) , which determines the critical $z_{\alpha/2}$ value
 - The acceptable sampling error (margin of error), ME
 - Estimate P(1 P) = 0.25

Required Sample Size Example: Population Proportion

How large a sample would be necessary to estimate the true proportion defective in a large population within ±3%, with 95% confidence?

Required Sample Size Example

(continued)

Solution:

For 95% confidence, use $z_{0.025} = 1.96$

ME = 0.03

Estimate P(1 - P) = 0.25

Sample-Size Determination: Finite Populations

Solve for n: $n = \frac{NP(1-P)}{(N-1)\sigma_{\hat{p}}^2 + P(1-P)}$

The largest possible value for this expression (if P = 0.25) is:

$$n = \frac{0.25(1-P)}{(N-1)\sigma_{\hat{p}}^2 + 0.25}$$

3. A 95% confidence interval will extend $\pm 1.96 \sigma_{\hat{p}}$ from the sample proportion

Example: Sample Size to Estimate Population Proportion

How large a sample would be necessary to estimate within ±5% the true proportion of college graduates in a population of 850 people with 95% confidence?

Required Sample Size Example

(continued)

Solution:

For 95% confidence, use z_{0.025} = 1.96

• ME = 0.05

$$1.96\,\sigma_{\hat{p}}=0.05 \quad \Rightarrow \quad \sigma_{\hat{p}}=0.02551$$

$$n_{\max} = \frac{0.25N}{(N-1)\sigma_{\hat{p}}^2 + 0.25} = \frac{(0.25)(850)}{(849)(0.02551)^2 + 0.25} = 264.8$$

So use n = 265