Estimation: Additional Topics

Examples:

Same group
before vs. after
treatment

Group 1 vs.
independent
Group 2

Proportion 1 vs.
Proportion 2

Section 8.1 Dependent Samples

Dependent samples
Confidence Interval Estimation of the Difference Between Two Normal Population Means: Dependent Samples
Tests Means of 2 Related Populations

- Paired or matched samples
- Repeated measures (before/after)
- Use difference between paired values:

$$
d_{i}=x_{i}-y_{i}
$$

- Eliminates Variation Among Subjects
- Assumptions:
- Both Populations Are Normally Distributed

Mean Difference

Dependent samples
The $i^{\text {th }}$ paired difference is d_{i}, where

$$
d_{i}=x_{i}-y_{i}
$$

The point estimate for the population mean paired difference is \bar{d} :

$$
\bar{d}=\frac{\sum_{i=1}^{n} d_{i}}{n}
$$

The sample standard deviation is:

$$
s_{d}=\sqrt{\frac{\sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}}{n-1}}
$$

n is the number of matched pairs in the sample

Confidence Interval for Mean Difference (1 of 2)

Dependent samples
The confidence interval for the difference between two population means, μ_{d}, is

$$
\bar{d} \pm t_{n-1, \frac{\alpha}{2}} \frac{s_{d}}{\sqrt{n}}
$$

Where
$n=$ the sample size
(number of matched pairs in the paired sample)

Confidence Interval for Mean Difference (2 of 2)

Dependent samples

- The margin of error is

$$
M E=t_{n-1, \frac{\alpha}{2}} \frac{s_{d}}{\sqrt{n}}
$$

- $t_{n-1, \frac{\alpha}{2}}$ is the value from the Student's t distribution with $n-1, \frac{\alpha}{2}$
$(n-1)$ degrees of freedom for which

$$
p\left(t_{n-1}>t_{n-1, \frac{\alpha}{2}}\right)=\frac{\alpha}{2}
$$

Paired Samples Example (1 of 2)

Dependent samples

- Six people sign up for a weight loss program. You collect the following data:

	Weight:		
Person	Before (x)	After (y)	Difference, d_{i}
1	136	125	11
2	205	195	10
3	157	150	7
4	138	140	-2
5	175	165	10
6	166	160	6

$$
\begin{aligned}
\bar{d} & =\frac{\sum d_{i}}{n} \\
& =7.0 \\
s_{d} & =\sqrt{\frac{\sum\left(d_{i}-\bar{d}\right)^{2}}{n-1}} \\
& =4.82
\end{aligned}
$$

Paired Samples Example (2 of 2)

Dependent samples

- For a 95% confidence level, the appropriate t value is

$$
t_{n-1, \frac{\alpha}{2}}=t_{5,025}=2.571
$$

- The 95% confidence interval for the difference between means, μ_{d}, is

$$
\begin{aligned}
& \bar{d} \pm t_{n-1, \frac{\alpha}{2}} \frac{S_{d}}{\sqrt{n}} \\
& 7 \pm(2.571) \frac{4.82}{\sqrt{6}} \\
& -1.94<\mu_{d}<12.06
\end{aligned}
$$

Since this interval contains zero, we cannot be 95% confident, given this limited data, that the weight loss program helps people lose weight

