Section 8.2 Difference Between Two Means: Independent Samples

Population means, independent samples

Confidence Interval Estimation of the Difference Between Two Normal Population Means: Independent Samples

Goal: Form a confidence interval for the difference between two population means, $\mu_x - \mu_y$

Difference Between Two Means: Independent Samples (1 of 2)

Population means, independent samples

Goal: Form a confidence interval for the difference between two population means, $\mu_x - \mu_y$

- Different data sources
 - Unrelated
 - Independent
 - Sample selected from one population has no effect on the sample selected from the other population
- The point estimate is the difference between the two sample means:

$$\overline{x} - \overline{y}$$

Difference Between Two Means: Independent Samples (2 of 2)

Sigma Sub x Squared and Sigma Sub y Squared Known (1 of 2)

Population means, independent samples σ_x^2 and σ_y^2 known σ_x^2 and σ_y^2 unknown Assumptions:

- Samples are randomly and independently drawn
- both population distributions are normal
- Population variances are known

Sigma Sub x Squared and Sigma Sub y Squared Known (2 of 2)

When σ_x and σ_y are known and Population means, both populations are normal, independent the variance of $\overline{X} - \overline{Y}$ is samples $\sigma_{\overline{X}-\overline{Y}}^2 = \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}$ * σ_x^2 and σ_y^2 known ...and the random variable σ_x^2 and σ_y^2 unknown $Z = \frac{(\overline{x} - \overline{y}) - (\mu_{X} - \mu_{Y})}{\sqrt{\frac{\sigma_{x}^{2}}{n_{y}} + \frac{\sigma_{y}^{2}}{n_{y}}}}$

has a standard normal distribution

Confidence Interval, Sigma Sub x Squared and Sigma Sub y Squared Known

Sigma Sub x Squared and Sigma Sub y Squared Unknown, Assumed Equal (1 of 3)

Population means, independent samples σ_x^2 and σ_y^2 known σ_x^2 and σ_y^2 unknown σ_x^2 and σ_v^2 * assumed equal $\sigma_{\rm r}^{2}$ and $\sigma_{\rm r}^{2}$ assumed unequal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown but assumed equal

Sigma Sub x Squared and Sigma Sub y Squared Unknown, Assumed Equal (2 of 3)

Population means, independent samples

 $\sigma_{x}^{\ 2}$ and $\sigma_{y}^{\ 2}$ known

$$\sigma_{x}^{\ 2}$$
 and $\sigma_{y}^{\ 2}$ unknown

$$\sigma_x^2$$
 and σ_y^2
assumed equal
 σ_x^2 and σ_y^2
assumed unequal

Forming interval estimates:

- The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ
- use a *t* value with $(n_x + n_y 2)$ degrees of freedom

Sigma Sub x Squared and Sigma Sub y Squared Unknown, Assumed Equal (3 of 3)

Confidence Interval, Sigma Sub x Squared and Sigma Sub y Squared Unknown, Equal

 $\sigma_{x}^{2} \text{ and } \sigma_{y}^{2} \text{ unknown}$ $\sigma_{x}^{2} \text{ and } \sigma_{y}^{2}$ $\sigma_{y}^{2} \text{ and } \sigma_{y}^{2}$

The confidence interval for $\mu_1 - \mu_2$ is:

$$(\overline{x} - \overline{y}) \pm t_{n_x + n_y - 2, \frac{\alpha}{2}} \sqrt{\frac{s_p^2}{n_x} + \frac{s_p^2}{n_y}}$$

Where
$$s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$$

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Pooled Variance Example

You are testing two computer processors for speed. Form a confidence interval for the difference in CPU speed. You collect the following speed data (in Mhz):

	CPU _x	CPU _y
Number Tested	17	14
Sample mean	3004	2538
Sample std dev	74	56

Assume both populations are normal with equal variances, and use 95% confidence

Slide - 20

Calculating the Pooled Variance

The pooled variance is:

$$s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{(n_x - 1) + (n_y - 1)} = \frac{(17 - 1)74^2 + (14 - 1)56^2}{(17 - 1) + (14 - 1)} = 4427.03$$

The *t* value for a 95% confidence interval is:

$$t_{n_x + n_y - 2, \frac{\alpha}{2}} = t_{29, 0.025} = 2.045$$

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 21

Calculating the Confidence Limits

• The 95% confidence interval is

$$(\overline{x} - \overline{y}) \pm t_{n_x + n_y - 2, \frac{\alpha}{2}} \sqrt{\frac{s_p^2}{n_x} + \frac{s_p^2}{n_y}}$$

$$(3004 - 2538) \pm (2.054) \sqrt{\frac{4427.03}{17} + \frac{4427.03}{14}}$$

$$416.69 < \mu_{X} - \mu_{Y} < 515.31$$

We are 95% confident that the mean difference in CPU speed is between 416.69 and 515.31 Mhz.

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Slide - 22

Sigma Sub x Squared and Sigma Sub y Squared Unknown, Assumed Unequal (1 of 2)

Population means, independent samples σ_x^2 and σ_v^2 known σ_x^2 and σ_y^2 unknown σ_{x}^{2} and σ_{y}^{2} assumed equal $\sigma_x^{\ 2}$ and $\sigma_v^{\ 2}$ * assumed unequal

Assumptions:

- Samples are randomly and independently drawn
- Populations are normally distributed
- Population variances are unknown and assumed unequal

Sigma Sub x Squared and Sigma Sub y Squared Unknown, Assumed Unequal (2 of 2)

Forming interval estimates:

- The population variances are assumed unequal, so a pooled variance is not appropriate
- use a *t* value with *v* degrees of freedom, where

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Confidence Interval, Sigma Sub x Squared and Sigma Sub y Squared Unknown, Unequal

Pearson

Copyright © 2020 Pearson Education Ltd. All Rights Reserved.

Section 8.3 Two Population Proportions (1 of 2)

Population proportions

Confidence Interval Estimation of the Difference Between Two Population Proportions (Large Samples)

Goal: Form a confidence interval for the difference between two population proportions, $P_x - P_y$

