

# Birthday

Please upload your birthday:

http://bit.ly/2DA9ajQ



## **Assessing Probability**

- There are three approaches to assessing the probability of an uncertain event:
  - 1. classical probability
  - 2. relative frequency probability
  - 3. subjective probability



#### Classical Probability

- Gerlamo Cardano: We should count the number of equally possible outcomes, the proportion relating to an event.
- The spirit of a priori probability:
  - 1. Count the number of all possible outcomes
  - 2. Attach equally likely probability to each
  - 3. Count the number of outcomes for an event



## Classical Probability

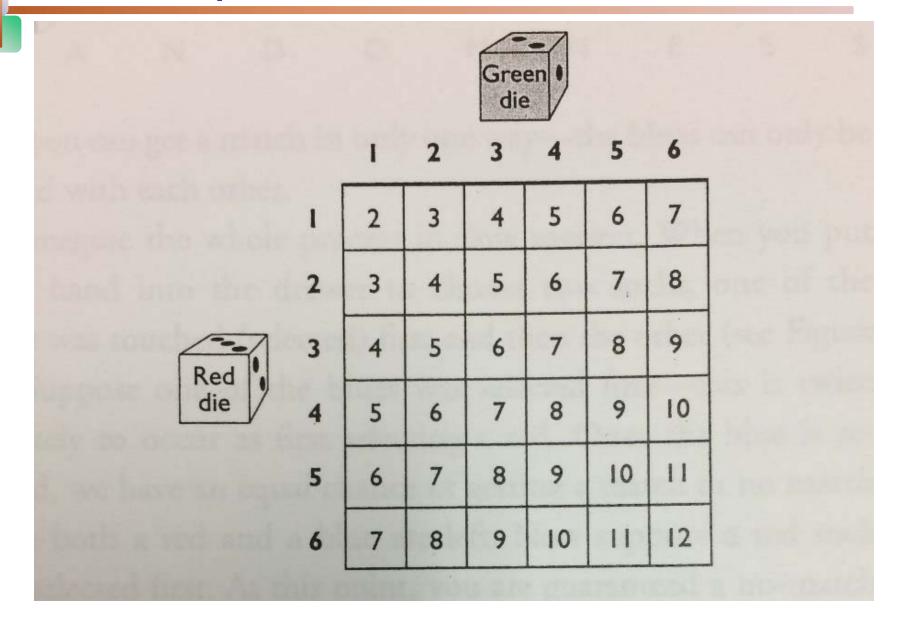
 Assumes all outcomes in the sample space are equally likely to occur

#### Classical probability of event A:

$$P(A) = \frac{N_A}{N} = \frac{\text{number of outcomes that satisfy the event A}}{\text{total number of outcomes in the sample space}}$$

Requires a count of the number of outcomes in the sample space

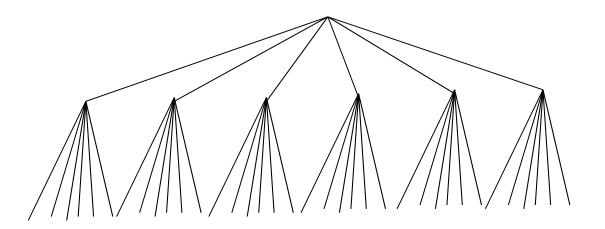
# Comprehend All Outcomes





### Comprehend All Outcomes

 It is easier to comprehend all possible outcomes (sample space) by virtually sequential tosses





#### Permutation vs Combination

- Permutation: The order matters
- Combination: The order does not matter
- With repetition: The thing is return back after being drawn
- Without repetition: The thing can be drawn for at most one time



### Counting the Possible Outcomes

 Use the Permutations with repetition to determine the number of combinations of n items taken k at a time

 $n^k$ 

 Ex. The number of all possible outcomes (sample space) in de Mere's problem are

 $6^4$ 

and

36<sup>24</sup>



#### Permutations and Combinations

#### The number of possible orderings

 The total number of possible ways of arranging x objects in order is

$$x! = x(x-1)(x-2)...(2)(1)$$

x! is read as "x factorial"



#### Permutations and Combinations

Permutations without repetition: the number of possible arrangements when x objects are to be selected from a total of n objects and arranged in order [with (n - x) objects left over]

$$P_x^n = n(n-1)(n-2)...(n-x+1)$$

$$= \frac{n!}{(n-x)!}$$