量子點之產業應用與未來發展

陳學仕 研究員 量子點前瞻計畫及白光 LED 計畫主持人 工研院化工所

一、 量子點簡介

奈米材料是近幾年來的熱門話題, 奈米尺度(1~100 nm)介於巨觀塊材(>100 nm) 與微觀原子(<1nm)之間,對一個同樣的材料而言, 在奈米尺度下, 此材料具有與巨 觀塊材不同的性質, 換句話說, 許多已知的材料在奈米尺度下, 都將成新的材料, 其物理及化學性質, 如光、電、磁、反應性… 等, 均與巨觀的塊材有明顯之差異, 例如, 金的熔點為超過 1000 ℃, 但 2 nm 的金粒子熔點可低至約 330℃, 另一個例 子是矽, 矽原本為不發光的間接能隙半導體, 但 3 nm 之矽粒子卻變成直接能隙半 導體, 具有發光性質, 因此, 奈米材料具有與傳統材料相異的特性。

量子點(Quantum Dots)是典型的奈米材料代表,其可闡明為「具量子特性之奈 米粒子」。量子特性係指如原子具有分離的能階,當原子組成了巨觀的材料後,量 子的特性會組合成新的性質,即一般我們熟知的材料性質,如銅原子組合成銅塊後, 才是常用的導電電線。若材料接近原子尺度時(約 1~10 m,約數十~數千個原子組 成),此材料粒子會有類似原子的量子特性,故稱之為量子點。

量子點由於晶粒體積甚小,故具有三維的能量屏障(Energy barrier),因此電子 與電洞將會被侷限在此一微小晶粒內。另外,在介觀尺度的量子點,電子能態密度 不同於塊材,其介於原子與塊材之間,具有類似原子的能階,在實驗上可觀察到類 似原子能階的分離的光譜,因此量子點的光、電、磁性質不同於一般我們所熟知的 巨觀性質,另一方面,量子點的能態密度隨著其尺寸大小而變,也就是說光、電、 磁性質可以單純的由尺寸變化來改變。

對半導體量子點而言,尺寸變小後,電子電洞受到侷限,復合(Recombination) 機率變大,發光效率變高,另一方面,能帶邊緣的能態密度變小,連續之能帶產生 分裂,故其能隙(Energy Gap)將會變大,發光波長藍移,換句話說,只要能控制 尺寸,即能控制發光波長。以上之量子點特性,即量子點侷限效應(QCE,Quantum Confinement Effect)或量子點尺寸效應(QSE,Quantum Size Effect)。

二、 量子點製備方法

製備量子點方法可分為由上而下「Top Down」的方法,常見的如機械研磨、半導體製程常用蝕刻製程,及由原子或分子堆疊,由下而上「Bottom up」法,以下約略的分類介紹。

(一) 機械研磨法製備量子點

此種方法是最直接的方法,將塊材直接打碎研磨至奈米尺度,也就是「Top down」,一般常用高能球磨機(High Energy Ball Milling)。將材料與磨球放 入球磨罐內,以強力馬達搖晃球磨罐,材料在磨罐內會被磨球打碎,尺寸隨 研磨時間增加而變小,但時間過久,粒子可能會再黏回成大粒子。磨球與材 料的比例,及搖晃的頻率與振幅亦為影響粒子大小的因素,且在磨球、磨罐 與材料撞擊過程中,溫度會略為提昇,可能達到 80~90℃,所以產物可能會 氧化情況,故一般容易氧化的材料,會以氮氣或氫氣保護。此種方法的優點 是簡單、價格低廉,但研磨出來的粒子尺寸較大,形狀不規則、粒徑分布過 廣、表面缺陷多,且在研磨過程容易受到磨罐、球的污染。

(二) 氣相凝結法

此方法最常用來製備量子點,其原理為在鈍性氣體中,以熱阻絲加熱材料至 熔點之上,使其蒸發,材料之蒸汽會在蒸鍍熱源上方與鈍性氣體碰撞損失能 量凝結並成長,最後被液態氮冷卻陷阱(Cold trap)所捕捉,並形成 3~20 奈米 的晶體。當鈍性氣體壓力越小,得到的粒子越尺寸越小,尺寸也較均勻,而 壓力越大時,得到的粒子尺寸變大,但一般較難製備超過 50 奈米。由氣相 蒸鍍法所得之量子點,由於在真空所得,表面較為純淨,且無基板效應,為 真正零維量子點,適合研究其性質,但缺點是產率較低。

(三) 液相化學法製備量子點

液相化學法製備量子點是化學家常用的技術,其粒子結晶、成長,及最終尺 寸大小及分佈,由反應動力學控制。優點為可經由嚴謹的濃度、溫度...等條 件,來控制得到產率高及尺寸均勻的產物,但由於在液相合成,許多未反應 的單體或溶劑分子,純化較煩瑣,且易吸附在量子點表面。金屬量子點之製 備,常使用的方法為還原法,如鈷金屬化合物可在醇類還原製得。另一常見 的方法是溶液-凝膠法 (Sol-Gel Synthesis),為目前最常用來合成玻璃材料如 二氧化矽的方法,最常使用的系統為四乙基矽酸鹽 (TEOS, Tetra ethyl Ortho 工研院產業應用專刊

Silicate, Si(OC₂H₅)₄)) 與乙醇,可藉由原材料比列、催化劑、及其他催化劑...等條件來控制製備多孔性的二氧化矽薄膜,或量子點。

(四) 分子束磊晶成長量子點

目前量子點雷射最常用的量子點成長方法為即為分子束磊晶成長法 (Molecular Beam Epitaxy Growth),為六零年代開始發展的真空蒸鍍成長薄 膜的方法,其原理與上述所提之氣相凝結稍有不同。在超高真空下,若蒸鍍 材料原子的平均自由徑 (Mean Free Path)較蒸鍍源至基板之間的距離長,則 原子束飛行過程中不會與其他原子碰撞,在到達基板後,原子會先形成薄 膜,之後才在基板上形成潤濕層 (Wetting Layer),再形成島狀或金子塔狀的 量子點結構,量子點一般寬約 20~50 奈米,高約 4~6 奈米。目前如熱門的 長波長砷化銦 (InAs)量子點雷射即以此法在砷化鎵基板成長。

下表為為各種常見之方法比較:

製備方法	粒子型態	價格	產物特性及應用領域
機械研磨法	粒狀	很低	因表面缺陷多,光電磁性質不佳,較適合補強材料
液相化學法	粒狀	低	尺寸小,尺寸分布小,通常為多孔性結構,產物表面較
(Sol-Gel 法)			不淨,適合介電材、隔熱材
液相化學法		hr.	4日标件,日十八左标度,海人火雷心;44
(水熱法)	和欣	低	結晶戰住,人寸分甲戰價,週合九電磁材科
液相化學法	粒狀	低	粒徑小,粒徑分佈小,適合光電磁材料
(微胞侷限法)			
液相化學法	粒狀	低	粒徑小,粒徑分布適中,多適合製備金屬粒子,用於觸
(還原法)			媒或其他用途
液相化學法			此何上,此何八任上,从日什,也而此所什,这人从少
(有機金屬熱	粒狀	低	私徑小, 私徑分佈小, 結晶住, 尤龟住貝住, 週合於尤
裂解法)			电磁机杆
傳統半導體製			
程(曝光/顯影/	薄膜	高	粒徑大,可排列規則,適合作為光子晶體或半導體元件
蝕刻)			
氣相凝結法	粒狀	高	粒徑小,粒徑分布較大,產量低,但產物較潔淨,適合
			光電磁材料
化學氣相沉積	粒狀或薄	古	
法	膜	向	私径牧人,私径分佈小人, 產重牧低, 過合元电磁儿什
有機金屬氣相	诸时	但亡	导工业动力会大业要石日蒲附山,如 CoN 导工业要引
沉積法	冲肤	化回	里了和饭也否住兀电砳丽得族下,如 Udil 里丁和苗羽
分子束磊晶法	薄膜	很高	量子點被包含在光電磊晶薄膜中,如 InAs 量子點磊射

三、 量子點之產業應用

量子點顯露出與傳統材料截然不同之光、電、磁特性,且性質可由粒徑調控,已 在許多領域帶來許多新的應用,以下針對幾項最有潛力之應用做一說明。

(一) 高發光效率螢光粉

半導體量子點具高發光效率,有潛力取代傳統螢光粉。目前螢光粉主要用於 照明,如日光燈、螢光燈及最近興起的白光 LED。

螢光粉 1930 年代即開始發展,從早期的鎢酸鎂、鎢酸鈣目前常見的硫化鋅及稀土族氧化物,應用已十分廣泛。螢光粉的發光效率及波長決定於主體晶格、掺雜物之材料結構及組成,如常見的紅光螢光粉 Y_2O_3 :Eu³⁺,即是將作為活化中心 Eu³⁺引入 Y_2O_3 晶格中,並經適當之 Eu³⁺濃度調控,以得最佳之發光效率,而常見的綠光螢光粉則是 BaMgAl₁₀O₁₇:Eu⁺², Mn⁺² 則是調整摻雜物 Eu⁺² 與 Mn⁺² 之比例而得。

另外,傳統螢光紛多用固態燒結在高溫下而得,尺寸約介於10~50μm,然 由於顆粒尺寸大,塗佈不易,故經常以機械粉碎螢光粉顆粒,使塗佈製程可以順 利進行,但研磨過後之螢光粉將產生許多缺陷,使得發光效率下降,且研磨後之 顆粒尺寸分布亦廣,塗佈時或與樹脂摻混時也會造成分布不均勻,進一步使得燈 泡或燈管發光顏色不均,此種情況,在較小面積光源如LED上會更明顯。

直接能隙之半導體為螢光材料之一,近十年來研究發現,當其半導體晶體尺 寸縮小至數奈米時,發光效率將可大幅領先塊材,理論上發光效率可趨近於 100%,且可由尺寸改變發光波長,此為量子侷限效應(Quantum Confinement Effect)所造成。

1993年時, C. B. Murray 研究團隊發表了有機金屬熱裂解法,使用二甲基鎘 (Dimethyl Cadmium),在 300~400°C,製備了 1~10 nm 之 CdSe、CdS 及 CdTe 奈 米晶體,由此法所得之 CdSe 奈米晶尺寸分均匀(<±10%),光激發光效率 (Photoluminescence quantum yield)約為 10%,最重要的是此奈米晶體顯露了量子 侷限效應,即吸收光及發光波長可由粒徑控制,故稱之為量子點,因尺寸分布均 匀,發光波長半高寬僅約 30 nm。⁽¹⁾ 而後,1996年時,其發表了以高能隙的 ZnSe 包覆 CdSe 量子點以提升發光效率的可能性,同年, M. A. Hines 研究團隊亦

發表以更寬能隙之 ZnS 包覆 CdSe 量子點之研究,一舉將發光效率提升到 50%。 ⁽²⁾ 1997 年,X. Peng,研究團隊則發表將 CdS 磊晶成長在 CdSe 量子點上,並驗證為 結構為 CdSe/CdS 殼核量子點(core/shell quantum dots),並更進一步提升發光效率 到 84%,並提出發光理論模型。⁽³⁾ 同一時期,B. O. Dabbousi 研究團隊也發表了 CdSe/ZnS 殼核量子點,且由粒徑控制,使 CdSe/ZnS 之發光波長由藍光(460 nm) 延展到紅光(620 nm)。⁽⁴⁾ 因用來合成 CdSe 量子點之二甲基鎘劇毒,且室溫下極不 穩定,有爆炸之虞,2001 年時,原在加州大學柏克萊分校之 X. Peng 與其研究團 隊也發表了以氧化鎘取代二甲基鎘,成功合成了 CdSe、CdS 及 CdTe 量子點。⁽⁵⁾

經由此法合成而得之量子點,表面即具疏水性官能基,可溶於甲苯,已烷... 等非極性溶劑,分散性佳,並可經由表面修飾改質成親水性,以溶於醇類或水 中,若作為螢光粉材料將可大幅改善塗佈不均的現象。更重要的是,量子點僅改 變尺寸即可改變吸收波長及發光波長,不若傳統螢光粉主、客體材料結構及組成 之複雜考量,另外,其製備程序簡單,批次合成時間僅需1~3小時,合成溫度僅 需300℃左右,設備成本亦低,在螢光粉應用上極具潛力。目前以半導體量子點 作為螢光粉的應用上尚有摻混...等製程問題尚需解決,但潛力已不容忽視。另一 方面,其他螢光材料目前亦已從傳統的巨觀尺度轉向奈米級的研究發展,希望能 藉由尺度的縮小得到更高發光效率的螢光材料。

圖一 Bawedi研究團隊之量子點照片,此為不同粒徑之 CdSe/ZnS 溶於正己烷中,在 UV 燈照射下之螢光。

(二) 有機無機混成發光二極體

發光二極體(Light Emitting Diode, LED)之重量輕、體積小、反應速度快且無廢棄物污染,被視為是下一世代的照明產品,然而,目前商業化之 LED 皆為半導 體磊晶結構,發光波長調整需藉由磊晶層之組成調整,製備程序複雜,機台昂 貴。另一方面,有機 LED 因製程較易,機台成本亦較低,未來亦具相當潛力,但 因有機結構較不穩定,頗令人質疑產品之可靠度。而發光量子點為無機半導體,

發光效率高,可由尺寸調整波長,如 ZnSe 約可發波長 360 nm~440 nm 之紫外/藍 光,CdSe 約可發 460 nm~620 nm 之可見光, InP 約可發 640 nm~730 nm 之紅外 光,InAs 約可發 900~1500 nm 之紅外光,故以量子點作為 LED 具有可任意調控 發光波長的的優點,甚至可混合不同光色的量子點作為數種波長或是白光 LED。

1998年時,H. Mattoussia 研究團隊將 CdSe 量子點與導電高分子 PPV 掺混製成有機無機異質結構發光二極體,首度揭示以不同發光波長之量子點作為發光層,其元件效率雖低,但可由量子點粒徑改變 LED 之發光波長,且製備方法類似高分子有機 LED,製程簡單且可大面積,具相當應用潛力。⁽⁶⁾

圖 二 MIT 所發展之量子點發光二極體,其結構為有機無機異質結構,無機量子 點為3nm之 CdSe,有機導電高分子則為PPV。

2002年時,S. Coe 團隊在發表將 Monolayer 之 CdSe/ZnS 量子點為發光層⁽⁷⁾, 並以有機分子 TPD 及 Alq 作為載子傳輸層,製成為發光二極體,元件發光效率較 其他量子點 LED 改善 25 倍,達 1.6 cdA⁻¹ @ 2,000 cdm⁻²,且證實了量子點 LED 之 可行性,目前發光顏色仍有部分來至於有機分子,使得發光不均,但 Nature 雜誌 為此發布新聞表示,此元件結構極富潛力,不但發光波長可輕易的由不同粒徑之 CdSe 量子點所控制,且量子點發光效率高,未來可能實現發光效率趨近於 100% 之可見光 LED。⁽⁸⁾

圖 三 量子點 LED,發光層為 CdSe 量子點,可經由不同粒徑 CdSe 量子點改變 LED 之發光波長。

(三) 太陽能電池

在地球資源有限及核子能源可能危害下,潔淨能源的開發已成為目前的科技 發展重點,太陽能隨處可得,且取之不絕、廉價、安全無污染、無噪音,為目前 的被看好的未來能源之一。

目前太陽能電池材料主要為為半導體矽晶片,其光電轉換效率高(~10%),但 投入設備成本及製造成本極高,其他取代性的化合物半導體晶片如氮化銦鎵,亦 有成本的問題。半導體晶片昂貴的價格,限制了太陽能電池的普及性,除了一些 特殊應用,如太空、高山偏遠地區或展示場所外,一般用半導體晶片型之太陽能 電池價格仍難以讓市場接受,故競爭力低,因此,若要太陽能電池普及,需開發 其他取代性的材料與結構,才有可能使市場接受太陽能電池。

目前低價的太陽能電池較被看好的如 TiO₂太陽能電池、有機太陽能電池及有 機無機混成太陽能電池。TiO₂太陽能電池發展較久,但遲遲未有商業化產品,原 因為光電轉換效率、光穩定度及吸收光範圍仍待改進。有機太陽能電池約從 1980 年代開始發展,優點為可撓曲,可大面積,製程簡單,其又分成小分子與高分 子,一般而言,有機小分子之穩定較差,對於需要在太陽光曝曬下的嚴苛條件較 不被看好。而有機高分子太陽能電池,光電轉換效率則偏低,主要原因為有機共 軛高分子之電子遷移率(Mobility)低(<10⁻⁴ cm²V⁻¹s⁻¹),遠不如半導體(矽,>1000 cm²V⁻¹s⁻¹)。因此,綜合有機與無機化物之優點之有機/無機混成型太陽能電池,則 是近年來之新研究重點。

TiO₂在太陽能電池上已有數十年的歷史,但其光電轉換效率難以提升,1991 年時 B. O'Regan 工作團隊以 10~30 nm 之 TiO2 奈米粒子,並以染料表面處理 (Dye-Sensitized),號稱具有 7~10%的光電轉換效率。⁽⁹⁾ 而後,其又提出不同的染 料使效率提升至約 11%。⁽¹⁰⁾ 2003 年時,McFarland 研究團隊在 Nature 上發表由 Dye/TiO₂為架構之 Solar Cell,內部量子點效率為 10%,整體光電轉換效率小於 1%。⁽¹¹⁾ 因此結構仍受限於染料分子之效率及穩定度,故目前仍有許多問題待克 服。

Dye sensitized Nanocrystalline Solar Cell (DYSC)

圖 四 以 TiO₂ 奈米粒子為基礎的太陽能電池。⁽¹²⁾

有機/無機混成太陽能電池(Organic-Inorganic Hybrid Solar Cell),國外近年來 發展迅速,目前研究重點仍在材料系統及電池結構的開發,其基本結構為將量子 點或奈米粒子與有機(高)分子摻混成複合物,再旋轉塗佈至基版。目前有許多不 同的無機量子點或奈米粒子被用來與不同的有機導電分子摻混研究,如C60 與導 電高分子 MEH-PPV,其光電轉換效率號稱達到 2.9%⁽¹³⁾。2003年,Arici 研究團 隊發表以 CuInS₂ 奈米粒子/導電高分子摻混成之 Hybrid Solar Cell 之外部量子效率 效率可達 20%。⁽¹⁴⁾ 另一方面,W.U. Huynh 研究團隊發展了不同結構之太陽能電 池,其利用不同的成長條件,合成出不同長寬比的量子點,稱為奈米柱,並將奈 米柱之與導電高分子摻混,製成有機/無機混成太陽能電池,在此結構中,載子直 接在半導體奈米柱內傳遞,傳輸效率高,故外部量子點效率達 54%,其製程尚未

有機無機混成高分子太陽能電池,製備方法簡單,製造成本遠低於傳統式的 矽晶片太陽能電池,易大面積生產,另外,尚可塗佈在牆壁、紙上,甚至衣服 上,以製成可撓曲式的光伏元件,或製成為貼版,為未來取得能源最便利、經濟 的選擇。

圖 五 Hybrid Solar Cell 之結構示意圖。A 為導電高分子之結構,B 為量子點與 導電高分子電荷移轉示意圖,C 則為元件結構示意圖,CdSe/P3HT 由旋轉塗佈而 成,其中量子點占90 wt%。下圖為不同長寬比量子點之穿透式電子顯微鏡圖形。

(四) 生物螢光標記 (Bio Label)

螢光染料在生物醫學主要用於蛋白質之標記與示蹤,目前常用之螢光染料為 有機螢光分子,但因有機螢光分子較不穩定,螢光衰減速度快,使得觀察上受到 較多限制,另一方面,因在生物標記分析之需用不同發光波長之染色劑作為分 辨,故需使用多種染色劑同時進行,但不同有機分子之吸收及發光波長相異,需 使用多種光源,且時常有光源、吸收光、發射光波長重疊或干擾現象產生,故難 工研院產業應用專刊

以同時使用多種有機染料,造成分析不便,耗時耗力。

1998年時, Marcel Bruchez Jr.研究團隊在 Nature 上首度發表以量子點作為生物細胞之標定,引起相當大的注意,其將不同粒徑之量子點作為螢光標記,螢光效率高,且性質穩定,可反覆的經由光源激發而放射螢光,另一個優點是,不同發光顏色之量子點可以同樣的 UV 光源激發,無光譜干擾現象。

經過數年的研究與驗證,量子點作為生物螢光標記已有相當大的進展。2002 年,S.Simon研究團隊發表了量子點同時標定多種蛋白質或細胞的應用,可持續 追蹤每一蛋白質之變化數天。S.Simon及其同僚在量子點接上 dihydroxylipoic acid,在不同的量子點表面接上不同的蛋白質抗體,可以觀察細胞的生長流向, 有助於對細胞分化生長的了解,對未來疾病的防治有莫大的助益。⁽¹⁵⁾ 另一方面, 在今年度 2004 年,量子點也被證明可用來檢測乳癌細胞。

圖 六 左為量子點之光激發光圖形,紅線為不同粒徑之 InAs 量子點,綠線為不同粒徑之 InP 量子點,藍線則為不同粒徑之 CdSe 量子點,插圖照片則為 CdSe 量子點在 UV 下之發光顏色。右圖為經量子點標定之細胞,在螢光顯微鏡下觀察之情況,圖形中綠色部分為細胞核(經 3.5 nm 量子點標定),紅色部分為肌動蛋白纖 維(由 5 nm 之量子點標定)。

四、 工研院目前研究概況

量子點提供了一個嶄新的研究領域,其僅僅只要控制其晶體尺寸,即可獲得 性質全新的之材料。工研院化工所自2002年之前瞻計畫之經費支持下,投入開發 研究至今已進入第三年,目前在量子點材料合成、表面化學改質技術及光電元件 技術已有部分成果,並已申請數件國內外專利。 目前量子點主要以 II-VI 族量子點為主題,粒徑可控制在 1~10 nm 間,尺寸 分布小於≤10%,發光波長可控制在 400 nm ~ 620 nm 間,發光尖峰半高寬小於 28 nm。

圖 七 CdSe 量子點之穿透式電子顯微鏡圖形,量子點約3nm,尺寸分布均勻。

不同粒徑之量子點溶於有機溶劑

圖八 工研院之 II-VI 族量子點。左圖為光激發光譜圖,發光波長由 400 nm~650 nm,發光尖峰半高寬小於 30 nm,右圖為量子點溶於有機溶劑後之照片。

目前工研院將量子點作為白光 LED 用之螢光體,目前待克服效率問題,白光 LED 照片如下所示:

圖 九 工研院將量子點應用至白光 LED。此為 InGaN/YAG 白光 LED 與 InGaN/量 子點白光 LED 之展示照片。

五、 量子點之未來

自 90 年代奈米製備與分析技術大幅精進以來,低維度的量子點材料已陸續被 證明具有傳統塊材所沒有的性質。量子點材料在世界各國學術研究單位,已經投入 大筆經費研究,目前最被看好的應用主要在發光材料與元件,如量子點發光二極體、 太陽能電池、生物檢測載體...等,另外,單電子電晶體目前在實驗室也已成功的驗 證其可行性,長遠的來看,量子計算、量子點電腦也已經如火如荼的展開研究,如 加州大學已經證明了量子點具光量化的特性,且可在室溫下操作,為未來量子電腦 帶來希望。國外已積極部署量子點相關專利,國內對於奈米材料的研究起步稍晚, 在近年來,才有較多的經費投入奈米材料研究,科技成就需仰賴國家與產業的支持 才能落實,希望國內能有更多產業參與。

參考文獻

¹ C. B. Murray wt al., J. Am. Chem. Soc., 115, 8706 (1993).

² M. A. Hines et al., J. Phys. Chem., 100, 468 (1996).

³ X. Peng et al., J. Am. Chem. Soc., 119, 7019 (1997).

⁴ B. O. Dabbousi et al., J. Phys. Chem. B, 101, 9463 (1997).

⁵ Z. Adam Peng et al., J. Am. Chem. Soc., 123, 183 (2001).

⁶ H. Mattoussia et al., J. Appl. Phys., 83, 15 (1998).

⁷ S. Coe et al., Nature, 420, 800 (2002).

⁸ T. Tsutsui, Nature, 420, 752 (2002).

- ⁹ B. O'Regan and M. Grätzel, Nature, 353 737 (1991).
 ¹⁰ Grätzel et al., AIP Conf. Proc., 404, 119 (1997).
 ¹¹ McFarland et al., Nature, 421, 616 (2003).

- ¹² http://dcwww.epfl.ch/icp/ICP-2/icp-2.html

- ¹³ G. Yu, Science, 270, 1789 (1995).
 ¹⁴ E. Arici et al., Adv. Funct. Mater., 13, 1 (2003).
 ¹⁵ http://www.sciencemag.org/content/298/5599/twis.full.pdf