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摘要  

本文針對美國 S&P500 指數選擇權 (SPX) 與台灣加權股價指數選擇權 (TXO) 之買權 進行

每日避險效能之研究。交易手續費與稅額被考慮進避險成本，而平均損益與夏普指數被用來衡量避

險投資組合之效能。為了規避市場價格風險與波動率風險，所測試之避險策略包括了 Delta 避險

策略，調整後 Delta 避險策略，以及 Delta-Gamma 避險策略，亦搭配了歷史波動率、瞬時波動率

及隱含波動率等波動率的估計方法。本文的特點在於瞬時波動率的估計方法，是一種新的無母數方

法，即（修正後）傅立葉轉換方法。此外，由於這些避險策略與波動率估計並不和標的資產波動率

模型的特殊結構相關，因此在避險效能上具有強韌性。我們發現在此架構下， SPX 與 ＴＸＯ 的

避險效能十分不同且 TXO 的波動率風險高於 SPX。  

 

關鍵字 : 免模型避險策略，無母數波動率估計方法，（修正後）傅立葉轉換方法 

 

 

 

 

Abstract 

Hedging performance for index options on SPX in US and TXO in Taiwan is empirically 

studied in this paper. Daily hedging costs include transaction costs and taxes. Profit and loss (P/L) 

and Sharpe ratio are employed to measure the hedging performance. Focusing on elimination of 

the market price risk and volatility risk, tested hedging strategies include the delta hedging, an 

adjusted delta hedging, and the delta-gamma hedging, possibly combined with three volatility 

estimations from the historical volatility, the instantaneous volatility, and the implied volatility. In 

particular, the instantaneous volatility is estimated by a new nonparametric method; namely, the 

(corrected) Fourier transform method. It is worth noting that these hedging strategies and volatility 

estimations do not depend on any specific model of volatility dynamics. Hence the proposed 

hedging mechanisms are robust. Our finding documents that hedging performances in SPX and 

TXO are significantly different and the volatility risk in TXO is higher than SPX.  

 

Keywords: model-free hedging strategies, nonparametric volatility estimation, (corrected) Fourier 

transform method 
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壹、  簡介  

在衍生性商品市場中，傳統的 Black-Scholes-Merton 理論（見 Black and Scholes (1973), Merton 

(1973)）對歐式選擇權的評價模型，是建構在標的資產價格（舉例而言，股價、利率、匯率）與其

衍生性商品價格（期貨、交換、選擇權等等）的無套利（no-arbitrage）或是風險中立（risk-neutral）

關係。此評價與避險理論之成立，是基於完備市場 (complete market) 的假設之下，例如市場上沒

有交易成本、證券的買賣可以連續進行、資產是可分割的等等。但實際上，投資人處在不完備市場 

(incomplete market) 下，這使得無套利關係的假設無法滿足；也就是說，沒有一種策略能對一個衍

生性商品的報酬（contingent claim）達到完全複製 (perfect replication) ，即衍生性商品的風險無法

完全規避。 

近幾年對不完備市場的研究可謂如火如荼。 相關研究可參見 Fouque et al. (2000) 及其參考文

獻。在針對波動率的風險處理上，亦有許多令人振奮的進展，見 Gatheral (2006)。由於使用數理模

型可能引入的偏誤，本文特別著眼於免模型  (model free) 的避險策略並結合無母數方法 

(nonparametric method) 來估計波動率以進行實證上的探討。使用的避險策略包括了 Delta 避險策

略，調整後 Delta 避險策略，以及 Delta-Gamma 避險策略，以維持所建構之投資組合的 Delta 中

立， Delta 與部份 Gamma 中立，以及 Delta 與 Gamma 中立。因此，這些策略與波動率模型的

結構無關。另由於這些策略在使用上都必須將波動率當作輸入變數，因此我們應用無母數的波動率

估計方法，以規避因引入波動率模型（例如 ARCH/GARCH 或 Heston 等具有特定動態結構的波

動率模型，參見 Tsay (2005) 與 Heston (1993) ） 所可能帶來的模型誤差。文獻上關於指數選擇

權的避險研究，見 Yung and Zhang (2003) 亦指出使用較複雜的波動率模型如 EGARCH 其避顯效

能甚至比 Black-Scholes 模型的 Delta 避險差。這現象與定價模型在追逐複雜的資產動態是相異其

趣的。 

本文所討論之三種避險策略著眼於建構某些投資組合，以抑制市場價格風險 (market price risk) 

及波動率風險 (volatility risk)。在對指數選擇權的實證研究上，我們會建立標的資產之部位，除了

與 Delta 值有關，有時會與隱含波動率微笑曲線 (implied volatility smile curve) 有關，例如調整後 

Delta 避險策略（見 Fouque et al. (2000) )，以消弭部份 Gamma 風險。 因此，在資料處理上，對

某個選擇權避險時，往往必須取用所有該月所有選擇權的價格來分析未來波動率的可能發生的變

化。本文是文獻上第一篇對調整後 Delta 避險的方法給出實證的結果。若欲在投資組合中進一步

消除 Gamma 風險時，則可建立其它次近月指數選擇權的部位，這就是 Delta-Gamma 避險策略。 

另由於波動率的使用在這些策略上極為關鍵，因此我們除了一般所熟知的估計值如歷史波動率 

(historical volatility) 和隱含波動率 (implied volatility) 外，另引入一種傅立葉轉換方法 (Fourier 

transform method) 以估計瞬時波動率 (instantaneous volatility)。此法是由 Malliavin5 and Mancino 

(2002, 2009) 所發展出來的一無母數估計方法，是目前所知所有包括 parametric 及 nonparametric 

方法中，唯一能將瞬時波動率，更廣義而言，即動態相關矩陣 (dynamic correlation matrix)，皆能

                                                
&"已故法國著名的機率學家，" Malliavin Calculus 的創始者，見 P. Malliavin and A. Thalmaier  

(2010) 。"
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利用傅立葉級數重新完整建構出來的一種新方法。但 Reno (2008) 指出此方法存在所謂的「邊界

效應 (boundary effect)」，亦即傅立葉轉換的估計在邊界資料(初始值，末尾值)的估計上會有大的

偏誤。 Han et al. (2010) 與 Han (2010) 利用標的資產價格之報酬與其波動率之關係，推導出一最

大概似估計式 (maximum likelihood estimator) 來修正原始傅立葉轉換方法以降低邊界效應。該作者

並將此修正後的傅立葉轉換方法運用在匯率及美國 S&P500 指數資料的風險管理上，採取重要抽

樣法  (importance sampling) 以計算風險值  (Value-at-Risk; VaR) 及條件風險值  (Conditional 

VaR) ，並以回溯測試 (backtesting) 驗證波動率模型。在此，我們進一步以局部波動率 (local 

volatility) 為例再度驗證此修正後傅立葉轉換方法的有效性，並根據此方法估計瞬時波動率。 

從配對交易的角度，考慮選擇權與避險投資組合間的關係，利用波動率均值回歸（mean 

reversion）的特性，尋找因波動率偏離產生過度避險（over hedge）的報酬或避險不足（under hedge）

的虧損，就長期反覆操作而言，期望能得到正的平均報酬。 在這些策略之下，包含標的資產與衍

生性商品的投資組合可能有統計套利（statistical arbitrage）的機會（參見  Avellaneda and Lee 

（2008））。因此本文的結論亦可視為在不同投資組合交易策略下之統計套利的表現。然而從風險

控管的角度，衍生性商品的報酬雖然較高，但往往伴隨著相當程度的風險，透過建立所述之避險投

資組合，我們可以對市場價格及波動率等風險進行控管。至於其他風險，例如信用、流動性、作業、

及道德等，的交易或管理，見 Hull（2010) 關於這方面的討論，在此我們並不討論這些風險。 

本文的架構如下。第貳節介紹上述三種免模型 （ Delta、調整後 Delta及 Delta-Gamma） 的

避險策略。第 節介紹三種（歷史、隱含及瞬時）波動率估計方法包括傅立葉轉換方法，亦考慮局

部波動率之估計。第肆節介紹資料的來源與處理的方法，分別針對美國 S&P500 指數與台灣加權

股價指數的選擇權，進行避險策略的實證結果分析；最後再下總結。 

 

貳、  避險策略介紹  

就選擇權賣方的立場而言，是希望透過建立避險投資組合，來規避所可能承擔的市場風險。在 

Black-Scholes-Merton 模型的假設下，市場價格由幾何布朗運動（Geometric Brownian Motion）描

述，意即資產價格波動僅由一風險因子（布朗運動）控制，因此選擇權賣方的動態 Delta 避險投

資組合可以完美複製選擇權到期日的可能損益。基本的動態 Delta 避險，見 Hull (2008) 。但由於

市場並不完備，要透過此避險投資組合來完全規避風險是不可能的，因此會產生避險誤差，且這些

誤差不一定為正或負。鑑於市場價格風險與波動率風險，我們以下列的三個策略做為可能的動態避

險方式： 

! 策略一（Delta 避險策略）：建立一 Delta 中立 (Delta neutral) 之投資組合，僅能

除去市場價格風險 。 

! 策略二（調整後 Delta 避險策略）：建立一 Delta 中立及部份 Gamma 中立之投

資組合，類似 Delta 避險策略，並萃取隱含波動率微笑曲線的訊息進行校正。  

! 策略三（Delta-Gamma 避險策略）： 建立一 Delta 及 Gamma 中立 (Delta-Gamma 

neutral) 之投資組合，除去市場價格與波動率風險，但在實際交易上因為要買或賣次近月選擇

權的投資部位所以比較昂貴。 

以上三種策略詳述如後。 
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一、  Delta 避險策略  (Delta Hedging Strategy) 

一選擇權的 Delta 係指當股價變動一單位時，選擇權價格的改變，是依據 Black-Scholes 訂價

模型計算出來的。若考慮履約價為 K 到期日為 T 時間的選擇權權，在 t 時間下的股價為 S(t)，

而買權價格 ( ),S ; , , ,C
tP t T K r ! 與賣權價格 ( ),S ; , , ,P

tP t T K r ! 分別為： 
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其中 T t! = "  為距離到期日時間，r 為無風險利率，!  為市場波動率，在 Black-Scholes 模型

下 !  為一固定值，但本研究利用過去股價資料估計 30天期的歷史波動率，也利用選擇權價格計

算的隱含波動率，此兩者皆為隨時間改變的波動率，以 t!  表示。而 Delta 值為選擇權價格對股

價的一次偏微分，表示為： 

 

( ), t

t

P t S
S

!
" =

! 。 

 

在完備市場的架構下，透過 Black-Scholes 公式，我們可以完美複製出一個選擇權。因此，所

謂的 Delta 避險策略，就是利用選擇權價格可以被完美複製的性質，持有 Delta 單位的標的資產，

與投入無風險性資產，組成一個與該選擇權有一樣價格變化的投資組合，因此買賣選擇權所產生的

風險，可以被此投資組合給抵消。由於選擇權價格是會隨著時間、股價的不同而改變，我們所持有

的 Delta 部位亦會隨著時間改變，因此 Delta 避險策略屬於動態避險。 

Delta 避險策略若在完備市場下，符合可連續調整以及無交易成本等的假設，是不會有任何的

避險誤差產生；但實際上，我們只能離散的調整持有的 Delta 部位，並存在交易成本，因此會存

在避險誤差，此避險誤差可能為正或負。 

 

二、  調整後 Delta避險策略（Adjusted Delta Hedging Strategy）  

Black-Scholes 訂價模型是建立在完備市場的假設之下，其中假設了波動率為一個常數，但運

用在市場資料計算時卻產生了隱含波動率微笑，這代表市場參與者面對不同的履約情形時對風險的

看法會不同。在 Fouque et al.（2000）的書中提到的選擇權價格在波動率風險下的一階修正法，即

是根據隱含波動率微笑的訊息，將 Delta 避險策略進行修正。其調整後的 Delta 值如下：  
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其中 t!! 代表調整後的 Delta 值，而 t t t t! "# $、 、、  分別為選擇權價格對股價的一次、二次、

三次與四次偏微分，如表一所示，修正參數 3V  則可從下述迴歸式求出：  

 

( ) ( ) ( ) )4(1ln, !"++#$
%

&'
(

)
= b

tT
SKaKtI t  

 

其中 !  是波動率的均值回歸率 (Rate of Mean Reversion)。 透過此迴歸式可校準隱含波動率

微笑曲線，其中  I 代表在目前時間為  t 到期日為  T 下不同履約價  (K) 的隱含波動率，

( ) ( )ln tK S T t!  為 LMMR (Log Moneyness to Maturity Ratio) 。 式 (4) 表示將隱含波動率 I(t,K) 

對 LMMR 做線性迴歸可能產生的誤差大小與 1/!  同等級。 
由圖一可以見到隱含波動率與 LMMR 的關係圖，此圖僅為 2006 年 8 月 3 日當天且即將於當

月到期之選擇權，圖一(a)為美國 S&P500 指數選擇權，圖一(b)為台指選擇權，而橫軸為 LMMR 的

值，縱軸為隱含波動率。由圖可以見到在一定的區間內兩者具有線性關係。且 S&P500 指數選擇

權具有負相關，但台指選擇權卻呈現正相關。事實上圖一所示之關係在本文所探討的資料期間相當

具有一般性。從隱含波動率與 LMMR 的做線性迴歸分析後可得到迴歸係數 a 與 b，在該書上亦

推導出 3V  與 a 的關係如下：  
 

)5(3!"= aVt  
 

其中! 為利用歷史資料估算出來的波動率，將各微分值與 3V  計算出來後帶入公式(4)，即可計算

出調整後 Delta 值。 
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 (a) S&P500指數選擇權 (b) 台指選擇權   

圖一：隱含波動率與 LMMR 關係圖 

（資料日期為 2006/08/03且於 2006/08到期） 

 

表一：選擇權價格（P）對股價（St）的 n次微分 
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三、 Delta-Gamma 避險策略 (Delta-Gamma Hedging Strategy) 

Gamma 是用來衡量 Delta 的敏感度，亦即當股價變動時，避險比率 Delta 變動的情況，可表

示為選擇權價格對股價的二次偏微分（如表一所示）： 
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而 Vega 是用來衡量標的價格波動度改變對選擇權價格的影響，為選擇權價格對波動率 ! 的

一次偏微分，表示為： 
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1

, t

t t

P t S

S N d T t S T t

!
"#

#

"
=

$= % = % &'
 

 

使用 Delta-Gamma 避險策略，與 Vega 避險策略近似，是加入另外一個與原本相近履約價 K 

且次近月的選擇權契約，意即新加入選擇權到期日 T2 大於原始選擇權到期日 T1；則原始選擇權

的價格，可透過標的資產、無風險性資產與次近月選擇權所組成的避險投資組合來近似。 

Delta-Gamma 避險策略主要是多考慮了波動率所伴隨的風險，當股票價格越接近履約價附近

時，Gamma 值會越大，圖二為 Black-Scholes 模型計算出之 Delta 與 Gamma 值，如圖所示，股

價在 K 附近時， Delta 對股價變動很敏感，斜率很高，代表股票波動率的變化對選擇權價格變化

有很大的影響；而 Delta 避險策略，無法抵擋當股價波動率很大時帶來的風險，為抵禦這類的風

險，而多購買了另一個選擇權來降低對波動度的敏感性。 

 

 

 

 

 

 

 

    
圖二：股價與 Delta、Gamma關係圖 

 

 

因此，選擇權在 t 時間的價值 ( ) ( )1 ,  tP t S 可由標的資產價格（ tS ）、無風險性資產以及另
一個履約價接近且次近月選擇權 ( ) ( )2 ,  tP t S 來複製，此結果是根據 Fouque et al.（2000）假設在

波動率由另一外來擴散過程下所得到的結果： 

 
( ) ( ) ( ) ( )1 2, ,  rt

t t t t t tP t S a S b e c P t S= + +    （6） 

 

Ｋ Stock Price 

Delta 

1 

0 
Ｋ Stock Price 

Gamma 
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其中 at、 bt  與 ct  分別為在 t 時間下，持有標的資產、無風險性資產以及新加入選擇權之數

量。而為達到 Delta 與 Gamma 風險中立，可計算出 tc  為原始選擇權的 Vega 除以新加入選擇

權的 Vega 值，亦可轉換為兩者 Gamma 值的比例關係；透過 tc  進而計算出 ta  的值，以公式

表示為：  

 

( )

( )

( )

( )

( )

( )

( ) ( )21

2

1
2

1

2

1

2

1

)7(

!"#!=

#
#"

$
$=

%
%=

&'
'

&'
'

=

t
t

t

ca

tT
tT

P

P
c

    

 

依照上式所算出的 at  與 ct，隨著時間，動態的調整持有標的資產與次近月選擇權的數量，
直到到期日 T。 

 

、  波動率估計  

文獻上已提出許多波動率模型的估計方法，例如離散時間 ARCH/GARCH 模型與連續時間中

有跳躍與無跳躍的隨機波動率模型等（關於這些模型的描述與估計方法，請見 Tsay (2005)）。從

選擇權定價的觀點而言，複雜的波動率模型，在模型校準 (model calibration) 方面的表現較佳 。

然而，複雜的模型避險效果未必較好。 Yung and Zhang (2003) 實證 SPX 避險時發現，以 GARCH 

建構的波動率模型，其避險效果不如簡單的隱含波動率模型。因此本節著重以無母數法估計波動

率，進而避免因波動率模型所可能引入的偏誤， 

由於第二節所述之避險策略皆與波動率有關，遂搭配三種波動率交叉組合，透過 Delta 避險、

調整後 Delta 避險及 Delta-Gamma 避險三種策略，分別在美國與台灣兩個市場做選擇權避險測

試，並試著找出在哪種避險策略架構底下的波動率比較好。此三種波動率包含了 30天股價算出的

歷史波動率、選擇權市場資料算出的隱含波動率及經過修正後傅立葉轉換估計的瞬時波動率，其中

傅立葉估計所用的股價資料為 500天期的歷史股價資料。此三種估計方法如下述。 

 

(一) 歷史平均波動率（Historical Volatility）：取每日前 n 天的歷史股價資料，計算其對數報

酬率的標準差。其公式為： 
 

( ) )8(
1
1 2

1
!
=

"
"

=#
n

i
i XX

n  
 

其中 ( )1ln != iii SSX  是股價的報酬率，而 X  則為平均的股價報酬率，而 n 代表使用 n 天的

歷史資料估計參數，在本研究裡為 30天。 

 

(二) 隱含波動率 (Implied Volatility)：隱含波動率為根據 Black-Scholes 之選擇權評價公式反推 
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而來，利用選擇權的市場價格，帶入 Black-Scholes 的評價模型，反推出隱含的波動率，代表了市

場參與者對於標的物未來波動率的期望。 

 

(三) 瞬時波動率 (Instantaneous Volatility): 許多文獻試圖利用無母數方法來估計瞬時動率。例 

如以二次變分（quadratic variation）法先計算波動率積分 (integrated volatility)，再以數值方法對波

動率積分做微分，以求得近似的瞬時波動率（參見 Anderson et al. (2001) 、 Zhang and Mykland  

(2005) 與其中參考文獻）。 Malliavin and Mancino (2009) 指出此做法的結果並不穩定，且易受資

料頻率影響，在實務上較不可行。該文遂提出一無母數傅立葉轉換，在連續時間半鞅 

（semi-martingale）過程的架構下估計市場之瞬時波動率。由於該方法基於計算變異數過程的傅立

葉係數，而非計算二次變分，需要計算時間數列的積分而非微分。他們宣稱該方法特別適用於高頻

率時間數列分析與資產動態波動率（或較廣義的相關係數）的計算。 

 

一、 傅立葉轉換方法估計瞬時波動率  

傅立葉轉換方法的介紹如下。  令  tu  為標的資產價格  S  在時間  t  的對數值，即 
( )tt Su ln=  ，遵循擴散過程 

 

                                )9(,tttt dWdtdu !µ +=                              

                                                

其中 tµ  為瞬時成長率，而 tW  為一維標準布朗運動。吾人可以下列步驟估計瞬時波動率序

列 t! ： 

! 步驟1：計算標的資產 ut  的傅立葉係數 

 

                                 ( ) )10(
2
1 2

0
0 !=

"

" tdudua ,                                  

                         ( ) ( ) )11(cos
1 2

0
!=
"

" tk duktdua ,                                

          ( ) ( ) )12(sin1 2

0
!=
"

" tk duktdub ,                            

 

該運算中係對所有自然數 k !1，且傅立葉級數可重建為 

 

( ) ( ) ( ) ( ) ( )!
"

=
#$
%

&'
( +)+=

1
0 sincos

k

kk kt
k
duakt

k
dubatu  

原時間數列區間 0,T[ ]  在該積分中都可一對一的映射至 0,2!!" #$。 
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! 步驟2：計算變異數 2
t!  的傅立葉係數如下： 

 

[ ] )13(,)()()()( 
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lim)( ****2 !
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N
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其中 0!k , ( )duas
*  與 ( )dubs

*
 定義為 
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( )
( )
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! 步驟3：重新建構變異數 

2
t!  之時間數列 

 

( ) ( ) ( ) ( ) ( )[ ] )15(,sincoslim
0

222 !
="#

+=
N

k
kkNt ktbktak $$%&$  

 

其中 ! x( ) = sin
2 x( )
x2

 為一平滑函數 (smooth function) ，初始條件 ( ) 10 =!  且 !  為平滑參數 

(smooth parameter)，通常設定為 ! =1/ 6  (參見 Reno (2008))。 

觀察方程式(10)-(12)可得知，傅立葉係數的積分誤差與資料頻率成反比。也就是說，愈高頻的

資料愈有利於傅立葉轉換方法。另注意到此方法十分容易在電腦程式上執行，如方程式(13)與(14)

所示，乃由於變異數之傅立葉係數可被 
*a  與 *b  之有限乘積和近似。因此，該方法可規避傳統

以對二次變分後作微分的方法所導致的缺點。 

 

二、 修正後傅立葉轉換方法估計瞬時波動率  – 偏誤降低  (Bias Reduction) 

然而 Reno (2008) 提出警告，傅立葉轉換法在估計的波動率時間數列的邊界表現不佳，即估

計波動率的前 1%與最後 1%的時間數列資料較不精確。 Reno 建議摒棄邊界的波動率估計，但該

折衷方法會造成實際應用上的缺失。其中的一個例子是，若去除最近 1%的波動率估計值將會扭曲

短期波動率的預測，例如預測一日的波動率。為了避免這種邊界效果所造成的計算偏誤，Han 等

人 (2010) 提出藉著標的資產價格之報酬與其波動率之關係，以修正原始傅立葉轉換方法。該方法

只需要解一由最大概似估計法導出的迴歸方程式，相當容易進行數值運算。此外，該方法的優點包

括(1)觀察的資料沒有遺漏，以及(2)減少傅立葉轉換產生的波動率偏誤。該文對隨機波動率模型

(stochastic volatility model) 的一些模擬研究發現，均方根誤差與最大絕對誤差都有效減少一半以

上。 

Han et al. (2010) 所提出之傅立葉轉換的價格修正方法如下。對上述之傅立葉轉換方法所估計
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之變異數過程 2ˆ t!  之對數值進行線性轉換，其中取對數值的目的是要確保修正後的波動率為正。

也就是說，先將波動率之對數值 ttY !̂ln2ˆ =  轉換成 tYba ˆ+ ，使得轉換後後的波動率

( )( ) 02ˆexp >+= tt Yba!  滿足 ( )( ) tttt Ybau !"+#" 2ˆexp ，其中 ttt uuu !=" +1 ， a  與 b  
代表修正係數， t!  代表獨立同分配的標準常態隨機變數。此線性轉換可理解為波動率非線性轉換

的一階近似。然後，吾人可以最大概似估計法與回歸分析法，藉由標準平方報酬率 ttu !!
 
波

動率過程中之 tYba ˆ+  的下列關係，以估計修正係數： 

 

                              )16(.lnˆln 2

2

tt
t

t Ybau !++="
"
#

$
%
%
&

'

(
(  

 

三、 局部波動率之估計  

為進一步驗證修正後傅立葉轉換方法，我們在此特別考慮局部波動率模型之估計問題。我們採

取 Jiang (1998) 的局部波動率利率模型如下：  

 

( ) )17(,dWtrdtrmdr ttt
!"# +$=  

 

其中 Wt 為一維度的標準布朗運動。其均值回歸率 α 的估計值為 0.093，長期均值 m 為 0.079，

波動率中之波動率 β 為 0.794，且指數 γ 為 1.474。 

使用尤拉離散法 (Euler discretization) 進行對利率過程(17)之抽樣，以一年為時間單位，離散

時間均為 1/5000。根據所抽樣的 5000筆利率樣本(則 5000筆的真實局部波動率時間序列為
!"# tt r= )，進行原始傅立葉轉換方法與修正後傅立葉轉換方法估計。 

在估計誤差上，我們發現原始傅立葉轉換方法所得到的均方根誤差 (mean squared error) 為

7.53E-04，最大絕對誤差 (maximum absolute error) 為 0.04；而修正後傅立葉轉換方法所得到的均

方根誤差為 1.19E-05且最大絕對誤差為 0.02，可見原始傅立葉轉換法的偏誤大幅下降。若將離散

時間設為 1/500，則根據所抽樣的 500筆利率樣本，我們發現原始傅立葉轉換方法 (! =1/ 6 ) 所

得到的均方根誤差與最大絕對誤差分別為 1.44E-05與 0.0103；而修正後傅立葉轉換方法所得到的

均方根誤差與最大絕對誤差分別為 2.80E-06與 0.0046。以上的兩個模擬結果皆再次地顯示出我們

驗證了修正後傅立葉轉換法的有效性。 

 

肆、  指數選擇權實證結果  

 

一、  資料來源與處理  

本研究針對美國 S&P500 指數選擇權 (SPX) 以及台灣加權股價指數選擇權 (TXO) 的買

權，進行測試，分別計算在不同的避險策略下產生的損益金額 (P&L) 以及夏普指數 (Sharpe 

Ratio)。其中，SPX 資料來源為 OptionMetrics 的 IVY Data Base（2001/01~2007/06），TXO 資料

來源為期交所（2003/07/01~2009/03/01）。 
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此兩種選擇權皆屬歐式選擇權，SPX 為美國芝加哥選擇權交易所（CBOE）發行，其標的資產

為 S&P500 指數，一點價值 100美元。TXO 為台灣期貨交易所（TAIFEX）發行，標的資產為台

灣加權股價指數，每點價值新台幣 50元。 

為了突顯不同避險策略的適合使用時機，我們將資料依據契約進場距到期日的時間分類。不同

進場距到期日的時間（Ｔ）下，觀察表現較好或較差的避險策略，隨著進場的時間不同，是否仍舊

維持原本較好或較差的表現；其中，本文主要分為 Ｔ＝30、29…、2，若 Ｔ＝30代表該為距到期

日 30天前進場的契約。因此，SPX 的買權總共有 105,125（3625"29）筆選擇權資料；TXO 的買

權則有 43,993（1517"29）筆選擇權資料。 

原始資料中有些合約因交易量過小，導致選擇權契約價格異常，或選擇權為深度價內外。故本

文刪除原始資料中契約價格呈現過低現象的契約，美國的契約價格以 3/8點為所採用契約的最小價

格，契約價格小於 3/8點將不採用。而台灣契約採用的最小價格為 12點，契約價格小於 12點則不

採用。 
    為了找出何種避險策略與波動率能成為較好的避險組合，我們利用配對ｔ檢定(matched-pairs 

test) 對平均損益以及夏普指數做兩兩檢定。在此檢定下，虛無假設及對立假設分別為

{
0:
0:

1

0

<
=

D

D

H
H

µ
µ

，其中 21 µµµ !=D ，而統計量

DD

DD

nS
x

t
µ!=

_

，t 分配的自由度 1!= Dn" 。在

此假設下，因所要觀察的結果是避險天數30天到避險天數2天，故組數為29組，也就是此統計量分

配的自由度28，因為是單尾檢定，各信心水準下的臨界值如表二所示。 

 

 

 

 

表二：不同信心水準下T-test臨界值 

T-test (自由度 : 28) 

信心水準 99% 95% 90% 

t值 2.467140089 1.701130908 1.312526782 

 

二、  避險效能表現  

本研究使用美國 S&P500 指數選擇權 (SPX) 2001/01~2007/06 的資料與台灣加權股價指數選

擇權(TXO) 2003/07/01~2009/03/01的資料，依第貳節所述之三種免模型避險策略及第三節所述之三

種無母數波動率估計方法進行每日避險之實證研究，並比較其結果。其中之歷史波動率與瞬時波動

率之估計皆依滾動法 (rolling) 計算。 

從不同到期日 T（2 30天）賣出選擇權，使用各種避險策略進行每天的避險，包括利用歷史

波動率、瞬時波動率及隱含波動率對 Delta 避險、 調整後 Delta 避險、 Delta-Gamma 避險等策

略的交叉組合。交易成本的設定上，SPX選擇權的交易成本為每口 $0.5美元，標的資產的交易成

本為每口 $0.4美元；台灣的部分，交易成本分成交易手續費與交易稅， 其中選擇權的交易成本為
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每口 9 元，交易稅為 0.1%，契約價值為每點乘上 50 元，期貨的交易成本為每口 14.4 元，交易稅

為 0.01%，契約價值為每點乘上 200元。而進行策略所使用的利率 r，美國市場使用 3個月期國庫

券利率，台灣市場則是使用五大銀行一個月期平均存款利率6。 

 

（一）避險策略與波動率之交叉比較  

表三針對在特定之避險策略下，比較三種波動率所得的避險效益。例如，從 Panel A 中的 Delta 

避險策略來看，在搭配上修正後傅立葉轉換方法所估計出之瞬時波動率，所得到的29個日平均損

益，其統計上的顯著性分別大於該策略搭配歷史波動率與隱含波動率，其中的數字為這些日損益的

平均值。 

由表三可看出在美國的市場中，以傅立葉方法估計之瞬時波動率的避險平均損益大抵都高於其

他波動率所帶來的平均損益；但從夏普指數來看，由30天日報酬所算出的歷史波動率還是占優勢，

避險的夏普指數顯著的高於其他波動率。台灣市場中，並不能明顯的指出何種波動率在任何避險策

略下皆能在平均損益及夏普指數上有較傑出的避險效能，大致上，對應特定一策略下，擁有較高平

均損益的波動率相對的夏普指數表現也較好。圖三與圖四分別顯示在美國與台灣市場中從30個交易

日前至2個交易日前之避險效能。 

 

（二）最佳波動率下各策略間之比較  

延續上一部分，對特定的避險策略，挑出達成最佳避險效能的波動率，並利用此組波動率的避

險表現代表此一避險策略的表現，藉以比較各策略間的表現。由表四中可看出，在美國市場中，調

整後 Delta 的避險效能在平均損益下明顯的高於 Delta 與 Delta-Gamma 策略。在夏普指數下，

Delta 與 Delta-Gamma 策略分別顯著於調整後 Delta 策略，雖然前二者的統計差異並不顯著，但

以平均值來看仍是 Delta 策略較好。可以說美國 SPX 市場的風險因子主要來自市場價格，所以使

用 Delta 與調整後 Delta 的就能達成不錯的避險效能。 

對台灣的 TXO 而言，在平均損益上明顯指出 Delta-Gamma 策略有較好的避險表現；雖在夏

普指數上不存在顯著的避險策略，但以平均值來看仍是 Delta-Gamma  策略較好。可以說台灣 

TXO 的市場風險因子不僅來自價格，波動率風險也很重要，所以適合使用較複雜的 Delta-Gamma 

策略以達到較佳的避險效能。另注意雖然此策略必須建立選擇權的投資部位，在成本上較為昂貴，

但其控制波動率風險的有效程度遠大於 Delta 與調整後 Delta 等策略之避險所及。  

另外從圖五中可看出兩個市場的其他差異性：（1）就美國市場，距離到期日越長的避險效能

越好，台灣則是相反。（2）台灣的避險損益皆高於美國，但台灣的夏普指數普遍皆低於美國。 

 

 

                                                
'"五大銀行平均存款利率，為台灣銀行、合作金庫、第一銀行、華南銀行與彰化銀行之存款利率。
資料來源為中央銀行網站。 
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表三：三種避險策略與三種波動率所得的避險效益之交叉比較 

(a)、 美國 

指數 

避險策略\波動率 歷史 傅立葉 隱含 

Panel A:平均損益 （美元） 

Delta 173.77*** 183.09 148.45*** 

Adjusted Delta 175.30*** 184.54 135.28*** 

Delta-Gamma 169.13 170.85 125.63*** 

Panel B: 夏普指數 

Delta 0.4989 0.4519*** 0.4649*** 

Adjusted Delta 0.4854 0.4501*** 0.3911*** 

Delta-Gamma 0.4961 0.3440*** 0.4004*** 

 

(b)、 台灣 

指數 

避險策略\波動率 歷史 傅立葉 隱含 

Panel A: 平均損益 (新台幣) 

Delta 19233.48***  19372.26   19175.65***  

Adjusted Delta 19314.67***  19401.42  19331.53***  

Delta-Gamma 19827.43  19656.75***  19733.44***  

Panel B: 夏普指數 

Delta 0.3932***  0.3961  0.3918***  

Adjusted Delta 0.3944***  0.3957  0.3945***  

Delta-Gamma 0.4057  0.4033***  0.4035***  

 

註 :粗體部分表最大值，”***”表在99%信賴區間下拒絕 0H ，”**”表在95%信賴區間下拒

絕 0H ，”*”表在90%信賴區間下拒絕 0H  
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(a)、 平均損益(美元)比較 

 
 

(b)、 夏普指數比較 

 

圖三：美國避險效能之比較 
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                        (a)、 平均損益(新台幣)比較 

 
 

(b)、 夏普指數比較 

 

圖四：台灣避險效能之比較 
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表四：最佳波動率下各策略間之比較 

(a)、 美國 

 

(b)、 台灣 

註 :粗體部分表最大值，”***”表在99%信賴區間下拒絕 0H ，”**”表在95%信賴區間下拒

絕 0H ，”*”表在90%信賴區間下拒絕 0H  

 

 

 

 

 

 

 

 

 

 

指數  

Delta Adjusted Delta Delta Gamma 

Panel A: 平均損益 （美元） 

183.09 *** （傅立葉） 184.54 （傅立葉） 170.85 *** （傅立葉） 

Panel B:夏普指數 

0.4989  （歷史） 0.4854 *** （歷史） 0.4961 （歷史） 

指數 

Delta Adjusted Delta Delta Gamma 

Panel A: 平均損益 (新台幣) 

19372.26 *** （傅立葉） 19401.42 *** （傅立葉） 19827.43 （歷史） 

Panel B: 夏普指數 

0.3961（傅立葉） 0.3957（傅立葉） 0.4057 （歷史） 
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(a)、 平均損益（以新台幣計價）比較 

 

 

(b)、 夏普指數比較 

 
圖五：美國與台灣避險效能比較圖 (美元/新台幣:1/32) 
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伍、  結論  

 

本文考慮數種免模型之避險策略與波動率之估計方法分別針對美國 S&P500 指數選擇權 

(SPX) 與台灣加權股價指數選擇權 (TXO) 的歷史買權資料進行避險測試。利用標的資產 S&P500 

指數與台灣加權股價指數建立三種避險投資組合（包括 Delta 避險、調整後 Delta 避險，以及 

Delta-Gamma 避險），並在三種不同波動率 （包括歷史波動率、瞬時波動率及隱含波動率）的交

叉使用下，檢驗避險表現之優劣，其中交易成本與稅亦被考慮。值得注意的是這些避險策略與波動

率估計方法皆是用來降低本研究對於模型的依賴性。 

根據實證結果，我們發現兩個市場的共同點是無論建立何種避險投資組合，平均而言是會產生

正的報酬。而兩個市場的差異有四點。第一， S&P500 指數選擇權之隱含波動率與 LMMR 呈現

負相關，但台指選擇權卻為正相關。第二，對 SPX 的買權避險時，進場距到期日越遠會有越高的

報酬，但在 TXO 卻完全相反。第三，在美國市場中，Delta 或是調整後 Delta 的避險效能明顯的

高於 Delta-Gamma；而在台灣，不論是平均損益或夏普指數，皆指出 Delta-Gamma 有較好的避險

表現。第四，台灣的避險平均損益雖高於美國，但台灣的夏普指數則普遍低於美國。以上的市場差

異顯示出台灣 TXO 的避險投資組合與美國 SPX 相比有較多的波動率風險。 TXO 的投資人應謹

慎處理或善用此波動率風險。 
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