Introduction to Matlab GPU Acceleration for

Computational Finance

Chuan-Hsiang Han'

Abstract: This note aims to introduce the concept of GPU computing in Matlab
and demonstrates several numerical examples arising from financial
applications. Computational methods include solving linear equations, fast
Fourier transform, and Monte Carlo simulation. We find that numerical
performance can be accelerated by Matlab-GPU computing in general, but not
always the case. Monte Carlo simulation gains the most benefits from this highly

parallel structured device - GPU.

Section 1: Introduction

The central processing unit (CPU) contains multiple and powerful cores. Each
CPU core is optimally designed for serial processing. In contrast, the graphic
processing unit (GPU) may consist of hundreds or thousands of cores. These
cores are highly structured for parallel processing. See a pictorial comparison of

the structure between CPU and GPU in Figure 1.

In comparison to the longer history of CPU, GPU is a new and revolutionary
device to accelerate computational performance. First manufactured by Nvidia in
1999, GPU was designed for computer graphics rendering. After Nvidia launched
GPU’s low-end programming language - Compute Unified Device Architecture
(CUDA) in 2006, scientists and engineers have found that many heavy

computational tasks can be significantly improved by GPUs.
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Figure 1. Comparison of the number of cores on a CPU system and a GPU system.

(Resource: Nvidia)

In this short note, we first review GPU computing. Then we demonstrate how
Matlab GPU commands can easily improve typical numerical examples from
computational finance. These examples include solving linear equations, fast

Fourier transform, and Monte Carlo simulations.

Section 1: GPU Computing

GPU computing refers to the use of CPU together with GPU for fast computation
by offloading parallel portions of the numerical algorithm to the GPU, while
serial portions of the algorithm to the CPU. When a computational task is
massively paralleled, the cooperative GPU computing may become an accelerator
to solely CPU computing subjected to memory access to passing messages. That
is, the time spend on transferring data between the CPU system memory and the
GPU shared memory is crucial to the efficiency of GPU computing. Thus, GPU
computing can be of high performance when numerical algorithms satisfy two
criteria:
(1) massive parallelization - a large number of instructions can be executed
(upon many sets of data) independently.
(2) Memory accessibility - the overall computational speedup is subjected to
the amount of data transfer between CPU system memory and GPU

shared memory because memory access is slow.
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In addition to the nature of algorithms, writing computer programs in CUDA can
still be challenging and it is often requires fine-tuning to optimize numerical
performance for specific applications and GPU configuration. Professional
developers are indeed able to gain extraordinary speedup using CUDA codes for

their GPU computing.

A good source for Nvidia GPU computing by CUDA can be found on

http://www.nvidia.com/object/cuda_home new.html

Section 2: GPU Computing in Matlab

In 2010, the feature of GPU computing was added into Matlab’s parallel
computing toolbox by a joint force of Mathworks and Nvidia. Build-in GPU
enabled functions allow developers to take advantage on the powerful GPU

computing simply by Matlab, a high-end programming language.

When Matlab’s GPU enabled functions are executed on the GPU, data must be
transferred from Matlab workspace to GPU device memory. The command
gpuArray provides a specific array type for such data transfer, then GPU enabled
functions can run on these data. The command gather returns those calculated
results, which are stored in GPU, back to Matlab workspace. The procedure of

GPU computing in Maltab is as follows:

Matlab gpuArray GPU gather Matlab
Workspace Execution by Workspace
Input: === | GPU enabled | === | Output:
raw data function calculated data

A number of Build-in Matlab GPU enabled functions can be found on

http://www.mathworks.com/help/distcomp/establish-arrays-on-a-gpu.html

and

http://www.mathworks.com/help/distcomp /run-built-in-functions-on-a-gpu.ht
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Note that when input raw data is large, for example a large matrix, users need to
check whether these data exceed GPU’s memory limit or not. By running
gpuDevice, information such as name, total memory, and available memory can

be obtained from the GPU device.

The advantage of Matlab GPU programming is that users can easily utilize GPU
computing by adding just few more commands to their original Matlab codes.
Disadvantages include that only limited Matlab functions are GPU-enabled and

the computing efficiency of Matlab GPU is less than those codes written in CUDA.

A good source to learn about Matlab GPU computing can be found on

http://www.mathworks.com/discovery/matlab-gpu.html

When one wants to execute a whole function on GPU, the Matlab function
arrayfun is designed for this purpose and its usage can be found on

http://www.mathworks.com/help/distcomp/arrayfun.html

Next, several standard examples arising form computational finance are
discussed. Only gpyArray will be demonstrated for a clear comparison between

Matlab CPU commands and GPU commands.

Section 3: Examples from Computational Finance

Three popular computational methods used in quantitative finance include but
not limited to (1) numerical partial differential equation, (2) Fourier transform
method, and (3) Monte Carlo simulations. Next we demonstrate Matlab GPU
computing on examples associated with these methods and their speedup

performance over Matlab CPU computing.

Example 1: Solving a linear equation

Solutions of linear equations often represent the first order approximations to
many problems. In computational finance, linear equations may emerge from

numerical partial differential solutions (PDEs), optimization, regression, etc.



Here we specifically address the method of numerical PDEs. According to
stochastic financial theory, prices of some financial derivatives can be described

by solutions of PDEs.

The implicit finite difference scheme is known as an accurate and stable method
for solving pricing PDEs. This scheme induces linear equations with certain
structure. Solutions of those linear equations are discrete approximation to

solutions of the corresponding pricing PDEs.

Given an invertible matrix A and a vector b with the same dimension, the

solution of linear equation Ax=b can be obtained by this command line

>>x=A\b; % on CPU

in Matlab and this computation is executed by CPU. To take advantage of GPU
computing in Matlab, users only have to create GPUArrays by transferring matrix
A and vector b to GPUs but still use the same command line like in CPU. Here is

what Matlab user can do for solving the linear equation in GPU:

>> gA = gpuArray(A); gb = gpuArray(b); gx=gA\gb; %on GPU

>>x=gather(gx) %on CPU

[t shows that by simply change of the array type of inputs MATLAB users are

able to implement GPU computing for their applications.

Figure 2 demonstrates speedup performance of GPU computing over traditional
CPU computing given the same random matrix A and random vector b with

various dimensions shown on the x-axis. When the dimension n=1000, we set

>>n=1000;
>> A =rand(n); b = rand(n, 1);

Then one can use the previous command lines to solve for the linear equation by
either CPU computing or GPU computing. We record their computing times.

Speedup ratios on various dimensions from n=1000 to 8000 are shown below.



Speed-up

N W s

1000 2000 3000 4000 5000 6000 7000 8000

== Speed-up

Figure 2: GPU Speedup performance when the random vector size n ranges from

1000 to 8000.

Example 2: Fast Fourier Transform

Fourier transform method can be used to characterize option prices under
various financial models (Kienitz and Wetterau (2012)). Fast Fourier transform

(FFT) is applied and becomes a major computational method in finance.

Let’s introduce basic instructions on CPU and GPU both in Matlab by considering
arandom vector with the size n and its FFT. Next line shows how Matlab CPU is

programmed:
>>n=2"16; T =rand(n,1); F = fft(T); %on CPU

To perform the same operation on the GPU, recall that one has to use the
command gpuArray to transfer data from the MATLAB workspace to GPU device
memory. Then fft, a GPU enabled function, can be executed. One can use the
command gather to transfer the result stored on GPU back to CPU for further

serial operation.
>> gT = gpuArray(T); gF = fft(gT);  %on GPU

>> F=gather(gF); %on CPU



It is worth noting that in this particular example the running time of FFT on GPU
might be less than the time to transfer data between CPU and GPU. This means

data transfer can possibly degrade the whole performance on GPU computing.

Figure 3 shows the speedup performance for pricing European options under
Heston model by FFT (Carr and Madan (1999)). A comparison of execution times
for CPU and GPU computing is implemented under a CPU (Intel Core

i5-3230M Processor, 2.6 GHz) and a GPU (Geforce GT635M). It is clear to see that
when the discretization size n, shown on the x-axis, is small, the overall

performance of GPU is worse than CPU.
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Figure 3: GPU Speedup performance when the discretization size n ranges from
2712 to 2721.

Example 3: Monte Carlo Simulation

The previous two examples, solving a linear equation and FFT, involve
deterministic numerical methods. In this section stochastic computation, namely

Monte Carlo simulation, is considered.

Basic Monte Carlo method calculates the arithmetic average of a large number of

random samples drawn from independently identical distributions. (This theory



is known as the law of large numbers.) Its independent property of large samples
fits well to the massive parallelization criteria of GPU computing. It is often to see

huge numerical performance by GPU computing on Monte Carlo simulation.

Two case studies are conducted for running Monte Carlo simulation on both CPU
and GPU computing. The first case concerns an estimation problem for joint
default probability. The second example concerns about the an vanilla option

pricing problem.
Case 1: Estimating Joint Default Probability under Multivariate Normal
We consider the estimation of joint default probability:
p= E[I()_() < B)] = E[[Ti= 1(X; < D],
in which the defaultable asset vector X = (X1, X5, .., X)) € R™T is assumed

centered normally distributed X~N (6, Z) with dimension n and its default
threshold vector is denoted by D = (Dy, D, ..., D)’ € R™1. For simplicity, in the

Matlab experiment below we further assume that D = dx (1,..1)". More
————

nx1
general distributions and relevant (efficient) importance sampling can be found
on author’s work.

Matlab codes for this case study can be found below for CPU and GPU computing.

% Parameters and variables

d=-1; rho=0.25;

n=>5;

Nrepl = 750000; %total number of simulation

Matlab CPU Computing Matlab GPU Computing
Sigma=rho*ones(n,n) Sigma=rho*gpuArray.ones(n,n)




+(1-rho)*eye(n); +(1-rho)*gpuArray.eye(n);

T = chol(Sigma); T = chol(Sigma);

X_MC =randn(Nrepl,size(T,1)) | X_MC = gpuArray.randn(Nrepl,size(T,1))
* T, * T,

MC = prod(1*(X_MC < MC = prod(1*(X_MC <
d*ones(Nrepl,n)),2); d*gpuArray.ones(Nrepl,n)),2);
P_MC = mean(MC); P_MC_g = mean(MC);

SE_MC = std(MC) / sqrt(Nrepl); | SE_MC_g = std(MC) / sqrt(Nrepl);
P_MC = gather(P_MC_g);
SE_MC = gather(SE_MC_g);

Figure 4 shows the speedup performance for this case study over various
dimensions. GPU computing performs efficiently than CPU computing. We should
remark that Maltab’s command mvncdf.m provides the same calculation but it is
not a GPU enabled function. This function is limited to dimension 25 but not our

Monte Carlo simulation shown above.
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Figure 4: GPU Speedup performance when the dimension size ranges from 1 to
25.

Case 2: European Option Pricing by the Basic Monte Carlo Method
Consider the estimation of an European call option price: p = E[e "7 (57 —

K)*| S, = S0]. The stock price process S, is governed by the Black-Scholes
model: dS; = rS;dt + dS,dW, with the initial price S, = S0. Parameters r and




I denote the risk-free interest rate and the volatility, respectively. Variables T
and K denotes the time to maturity and the strike price of the European option,

respectively.

The basic Monte Carlo (BMC) estimation under GPU computing is shown below.

NSteps=100; %time domain discretization size for geometric Brownian
motion

Nrepl=100000;  %number of simulation for Monte Carlo

%model parameters and variables

T=1; %time to maturity

r=0.05; %risk-free interest rate
sigma=0.3; %volatility

S0=50; %initial stock price
K=55; %call strike price

% stock price simulations

dt=T/NSteps;

nudt=(r-0.5*sigma”2)*dt;

sqdt=sqrt(dt);

sidt=sigma*sqdt;

RandMat=gpuArray.randn(Nrepl, NSteps);
Increments=[nudt+sidt*RandMat];
LogPaths=cumsum([log(S0)*gpuArray.ones(Nrepl,1), Increments],2);
SPaths=exp(LogPaths);

%samples of European call payoff

SPaths(:,1)=[]; %get ride of starting points
CashFlows=exp(-r*T).*max(0,SPaths(:,NSteps)-K); %samples of discounted
payoffs

%calculate sample mean and standard error
price=mean(CashFlows) %sample mean

var=cov(CashFlows)/Nrepl;
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std=sqrt(var); %standard error

Removing gpuArray from those red marked commands induces the CPU
programming. An additional variance reduction technique termed martingale
control variate (MCV) method (Fouque and Han (2007)), though details are
skipped here, can be applied to dramatically increase the accuracy of estimation.
However MCV takes more time to compute than BMC. The combination of MCV
with GPU shows a great potential to increase the accuracy (MCV vs. BMC) and
reduce the computing time (GPU vs. CPU).

Table 1 records numerical performance and runtimes under different estimation
methods: BMC and MCV under different computing framework: CPU and GPU. It
can be observed that the combination of MCV algorithm with GPU computing
performs best. The run time of MCV on GPU is about the run time of BMC on CPU
but the former is much accurate than the later. This can be understood by
“standard error reduction” from the reduced variance by MCV and enlarged

sample size by GPU.

Table 1: Execution time and numerical results of CPU and GPU Computing.
Numerics in parenthesis indicate standard errors. Hardware Configuration: CPU:
Core i7 950 (4-core 3.06 GHz), GPU: NVIDIA GeForce GTX 690 (3072 CUDA core,
915 MHz)

BMC Time MCV Time

CPU 168.9960 0.125410s | 167.2062 0.405542 s
(2.9736) (0.1281)

GPU 167.8563 0.090116s | 167.1935 0.185130s
(3.0303) (0.1280)

Conclusion

Engineers, scientists, and financial quants have been successfully employing GPU
technology for their domain applications. However GPU’s programming language

CUDA is low-level and it requires technical knowledge about hardware device.
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With minimal effort, Matlab users can take advantage of the promising power of
GPUs by using gpuArrays and GPU enabled functions to speed up MATLAB

operations. We illustrate several typical examples from computational finance

and find that Matlab GPU computing can be beneficial.
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