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Abstract

This paper aims to estimate joint default probabilities under the structural-form
model with a random environment; namely stochastic correlation. By means of a
singular perturbation method, we obtain an asymptotic expansion of a two-name
joint default probability under a fast mean-reverting stochastic correlation model.
The leading order term in the expansion is a joint default probability with an ef-
fective constant correlation. Then we incorporate an efficient importance sampling
method used to solve a first passage time problem. This procedure constitutes a ho-
mogenized importance sampling to solve the full problem of estimating the joint
default probability with stochastic correlation models.

1 Introduction

Estimation of a joint default probability under the structural-form model typically
requires solving a first passage time problem. Black and Cox [1] and Zhou [17] pro-
vided financial motivations and technical details on the first passage time approach
for one and two dimensional cases, respectively.

A high-dimensional setup of the first passage time problem is as follows. Assume
that a credit portfolio includes n reference defaultable assets or names. Each asset
value, Sy 1 <i < n,is governed by

dSiy = WwiSidt + 0; Sy dWy, (D
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where I; denotes a constant drift rate, 0; denotes a constant volatility and the driv-
ing innovation dW; is an infinitesimal increment of a Brownian motion (Wiener
process) W; with the instantaneous constant correlation

d (Wi, W;), = pijd.

Each name also has a barrier, B;, 1 <i < n, and default happens at the first time S;
falls below the barrier level. That is, the ith default time 7; is defined by the first
hitting time

T,-:inf{t >0:8; SB,} 2)

Let the filtration %> be generated by all S;;,i = 1,---,n under a probability mea-
sure P. At time 0, the joint default probability with a terminal time 7 is defined
by

DP = E{ITL,I(% < T)|. %0} )

Due to the high dimensional nature of this problem (n = 125 in a standard credit
derivative [3], for example), Monte Carlo methods are very useful tools for compu-
tation. However, the basic Monte Carlo method converges slowly to the probability
of multiple defaults defined in (3). We will review an efficient importance sampling
scheme discussed in Han [10] to speed up the computation. This method is asymp-
totically optimal in reducing variance of the new estimator.

Engle [6] revealed the impact of correlation between multiple asset dynamics. A
family of discrete-time correlation models called dynamic conditional correlation
(DCC) has been widely applied in theory and practice. Hull et al. [15] examined the
effect of random correlation in continuous time and suggested stochastic correlation
for the structural-form model. This current paper studies the joint default probability
estimation problem under the structural-form model with stochastic correlation. For
simplicity, we consider a two-dimensional case, n = 2. This problem generalizes
Zhou’s study [17] with constant correlation.

Note that under stochastic correlation models, there exists no closed-form so-
lution for the two-name joint default probability. A two-step approach is proposed
to solve this estimation problem. First, we apply a singular perturbation technique
and derive an asymptotic expansion of the joint default probability. Its leading order
term is a default probability with an effective constant correlation so that the limit-
ing problem becomes the standard setup of the first passage time problem. Second,
given the accuracy of this asymptotic approximation, we develop a homogenized
likelihood function for measure change. It allows that the efficient importance sam-
pling method [10] can be applied for estimation of the two-name joint default prob-
ability under stochastic correlation models. Results of numerical simulation show
that estimated joint default probabilities are sensitive to the change in correlation
and our proposed method is efficient and robust even when the mean-reverting speed
is not in a small regime.
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The organization of this paper is as follows. Section 2 presents an asymptotic
expansion of the joint default probability under a fast mean-reverting correlation
by means of the singular perturbation analysis. Section 3 reviews the efficient im-
portance sampling method to estimate joint default probabilities under the classical
structural-form model with constant correlation. Section 4 constructs a homoge-
nized importance sampling method to solve the full problem.

2 Stochastic Correlation Model: Two Dimensional Case

The closed-form solution of a two-name joint default probability under a constant
correlation model is given in [2]. Assume that asset prices (Si;,S) driven by two
geometric Brownian motions with a constant correlation p,—1 < p <1 are gov-
erned by

dSi; = Wy Sidt + 0151, dWy;
dSy = U Sordt + 6252 (PdWlt +4/1— pdeQ;),

following the usual setup in (1). When the default boundary is deterministic of an
exponential type Be*, each default time 7; can be defined as

7, = inf{r > 0;S; < B;e"'} 4)

fori € {1,2}. This setup is slightly more general than our constant barriers (2) but it
causes no extra difficulty when log-transformation is applied. No initial default, i.e.,
Sio > B; for each i, is assumed to avoid the trivial case. The joint default probability
defined by

P0,x1,0)=P(11 <T,; <T)
can be expressed as
P(0,x1,x2) = Py (0,x1) + P>(0,x2) — 0"%(0,x1,x) Q)
where P, := P(7; < T) denotes the ith marginal default probability and Q2 :=

P (1) <T or 1 <T) denotes the probability that at least one default happens. The
closed-form formula for each P, i € {1,2}, is

di pi—A ) 2y di | Pi—A
P=A(-—t- VT | +e o N (——+ VT |,
' < VT i VT i
where d; = m(sgﬂ The last term Q' can be expressed as a series of modified

Bessel functions’(see [2] for details) and we skip it here.
Hull et al. (2005) proposed a mean-reverting stochastic correlation for the structural-
form model, and they found empirically a better fit to spreads of credit derivatives.
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We assume that the correlation process p; = p(¥;) is driven by a mean-reverting
process Y; such as the Ornstein-Uhlenbeck process. A small time scale parameter €
is incorporated into the driving correlation process ¥; so that the correlation changes
rapidly compared with the asset dynamics of S. The two-name dynamic system with
a fast mean-reverting stochastic correlation is described by

dSi; = u1S1dt + 0181:dWy; (6)
dSy = W Sydt + 625y (P(Yz)de +4/1 PZ(Yz)dWm)

1 2

NG

where the correlation function p(+) is assumed smooth and bounded in [—1, 1], and
the driving Brownian motions W’s and Z are assumed to be independent of each
other. The joint default probability under a fast mean-reverting stochastic correlation
model is defined as

day;

PE(t,x1,x2,y) == E {Hiz] I{tgiilTSiu <Bi}|S1 =x1,5% =x,Y; =y}, (N

provided no default before time 7.

From the modeling point of view, the assumption of a mean-reverting correlation
is consistent with DCC model, see Engle [6], in which a quasi-correlation is of-
ten assumed mean-reverting. From the statistical point of view, a Fourier transform
method developed by Malliavin and Mancino [16] provides a nonparametric way to
estimate dynamic volatility matrix in the context of a continuous semi-martingale.
Our setup of the stochastic correlation model (6) satisfies assumptions in [16]. This
implies that model parameters of volatility and correlation defined in (6) can be es-
timated via the Fourier transform method. Moreover, from the computational point
of view, stochastic correlation introduces a random environment into the classical
first passage time problem in dynamic models. This situation is similar to Student-t
distribution over the Gaussian distribution in static copula models [5] arising from
reduced-form models in credit risk. Han and Wu [13] have recently solved this static
Gaussian copula problem with a random environment; namely, Student-t copula. In
contrast, the stochastic correlation estimation problem considered in this paper fills
a gap of research work for a random environment in dynamic models.

2.1 Formal Expansion of The Perturbed Joint Default Probability

By an application of Feynman-Kac formula, P? (¢, x;,x2,y) solves a three-dimensional
partial differential equation (PDE)

1
(8304—9?1) Pe(t7x17x27y):07 (8)
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where partial differential operators are

0? d
L= ,3287))2 + (m—)’)a*y

Zip(y) = ZLAo+p()-Aa
2 2,2 82

2
2 X:l lxla

=1 i
32
8x1 8x2 '

92”1,0—*

le = 0102X1X2

The terminal condition is P*(T,x1,x2,y) = Iy, <p,} I{x,<p,} and two boundary con-
ditions are P%(¢,B1,x2,y) = P(t,x1,B2,y) = 0.

Suppose that the perturbed joint default probability admits the following expan-
sion

PE(t,x1,20,) = Y €'P(t,x1,x2,).
i=0

1 2

1
= c (P)+ (P +LAPR)+e(LP,+ 4 P)
E(LPs+AP)+

is obtained. By equating each term in order of € to zero, a sequence of PDEs must
be solved.

For the & (%) term, % Py(t,x1,%2,y) = 0. One can choose Py as variable y—independent.
For the £/(1) term, (%P1 + -4 B) (t,x1,x2,y) = 0, which is a Poisson equation.
Because .7 is the generator of an ergodic process Y;, by centering condition we can
obtain < .Z; > Py = 0. The notation < - > means the averaging with respect to the
invariance measure of the ergodic process Y. Thus the leading order term Py solves
the homogenized PDE:

(Lo+pL1)P(t,x1,x) =0,

7(A\'—m)2
e 22 dy with the terminal condition is

where p =< p(y) >ov=[P() 7=
Py(T,x1,x2) = Ijx,<p ) Iix,<B,) and two boundary conditions are Py(t,B1,x2) =
Py(t,x1,B2) = 0. The closed-form solution of Py(¢,x,x2) exists with a similar for-
mulation presented in (5).

Combining Lo P+ 2% Py=0with < 4 > Py=0, we obtain £ P, = — (51 Ph— <% > P())
such that
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P, (t,xl,xz,y) = —9%071 (o?]— <A >)P0(I,X1,XQ)

=-2" (p(y)—P) LA 1Po(t,x1,x2)
2
= 7(p(y)61 szlxzmpo(taxla)Q)a

where @(y) is assumed to solve the Poisson equation % ¢(y) = p(y) — p.
Similar argument goes through successive expansion terms. We skip the lengthy
derivation but simply summarize each successive term for n > 0

i+j=n+1 (n+1)
n
Pi(txn,x,y) = Y, o0 ) Lo L] 1 Bns

where a sequence of Poisson equations must be solved from
+1)
L) ) = (fpf'}) 0)- <o) >)
(n+1)
2ol 0= (e e - <pofy >).
Hence, a recursive formula for calculating the joint default probability P = Py +

eP| + €2P, + - - is derived.
In summary, we have formally derived that

Ps(tvxlv)CZvy):P()(taxlaXZ;p)—’_ﬁ(g)a 9

where the accuracy result can be obtained by a regularization technique presented
in [14].

Remark: The asymptotic expansion presented in this section can be generalized to
multi-dimensional cases.

3 Efficient Importance Sampling for the First Passage Time
Problem

In this section, we review the efficient importance sampling scheme proposed in
[10] for the first passage time problem (3) in order to improve the convergence of
Monte Carlo simulation. The basic Monte Carlo simulation approximates the joint
default probability defined in (3) by the following estimator

Z L1(g<7), (10)

where ’L'l-<k) denotes the kth i.i.d. sample of the ith default time defined in (4) and N
denotes the total number of simulations.



Title Suppressed Due to Excessive Length 7

By Girsanov theorem, one can construct an equivalent probability measure P
defined by the following Radon-Nikodym derivative

dP T . 1T 2
& 0r(h) =exp / h(s,Sy) - dW, — = / (s, S)|2ds ), (11)
dp 0 2 Jo
where we denote by Sy = (S5, - -, Sys) the state variable (asset value process) vector
and W, = (Wls, ‘e ,Wm) the vector of standard Brownian motions, respectively. The

function h(s,Sy) is assumed to satisfy Novikov’s condition such that W, = W, +
Jo h(s,Ss)ds is a vector of Brownian motions under P.

The importance sampling scheme proposed in [10] selects a constant vector i =
(h1,- -+, h,) which satisfies the following n conditions

E{Sir| %o} =Bii=1,---,n. (12)

These equations can be simplified by using the explicit log-normal density of S;r,
so the following sequence of linear equations for 4;’s:

: i InB;/S;
i pijhy = £ - B/ S

i=1.--- 13
o; O'l‘T )1 ) 1, ( )

can be considered. If the covariance matrix X = (p; j)1§i7 j,<n 18 non-singular, the
vector h exists uniquely and the equivalent probability measure P is uniquely de-
termined. The joint default probability defined from the first passage time problem
(see (3)) can be estimated from

DP =E{IT" \1(%; < T) Or(h)| Fo} (14)

by simulation.

4 Homogenized Importance Sampling under Stochastic
Correlation

The objective of this paper is to estimate the joint default probability defined in
(7) under a class of stochastic correlation models. A direct application of the effi-
cient importance sampling described in Section 3 is impossible because it requires
a constant correlation p to solve for the unique % in (13). Fortunately, this hurdle
can be overcome by the asymptotic approximation of the joint default probabil-
ity (see Equation (9)) because its leading-order approximation term has a constant
correlation p. As a result, our methodology to estimate the two-name joint default
probability with stochastic correlation is simply to apply the efficient importance
sampling scheme associated with the effective correlation, derived from the singu-
lar perturbation analysis. Detailed variance analysis for this methodology is left as
a future work. A recent large deviation theory derived in Feng et al. [8] can be a
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valuable source to provide a guideline for solving this theoretical problem.

Table 1 Two-name joint default probability estimations under a stochastic correlation model are
calculated by the basic Monte Carlo (BMC) and the homogenized importance sampling (HIS), re-
spectively. Several time scales € are given to compare the effect of stochastic correlation. The total
number of simulations is 10* and an Euler discretization scheme is used by taking time step size
T /400, where T is one year. Other parameters include Sjg = Sxp = 100,01 =0.4,00, =0.4,B| =
50,B; =40,Yy =m=mn/4,3 =0.5,p(y) = |sin(y)|. Standard errors are shown in parenthesis.

oa=1 BMC HIS
0.1 [0.0037(6+10-%)[0.0032(1+ 10~%)
1 [0.0074(9+10-%)[0.0065(2x 10-)

(
(
10 | 0.011(1%10 ) [0.0116(4x10 7)
(
(

50 |0.016(1%1073) [0.0137(5%10~%)
100 [0.016(1%1077) [0.0132(4 10~%)

Table 1 illustrates estimations of default probabilities of two names under stochastic
correlation models by means of the basic Monte Carlo method and the homoge-
nized importance sampling method. It is observed that the two-name joint default
probabilities are of order 1072 or 10~3. Though these estimated probabilities are not
considered very small, the homogenized importance sampling can still improve the
variance reduction ration by 6.25 times at least. Note also that the performance of
homogenized importance sampling is very robust to the time scale €, even it is not
in a small regime (for example € = 10) as the singular perturbation method required.

Next, small probability estimations are illustrated in Table 2. The homogenized im-
portance sampling method provides fairly accurate estimations, say in the 95% con-
fidence interval. The variance reduction rations can raise up to 2500 times for these
small probability estimations. In addition, we observe again the robustness of this
importance sampling to time scale parameter €.

Table 2 Two-name joint default probability estimations under a stochastic correlation model are
calculated by the basic Monte Carlo (BMC) and the homogenized importance sampling (HIS), re-
spectively. Several time scales € are given to compare the effect of stochastic correlation. The total
number of simulations is 10* and an Euler discretization scheme is used by taking time step size
T /400, where T is one year. Other parameters include Sjgp = S0 = 100,01 =0.4,00 =0.4,B; =
30,B, =20,Yp=m=rmn/4,8 =0.5,p(y) = |sin(y)|. Standard errors are shown in parenthesis.

a=1 BMC HIS
0.1 —(—) 9.1x1077(7%10°%)
1 —(—) 7.5%10°°(6%1077)
10 —(-) 2.4%1073(2%107°)
50 [1x107*(1%107%)[2.9%107°(3x1079)
100 [1x107%(1%107%)[2.7%1073(2%1079)
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It is also interesting to observe the effect of time scale from these numerical estima-
tion results. When the stochastic correlation is more volatile (small €), the proba-
bility of joint default increases as well. This is consistent with what observed under
stochastic volatility models for option pricing [12]. It shows that these estimations
from variance reduction methods are sensitive to changes in correlation and volatil-
ity. Hence, it is possible to develop a Monte Carlo calibration method [11] allowing
model parameters to fit the implied volatility surface [9] or spreads of credit deriva-
tives [3].

Model parameters within Tables 1 and 2 are homogeneous. That is, dynamics
(6) of these two firms are indistinguishable because their model parameters are
chosen as the same. Here we consider an inhomogeneous case in a higher dimen-
sion, say 4, to illustrate the efficiency of our proposed importance sampling method
in Table 3. For simplicity, we fix the time scale &€ but use varying firm specific
model parameters. A factor structure that generalizes dynamics (6) is chosen as
d< S,’,Sj >r= GiO'jS,'tSj;p(Yt)dl fori;éje {1,2,374}.

Table 3 Four-name joint default probability estimations under a stochastic correlation model are
calculated by the basic Monte Carlo (BMC) and the homogenized importance sampling (HIS),
respectively. The time scale € appearing in the stochastic correlation process is fixed as 10. Other
parameters are Sjp = 100,i € {1,2,3,4},01 =0.5,00 =0.4,03 =0.3,04 =02, Yo =m =0, =
0.5,p(y) = sin(y). Standard errors are shown in parenthesis. Two sets of default thresholds B’s are
chosen to reflect a bigger and a smaller probability of joint defaults, respectively. The total number
of simulations is 10* and an Euler discretization scheme is used by taking time step size T /400,
where T is one year.

Default Thresholds BMC HIS
Bl =By =B3=B4;=170 0.0019(4%10~%)[ 0.0021(1 % 10~%)
Bi = 30,B, = 40,B3 = 50,B4 = 60 —(-) 1.1x1077(2%1078)

5 Conclusion

Estimation of joint default probabilities under the structural-form model with stochas-
tic correlation is considered as a variance reduction problem under a random envi-
ronment. We resolve this problem by proposing a homogenized importance sam-
pling method. It comprises (1) derivation of an asymptotic result by means of the
singular perturbation analysis given a fast mean-reverting correlation assumption,
and (2) incorporating the efficient importance sampling method from solving the
classical first passage time problem. Numerical results show the efficiency and ro-
bustness of this homogenized importance sampling method even when the time
scale parameter is not in a small regime.
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