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Stochastic Cucker-Smale system (SCS)

Let (xt(i), vt(i)> € R? be the position and veloctiy of particles for
i =1,..., N with the initial data (xéi), v()(i)) .

dxt(i) = vt(i)dt,
(7) a () () 0 _ 0 (i) ;
dvf NJ; ll] (th ,Xt > (th N Vt ) dt + st ! 1 S ! S N’

where the noise term Lgi) is a Lévy process on R generated by (a,c, v)

We show that the SCS model driven by Lévy processes will satisfies the
following criteria, for 1 < i,j < N,

(velocity alignment) I|m ‘IE (vt ) —E (vt(j))’ = 0,
(group formation)  sup ‘]E (xt ) —E (xt(j))’ < oo
0<t<oo
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@ Systemic risk with jump diffusion processes
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@ Systemic risk for jump diffusion processes with double-exponential
jump size

We consider the log-monetary reserves of N banks possibly lending
and borrowing to each other.

The model is

dxngz(xt—x;) dt+dli, 1<i<N,

N =

where Li = oW/ + ¥* | &; , & has distribution f (y;0) = Je V19,0 > 0
and N} is a Poisson process with rate A.
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@ Log-monetary reserves of bank i

Borrowing from the bank j if X{ > Xt"
Lending to the bank j if X! < X{
e rate of borrowing/lending

dX|] =

=l
™M=

(X = X{) dt + d
=1

J
= a(_t—X,_f) dt + dL}.

a > 0: borrowing if X; > X{, lending if X; < X]
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We now investigate how many banks have reached the default level D < 0
before t = 1.

Define {default event} = {minogtﬂ X/ <D1<i< N} and
K = {# of default} .

We are now interested in the loss distribution

p=P(K=k),k=01.,N.
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Simulations for small rate of

log-monetary

probability
o

# of default

a=1,N=10,D=—-07,0=1and t = 1.
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Simulations for large rate of borrowing/lending
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large rate of borrowing/lending with jumps
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First passage time for the ensemble average

Systemic event :
{ min X < D}
0<t<T

We now focus on the event where the ensemble average X; = % YN
reaches the default level D < 0.
If L} = oW/, we have

i X, < = i <
P <ointl<nT Xe < D) P (ointl<nr N Z Wi D)

= P| min W,<=—"—
0<t<T

()

where W; is a standard Brownian motion.
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First passage time for the ensemble average

If Li = oW, +Z 1CJ and &; has distribution £ (y;0) = §e=1"1¢ 6 > 0,

then IP <mlnogth NZ,ZI L < D) can be evaluated by inversion Laplace

transform.
The moment generating function of L; is given by

E [eer} —exp{G (2)t},

WhereG(x)=122+)\( —1).
Let TD:inf{tZO,LtgD},whereD<0.
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Theorem (S. Kou and H. Wang, 2003)

Forany s € (0,00) . Let B; and B, be the only two positive roots of the equation

s=G(B).

where 0 < ,51 <0 < B, < oo. Then the Laplace transform of Tp is given by

—sTp :9_ﬁ1 By DB, ‘32_9L Dp,
Bl = e e BA

By the numerical inversion, we can now compute the probability

i <
(ointl<nT N ¢ Z L D)

. - L s
e G ) )

where W, is a standard Brownian motion, N, is a Poisson processes with
rate NA and ¢; has distribution f (y;0) = 0N e=lyI6/N g > 0.
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@ Maximum principle of jump diffusion processes
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Maximum principle for jump diffusion processes

o State process
dXt = b(t,Xt,lXt) dt"‘U(t,Xt,lXt) th
+/ v (8 Xe e, 2) N (dt, dz),
R

where N (dt, dz) = N (dt, dz) — v (dz) dt.

@ The performance criterion

-
J()=E [/O F(t, Xeoae) dt + g (X7) ||
where T < oo is deterministic, f is continuous and g is concave.

o Consider the problem to find an admissible * € A such that

J(a*) = sup J («)

aEA
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Hamiltonian

Define the Hamiltonian H: [0, T x RXx UX RX Rx R — R by
H(t,x,a,p,q,r) = f(t,x,a)+b(t,x,a)p+0(t,x a)q

_{-/R'y(t,x,uc,z)r(t,z)v(dz),

where R is the set of functions r : [0, T] X R — R such that the integrals
converge. p, g and r satisfy the BSDE

dpr = —Hy(t,x,a,p,q,r) dt+qut+/ r(t”,z) N(dt, dz),
R
pr = g (X7)

NCTS 2014 Dec. 17, 2014 17 / 37



A sufficient maximum principle

Theorem

Let &« € A with corresponding solution X* = X®") and suppose there
exists a solution (p;, q;, r* (t,z)) of the corresponding adjoint equation.
Moreover, suppose that

H(t, X¢ ag,piogr r (1)) = SUBH(fv XEoopyoqrrt ()
ue

and

H(x) :=maxH (t, x,a, p;,q;, r* (t,-))
aclU

exists and is a concave function of x, for all t € [0, T].
Then o* is a optimal control.
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Example : The stochastic linear regulator problem

Solve the stochastic control problem
J(x) = inf EX [/OT (XZ + 0a3) dt+AX%] :
where
dX; = apdt + cdW; + /RZN (dt,dz),Xo = x, and T > 0 is a constant.

We can solve this problem by using the stochastic maximum principle.
Define the Hamiltonian

H(t,x,a p,q,r) :x2—|—90c2+zxp+0'q+/ zr (t7,z) v (dz)
R
The adjoint equation is

dpy = _zxtdt+qtth+/r(t*,z)N(dt,dz); t<T
R
PT = 2AXT
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By imposing the first and second-order conditions, we see that
H(t, x,a,p,q,r) is minimal for

1
29Pt-

To find a solution of the adjoint eugation, we consider the ansatz

“:at:&t:—

pt = h:Xt,

where h; : R — R is a deterministic function such that h = 2A.
Note that a; = — hgéf and

heX
tgth—UdWH—/zN (dt,dz); Xo = x.

C/Xt -

Moreover, differentiate the ansatz

dpe = hedX; + b Xedt

h2 -
_ [_ iy ] Xedt + hyodW, + ht/ zN (dt, dz).

20 R
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Hence, h; is the solution of

rh?
h, = 55—2

and ht = 2A,t < T.The solution is then given by

2t

z
m_2¢4+ﬁe

1—‘Bef

\4

é\ﬂ

_ 2
where = A+§ . By using the stochastic maximum principle, we can

conclude that
h: X;

20
is the optimal control, pr = h:X: and q; = ohe, r (t,z) = h;z.

af = —
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@ Systemic risk with a game feature
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Systemic risk with a game feature

@ The dynamics with the central bank
dX! = aldt + dLi, (1)

where dLj = o/dW} + [, ' (t”,2z) N’ (dt, dz), R is the set such

that the integral converges, W/, i =1, ..., N are independent Brownian

motions and [, 7' (t~,z) N’ (dt, dz) are independent jump processes

with Poisson random measure N' (dt, dz) and of jump size 7' (t7, z) .
@ Rewrite (1) as

dX; = [a,dt + v}] dt + dL},

where v} = [ ' (t7,z) v’ (dz) and now

dli = o'dW] + fR v (t~,z) N'(dt,dz),i =1, ..., N are independent

martingales. N’ (dt, dz) = N’ (dt, dz) — v’ (dz) dt, for i =1,..., N

are compensated Poisson random measures.
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Control problem

Bank i € {1, ..., N} controls its rate of lending and borrowing
(to a central bank) at time t by choosing the control a} in order to

minimize
) . T . .
J! (oc’, ...,aN) =E {/ fi (X, ot) dt + g (X’T)}
0
with
f(xa) =
gi(x) =

where f; (x, &) is convex in (x, &) under the assumption ¢> < €.
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Closed-Loop Equilibria

a =« (t,x), feedback strategies

@ Using the Pontryagin approach, the Hamiltonian for bank i is given by
H (X,yi'l, oyt N At (t,x), ..., a’;, oal (t,x))
= [a ()'( - xk) + ok (¢, X)] yik

o (=) ]
(@)~ g (5= x) + 5 (x =)’

x
I

-
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FBSDE

Minimizing H' over a’ gives the choices :

& =-y"+q(x—x), i=1..N, (2)

and we make the ansatz
ij 1 ) i i
Yy = <N - ‘51',]) [171' (Xt - Xt) + q’t] '

where 77, and @ are deterministic functions satisfying the terminal
condition 7+ = ¢ and @' = 0.With the choices (2) we get

ak = [q+qt(1,}>} (xlxk)+<1lb>qoff,
I 1 (1)
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FBSDE

The forward equation is given by
dX{ = oy""H'(X., Y/ at)dt+dL,
= aldt+dl!

B R

The adjoint backward equation is given by
dYii = i dt+ZZ’Jdek+Z/ Wk (£, 2) N (dt, dz)

1 _ .
— (N —5,-,1-) (Xe — X{) [qiyt+q2 —€| dt

1 .
+ (N - 5:',1) (a+q) @,dt

+ Zz’fkdwk+ Z/ Wk (£, 2) N¥ (dt, dz)
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Using Ito's formula to differentiate the ansatz to obtain
iJj 1 ¥ i i
ayy = d (=) e (Xe = Xe) + ¢l

1 (5 i X N+
N <N - 5/!) [ (Xe = X¢) dt +17,d (Xe = X{) + ¢rdt]
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After some careful calculation, 17, must satisfy the scalar Riccati equation
7, =2 I P RO
fe=2q,+ (1= )1t — (€= a°),
with the terminal condition 17+ = c,and ¢} must satisfy the equation
i 1 i - i
o= lqg+1, 1_N ¢, — 1, (0s —v}),i=1,..N,

with terminal condition goi7- = 0. Furthermore, we will also have ¢, = 0.
The optimal strategies are then given by

1

,. 1 _ ,- L
Y PR P P A P
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Nash equailibrium

The dynamics with optimal strategies

dX! = aldt+dL;

1 _ . 1 . .
[q—k <1 = N> qt} (Xt —Xt’) dt + [(1 — N) (p’t] dt + dL;
Under the Nash equailibrium, the system is operating as if banks were
borrowing from and lending to each other at the rate A, = g+ (1 — 1) 7,

and the linear growth B} = (1 - %) (p’,; contributed by the jumps. The net
effect is liquidity and the central bank acts as a clearing house.

N=10
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The dynamics with optimal strategies are
dX{ = A; (Xe — X{) dt + Bidt + dLj.

The ensemble average is

The systemic risk probability stays the same even in the control problem
with jumps!

P in_X: <D L <
(02|<nT £ ) <Og]tl<nT N Z )
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Example (Compound Poisson processes with distinct jump rates)

Let Ll = oW/ + Z 21§ G; has distribution f (y;0) = e‘|y_”‘9, >0

and N’_|s a Poisson process with rate Al Then, for i=1,...,N,
vi =A'E (@'J) = A'u. Assuming that 0; = %29’21 Ay = 0. Then, under
the Nash equailibrium, the dynamics now become

~ 1 - - 1
dX{ = {q—i— <1 — N) qt} (Xe — X{) dt + <1 - ) @' dt + dLi,
where 77, and (pi must satisfy the following equations
1 2 2
2q1, + 1_W Wt_(e_q)

) 1 i i .
¢ = |:q+7]t (1_Nz>] ¢t+77t)“u":1'--"lv'

P

with the terminal condition 7+ = c and ¢’ = 0.

(UCSB ) NCTS 2014 Dec. 17, 2014 32 /37



Plots of additional liquidity and linear growth
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Nash equailibrium illustrated

log-monetary

log-monetary

log-monetary w/ game

log-monetary w/ game
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Conclusion and future works

Conclusion

© The systemic risk is higher when we add jumps in our model.

@ When coming a game feature with jumps, the effect is the additional
liquidity and linear growth contributed by jumps. The central bank
acts as a clearing house.

Future works

@ Consider to generalize the rate of borrowing/lending as a funcion of
X ie. a=a(Xe).
@ Major player and minor players.

© Consider the dynamics of monetary reserve instead of log-monetary
reserve.
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Thank you!
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