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Stochastic Cucker-Smale system (SCS)

Let
!
x (i )t , v

(i )
t

"
2 R2 be the position and veloctiy of particles for

i = 1, ...,N with the initial data
!
x (i )0 , v

(i )
0

"
.

dx (i )t = v (i )t dt,

dv (i )t =
a

N

N

Â
j=1

y

!
x (j)t , x

(i )
t

" !
v (j)t " v (i )t

"
dt + dL(i )t , 1 # i # N,

where the noise term L(i )t is a LÈvy process on R generated by (a, s, n) .
We show that the SCS model driven by LÈvy processes will satisÖes the
following criteria, for 1 # i , j # N,

(velocity alignment) lim
t!•

###E
!
v (i )t
"
"E

!
v (j)t
"### = 0,

(group formation) sup
0#t<•

###E
!
x (i )t
"
"E

!
x (j)t
"### < •.
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Systemic risk

Systemic risk for jump di§usion processes with double-exponential
jump size

We consider the log-monetary reserves of N banks possibly lending
and borrowing to each other.

The model is

dX it =
a
N

N

Â
j=1

!
X jt " X it

"
dt + dLit , 1 # i # N,

where Lit = sWi
t +ÂNit

j=1 x j , x j has distribution f (y ; q) =
q

2e
"jy jq, q > 0

and Nit is a Poisson process with rate l.
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Log-monetary reserves of bank i

Borrowing from the bank j if X jt > X
i
t

Lending to the bank j if X jt < X
i
t

rate of borrowing/lending

dX it =
a
N

N

Â
j=1

!
X jt " X

i
t

"
dt + dLit

= a
!
X̄t " X it

"
dt + dLit .

a > 0 : borrowing if X̄t > X it , lending if X̄t < X it
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We now investigate how many banks have reached the default level D < 0
before t = 1.

DeÖne fdefault eventg =
$
min0#t#1 X it # D, 1 # i # N

%
and

K ( f# of defaultg .

We are now interested in the loss distribution

p = P (K = k) , k = 0, 1...,N.
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Simulations for small rate of borrowing/lending
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Simulations for large rate of borrowing/lending
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large rate of borrowing/lending with jumps
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First passage time for the ensemble average

Systemic event : &
min
0#t#T

X̄t # D
'

We now focus on the event where the ensemble average X̄t = 1
N ÂN

i=1 L
i
t

reaches the default level D < 0.
If Lit = sWi

t , we have

P

(
min
0#t#T

X̄t # D
)

= P

 
min
0#t#T

1
N

N

Â
i=1
Wi
t # D

!

= P

 
min
0#t#T

W̃t #
D
p
N

s

!

= 2F

 
D
p
N

sT

!
,

where W̃t is a standard Brownian motion.
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First passage time for the ensemble average

If Lit = sWi
t +ÂNit

j=1 x j and x i has distribution f (y ; q) =
q

2e
"jy jq, q > 0,

then P
!
min0#t#T 1

N ÂN
i=1 L

i
t # D

"
can be evaluated by inversion Laplace

transform.
The moment generating function of Lt is given by

E
h
ezLt

i
= exp fG (z) tg ,

where G (x) ( 1
2s

2x2 + l

!
q

2

q

2"x 2 " 1
"
.

Let tD = inf ft * 0; Lt # Dg , where D < 0.
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Theorem (S. Kou and H. Wang, 2003)

For any s 2 (0,•) . Let b1 and b2 be the only two positive roots of the equation

s = G (b) ,

where 0 < b1 < q < b2 < •. Then the Laplace transform of tD is given by

E
.
e"stD

/
=

q " b1

q

b2

b2 " b1
eDb1 +

b2 " q

q

b1

b2 " b1
eDb2 .

By the numerical inversion, we can now compute the probability

P

 
min
0#t#T

1
N

N

Â
i=1
Lit # D

!

= P

 
min
0#t#T

 
sp
N
W̃t +

Ñt

Â
j=1

x̃ j

!
# D

!
,

where W̃t is a standard Brownian motion, Ñt is a Poisson processes with
rate Nl and x̃ j has distribution f (y ; q) =

q/N
2 e

"jy jq/N , q > 0.
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Outline
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Maximum principle for jump di§usion processes

State process

dXt = b (t,Xt , at ) dt + s (t,Xt , at ) dWt

+
Z

R
g (t,Xt" , at" , z) Ñ (dt, dz) ,

where Ñ (dt, dz) = N (dt, dz)" n (dz) dt.

The performance criterion

J (a) = E
1Z T

0
f (t,Xt , at ) dt + g (XT )

2
,

where T < • is deterministic, f is continuous and g is concave.

Consider the problem to Önd an admissible a

+ 2 A such that

J (a+) = sup
a2A

J (a)
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Hamiltonian

DeÖne the Hamiltonian H : [0,T ], R , U , R , R , R ! R by

H (t, x , a, p, q, r) = f (t, x , a) + b (t, x , a) p + s (t, x , a) q

+
Z

R
g (t, x , a, z) r (t, z) n (dz) ,

where R is the set of functions r : [0,T ], R ! R such that the integrals
converge. p, q and r satisfy the BSDE

dpt = "Hx (t, x , a, p, q, r) dt + qdWt +
Z

R
r
3
t", z

4
Ñ (dt, dz) ,

pT = g 0 (XT )
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A su¢cient maximum principle

Theorem

Let a 2 A with corresponding solution X + = X (a+) and suppose there
exists a solution (p+t , q

+
t , r

+ (t, z)) of the corresponding adjoint equation.
Moreover, suppose that

H (t,X +t , a
+
t , p

+
t , q

+
t , r

+ (t, .)) = sup
u2U

H (t,X +t , a, p
+
t , q

+
t , r

+ (t, .))

and
H (x) := max

a2U
H (t, x , a, p+t , q

+
t , r

+ (t, .))

exists and is a concave function of x , for all t 2 [0,T ] .
Then a

+ is a optimal control.
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Example : The stochastic linear regulator problem

Solve the stochastic control problem

J (x) = inf
a

Ex
1Z T

0

3
X 2t + qa

2
t

4
dt + lX 2T

2
,

where

dXt = atdt + sdWt +
Z

R
zÑ (dt, dz) ,X0 = x , and T > 0 is a constant.

We can solve this problem by using the stochastic maximum principle.
DeÖne the Hamiltonian

H (t, x , a, p, q, r) = x2 + qa

2 + ap + sq +
Z

R
zr
3
t", z

4
n (dz)

The adjoint equation is

dpt = "2Xtdt + qtdWt +
Z

R
r
3
t", z

4
Ñ (dt, dz) ; t < T

pT = 2lXT .
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By imposing the Örst and second-order conditions, we see that
H (t, x , a, p, q, r) is minimal for

a = at = ât = "
1
2q

pt .

To Önd a solution of the adjoint euqation, we consider the ansatz

pt = htXt ,

where ht : R ! R is a deterministic function such that hT = 2l.
Note that at = " htXt

2q

and

dXt = "
htXt
2q

dt + sdWt +
Z

R
zÑ (dt, dz) ; X0 = x .

Moreover, di§erentiate the ansatz

dpt = htdXt + h
0

tXtdt

=

1
"
h2t
2q

+ h
0

t

2
Xtdt + htsdWt + ht

Z

R
zÑ (dt, dz) .
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Hence, ht is the solution of

h
0

t =
h2t
2q

" 2

and hT = 2l, t < T .The solution is then given by

ht = 2
p

q

1+ be
2tp

q

1" be
2Tp

q

,

where b = l"
p

q

l+
p

q

e"
2Tp

q . By using the stochastic maximum principle, we can
conclude that

a

+
t = "

htXt
2q

is the optimal control, pt = htXt and qt = sht , r (t", z) = htz .
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Outline

Systemic risk with a game feature
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Systemic risk with a game feature

The dynamics with the central bank

dX it = ait dt + dL
i
t , (1)

where dLit = s

i dW i
t +

R
R g

i (t", z)Ni (dt, dz), R is the set such
that the integral converges,Wi

t , i = 1, ...,N are independent Brownian
motions and

R
R g

i (t", z)Ni (dt, dz) are independent jump processes
with Poisson random measure Ni (dt, dz) and of jump size g

i (t", z) .

Rewrite (1) as
dX it =

.
ait dt + u

i
t

/
dt + dL̃it ,

where u

i
t =

R
R g

i (t", z) n

i (dz) and now
dL̃it = s

i dW i
t +

R
R g

i (t", z) Ñ i (dt, dz) , i = 1, ...,N are independent
martingales. Ñ i (dt, dz) = Ni (dt, dz)" n

i (dz) dt, for i = 1, ...,N
are compensated Poisson random measures.
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Control problem

Bank i 2 f1, ...,Ng controls its rate of lending and borrowing
(to a central bank) at time t by choosing the control a

i
t in order to

minimize

Ji
!

a

i , ..., aN
"
= E

&Z T

0
fi
3
Xt , ait

4
dt + gi

3
X iT
4'

with

fi
3
x , ai

4
=

1
2

3
a

i 42 " qa

i 3x̄"xi
4
+

e

2

3
x̄ " xi

42
,

gi (x) =
c
2

3
x̄ " xi

42
,

where fi (x , a) is convex in (x , a) under the assumption q2 # e.
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Closed-Loop Equilibria

a = a (t, x) , feedback strategies

Using the Pontryagin approach, the Hamiltonian for bank i is given by

Hi
!
x , y i ,1, ..., y i ,N , a1 (t, x) , ..., ait , ..., a

N (t, x)
"

= Â
k 6=i

h
a
!
x̄ " xk

"
+ a

k (t, x)
i
y i ,k

+
.
a
3
x̄ " xi

4
+ a

i / y i ,i

+
1
2

3
a

i 42 " qa

i 3x̄ " xi
4
+

e

2

3
x̄ " xi

42
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FBSDE

Minimizing Hi over a

i gives the choices :

â

i = "y i ,i + q
3
x̄ " xi

4
, i = 1, ...,N, (2)

and we make the ansatz

Y i ,jt =

(
1
N
" di ,j

) .
ht

3
X̄t " X it

4
+ j

i
t

/
,

where ht and j

i
t are deterministic functions satisfying the terminal

condition hT = c and j

i
T = 0.With the choices (2) we get

a

k =

1
q + ht

(
1"

1
N

)2 !
x̄ " xk

"
+

(
1"

1
N

)
j

k
t ,

∂x j a
k =

1
q + ht

(
1"

1
N

)2(
1
N
" dk ,j

)
.
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FBSDE

The forward equation is given by

dX it = ∂y i ,iHi
3
Xt ,Y it , at

4
dt + dLit

= ait dt + dL
i
t

=

&1
q + ht

(
1"

1
N

)2 !
x̄ " xk

"
+

(
1"

1
N

)
j

k
t

'
dt + dLit .

The adjoint backward equation is given by

dY i ,jt = "∂xjHidt +
N

Â
k=1

Z i ,j ,kt dW k
t +

N

Â
k=1

Z

R
r i ,j ,k

3
t", z

4
Ñk (dt, dz)

=

(
1
N
" di ,j

) 3
X̄t " X it

4 .
qht + q

2 " e

/
dt

+

(
1
N
" di ,j

)
(a+ q) j

i
t dt

+
N

Â
k=1

Z i ,j ,kt dW k
t +

N

Â
k=1

Z

R
r i ,j ,k

3
t", z

4
Ñk (dt, dz) .

(UCSB ) NCTS 2014 Dec. 17, 2014 27 / 37



Using Itoís formula to di§erentiate the ansatz to obtain

dY i ,jt = d
&(

1
N
" di ,j

) .
ht

3
X̄t " X it

4
+ j

i
t

/'

=

(
1
N
" di ,j

) .
ḣt

3
X̄t " X it

4
dt + htd

3
X̄t " X it

4
+ j̇

i
t dt
/

=

(
1
N
" di ,j

) 3
X̄t " X it

4 1
ḣt " ht

(
q +

(
1"

1
N

)
ht

)2
dt

+

(
1
N
" di ,j

) 1
j̇

i
t + ht

(
1"

1
N

) 3
j̄t " j

i
t

4
+ ht

3
ūt " u

i
t

42
dt

+ht

(
1
N
" di ,j

) 
1
N

N

Â
k=1

dL̃kt " dL̃
i
t

!
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After some careful calculation, ht must satisfy the scalar Riccati equation

ḣt = 2qht +

(
1"

1
N

)
h

2
t "

3
e" q2

4
,

with the terminal condition hT = c ,and j

i
t must satisfy the equation

j̇

i
t =

1
q + ht

(
1"

1
N

)2
j

i
t " ht

3
ūt " u

i
t

4
, i = 1, ...,N,

with terminal condition j

i
T = 0. Furthermore, we will also have j̄t = 0.

The optimal strategies are then given by

a

i
t =

1
q +

(
1"

1
N

)
ht

2 3
X̄t " X it

4
+

(
1"

1
N

)
j

i
t , i = 1, ...,N.
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Nash equailibrium

The dynamics with optimal strategies

dX it = ait dt + dL
i
t

=

1
q +

(
1"

1
N

)
ht

2 3
X̄t " X it

4
dt +

1(
1"

1
N

)
j

i
t

2
dt + dLit

Under the Nash equailibrium, the system is operating as if banks were
borrowing from and lending to each other at the rate At ( q+

3
1" 1

N

4
ht

and the linear growth Bit =
3
1" 1

N

4
j

i
t contributed by the jumps. The net

e§ect is liquidity and the central bank acts as a clearing house.
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Systemic risk

The dynamics with optimal strategies are

dX it = At
3
X̄t " X it

4
dt + Bitdt + dL

i
t .

The ensemble average is

dX̄t =
1
N

N

Â
i=1
dLit

The systemic risk probability stays the same even in the control problem
with jumps!

P

(
min
0#t#T

X̄t # D
)
= P

 
min
0#t#T

1
N

N

Â
i=1
Lit # D

!
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Example (Compound Poisson processes with distinct jump rates)

Let Lit = sWi
t +ÂNit

j=1 x j , x j has distribution f (y ; q) =
q

2e
"jy"µjq, q > 0

and Nit is a Poisson process with rate l

i . Then, for i=1,...,N,
u

i
t = l

i E
3
x j

4
= l

i
µ. Assuming that ūt =

1
N ÂN

i=1 l

i
µ = 0. Then, under

the Nash equailibrium, the dynamics now become

dX it =
1
q +

(
1"

1
N

)
ht

2 3
X̄t " X it

4
dt +

(
1"

1
N

)
j

i
t dt + dL

i
t ,

where ht and j

i
t must satisfy the following equations

ḣt = 2qht +

(
1"

1
N2

)
h

2
t "

3
e" q2

4

j̇

i
t =

1
q + ht

(
1"

1
N2

)2
j

i
t + htl

i
µ, i = 1, ...,N,

with the terminal condition hT = c and j

i
T = 0.
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Plots of additional liquidity and linear growth
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Nash equailibrium illustrated
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Conclusion and future works

Conclusion

1 The systemic risk is higher when we add jumps in our model.
2 When coming a game feature with jumps, the e§ect is the additional
liquidity and linear growth contributed by jumps. The central bank
acts as a clearing house.

Future works

1 Consider to generalize the rate of borrowing/lending as a funcion of
X̄t . i.e. a = a (X̄t ) .

2 Major player and minor players.
3 Consider the dynamics of monetary reserve instead of log-monetary
reserve.
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Thank you!
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