STOPPING WITH NO REGRET

Yu-Jui Huang (Dublin City University)

Joint work with Adrien Nguyen Huu (École des ponts ParisTech) Traian Pirvu (McMaster University)

> National Tsing Hua University Hsinchu, Taiwan 17th December 2014

CLASSICAL OPTIMAL STOPPING PROBLEM

Consider

- a Markovian process $X : [0, \infty) \times \Omega \mapsto \mathbb{R}^d$.
- a payoff function $g: \mathbb{R}^d \mapsto \mathbb{R}_+$.

Given initial time and state $(t,x) \in \mathbb{X} := [0,\infty) \times \mathbb{R}^d$, an individual faces an **optimal stopping problem**: can I find a $\tau \in \mathcal{T}_t$ such that my expected discounted payoff

$$J(t,x;\tau) := \mathbb{E}_{t,x}[\delta(t,\tau)g(X_{\tau}^{t,x})] \tag{1}$$

can be maximized?

The discount function $\delta(\cdot,\cdot)$ satisfies: for any $t\geq 0$, $\delta(t,t)=1$,

$$s\mapsto \delta(t,s)$$
 is decreasingn, $s\mapsto \delta(s,t)$ is increasing.

CLASSICAL OPTIMAL STOPPING PROBLEM

The answer is affirmative by classical results.

OPTIMAL STOPPING TIMES [KARATZAS & SHREVE (1998)]

For all $(t,x) \in \mathbb{X}$, the stopping times

$$\widetilde{\tau}(t,x) := \inf \left\{ s \ge t : \delta(t,s)g(X_s^{t,x}) \right.$$

$$\ge \underset{\tau \in \mathcal{T}_s}{\operatorname{ess sup}} \mathbb{E}_{s,X_s^{t,x}}[\delta(t,\tau)g(X_\tau^{t,x})] \right\}, \quad (2)$$

$$\bar{\tau}(t,x) := \inf \left\{ s > t : \delta(t,s)g(X_s^{t,x}) \right.$$

$$\geq \underset{\tau \in \mathcal{T}_s}{\operatorname{ess sup}} \mathbb{E}_{s,X_s^{t,x}}[\delta(t,\tau)g(X_\tau^{t,x})] \right\}. (3)$$

are optimal, i.e.

$$J(t,x;\widetilde{\tau}(t,x)) = \sup_{\tau \in \mathcal{T}_t} J(t,x;\tau).$$

TIME INCONSISTENCY

Observe: $\widetilde{\tau}(t,x)$ is optimal **merely** from the perspective of the individual at time t.

Question: Will the individual regret $\tilde{\tau}(t,x)$ in the future?

TIME INCONSISTENCY

Analyze the choices of the individual over time.

- 1. At time t: she chooses $\widetilde{\tau}(t,x) \in \mathcal{T}_t$.
- 2. At time t' > t: if she has not stopped yet, $\widetilde{\tau}(t,x)$ now reads

$$\begin{split} \widetilde{\tau}(t,x) &= \inf \bigg\{ s \geq t' : \delta(t,s) g(X_s^{t,x}) \\ &\geq \underset{\tau \in \mathcal{T}_s}{\operatorname{ess}} \operatorname{\mathbb{E}}_{s,X_s^{t,x}} [\delta(t,\tau) g(X_\tau^{t,x})] \bigg\}. \end{split}$$

But now, the individual wants to maximize

$$\mathbb{E}_{t',X_{\tau'}^{t,x}}[\delta(t',\tau)g(X_{\tau}^{t,x})] \text{ over } \tau \in \mathcal{T}_{t'}.$$

Thus, her optimal stopping time is

$$\begin{split} \widetilde{\tau}(t', X_{t'}^{t,x}) &= \inf \bigg\{ s \geq t' \ : \ \delta(t', s) g(X_s^{t,x}) \\ &\geq \underset{\tau \in \mathcal{T}_s}{\operatorname{ess}} \sup \mathbb{E}_{s, X_s^{t,x}} [\delta(t', \tau) g(X_\tau^{t,x})] \bigg\}. \end{split}$$

TIME INCONSISTENCY

At time t':

The individual **regrets** her previous choice $\widetilde{\tau}(t,x)$, and **deviates** to $\widetilde{\tau}(t',X_{t'}^{t,x})$.

This phenomenon of **regret and deviation over time** is the so-called **time inconsistency**.

SPECIAL CASE: EXPONENTIAL DISCOUNTING

In classical literature of Mathematical Finance,

$$\delta(t,s) = e^{-\rho(s-t)}$$
 for some $\rho > 0$.

This implies the identity

$$\delta(t,s)\delta(s,r) = \delta(t,r), \quad \forall \ 0 \le t \le s \le r.$$

Then we see that $\widetilde{\tau}(t,x) = \widetilde{\tau}(t',X_{t'}^{t,x})$ for all $t' \geq t$. \Rightarrow time inconsistency does not exist under exponential discounting.

Why not stay with exponential discounting?

- The payoff may not be monetary (utility, happiness, health,...).
- Numerous empirical studies show that people do not discount money like an exponential discount function.
 - ⇒ People admit "decreasing impatience" (Laibson (1997), O'Donoghue & Rabin (1999))

STOPPING POLICIES

Since an individual may modify her choice of stopping times over time, her stopping strategy is a stopping policy defined below.

DEFINITION (STOPPING POLICIES)

We say $\tau: \mathbb{X} \mapsto \mathcal{T}_0$ is a **stopping policy** if for any $(t, x) \in \mathbb{X}$,

$$\tau(t,x)\in\mathcal{T}_t.$$

We denote by $\mathcal{T}(X)$ the collection of all stopping policies.

Idea behind: Given $(t, x) \in \mathbb{X}$ and $\tau \in \mathcal{T}(\mathbb{X})$,

- At each time s, we employ the stopping time $\tau(s, X_s^{t,x}) \in \mathcal{T}_s$.
- We follow $\tau(s, X_s^{t,x})$ only at the exact moment s, as it will be replaced by $\tau(u, X_u^{t,x}) \in \mathcal{T}_u$ as soon as u > s.
- $\tau(s, X_s^{t,x}) \in \mathcal{T}_s$ is used only to decide whether at time s we want to stop:
 - if $\tau(s, X_s^{t,x}) = s$, we stop right away; otherwise we continue.

THE GENUINE TIME TO STOP

Given initial time and state $(t, x) \in \mathbb{X}$ and $\tau \in \mathcal{T}(\mathbb{X})$, we will eventually **stop at the moment**

$$\mathfrak{T}\tau(t,x) := \inf\left\{s \ge t : \tau(s,X_s^{t,x}) = s\right\}. \tag{4}$$

A LEADER-FOLLOWER GAME

Goal: Formulate "no regret over time".

Idea: "no regret over time" is like an equilibrium!

Given initial time $t \ge 0$, consider a **leader-follower game** with

"Player t": yourself today "Player s": yourself at time $s \ge t$.

Fix $\tau \in \mathcal{T}(\mathbb{X})$.

- Suppose each "Player s" will employ $\tau(s, X_s^{t,x}) \in \mathcal{T}_s$. "Player t has to decide whether she wants to stick with $\tau(t, x)$.
- "Player t" has only two possible actions: to stop or to continue.
 - 1. If she stops, she gets g(x) right away.
 - 2. If she continues, she will eventually stop at the time

$$\mathfrak{T}^*\tau(t,\omega) := \inf\left\{s > t : \tau(s, X_s^{t,x}) = s\right\}. \tag{5}$$

Her expected gain is therefore

$$\mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}^* \tau(t,x)) g\left(X_{\mathfrak{T}^* \tau(t,x)} \right) \right].$$

EQUILIBRIUM STOPPING POLICIES

- $g(x) > \mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}^*\tau(t,x)) g\left(X_{\mathfrak{T}^*\tau(t,x)}\right) \right]$: She chooses to **stop** right away at time t.
- $g(x) < \mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}^* \tau(t,x)) g\left(X_{\mathfrak{T}^* \tau(t,x)}\right) \right]$: She chooses to **continue** at time t. She will eventually stop at the time $\mathfrak{T}^* \tau(t,x)$.
- $g(x) = \mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}^* \tau(t,x)) g\left(X_{\mathfrak{T}^* \tau(t,x)}\right) \right]$: She is **indifferent** between to stop and to continue at time t. \Rightarrow no incentive to deviate from $\tau(t,x)$, so just follows $\tau(t,x)$. She will eventually stop at the time $\mathfrak{T}\tau(t,x)$.

The above can be summarized as

$$\Theta\tau(t,x) := t \ 1_{S_{\tau}(t,x)} + \mathfrak{T}\tau(t,x) 1_{I_{\tau}(t,x)} + \mathfrak{T}^*\tau(t,x) 1_{C_{\tau}(t,x)}, \quad (6)$$

where

$$S_{\tau}(t,x) := \{g(x) > \mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}^* \tau(t,x)) g\left(X_{\mathfrak{T}^* \tau(t,x)}\right) \right] \},$$

$$I_{\tau}(t,x) := \{g(x) = \mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}^* \tau(t,x)) g\left(X_{\mathfrak{T}^* \tau(t,x)}\right) \right] \},$$

$$C_{\tau}(t,x) := \{g(x) < \mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}^* \tau(t,x)) g\left(X_{\mathfrak{T}^* \tau(t,x)}\right) \right] \}.$$

$$(7)$$

EQUILIBRIUM STOPPING POLICIES

the individual at time t would like to stick with $\tau(t,x)$ if and only if

$$\tau(t,x) = \Theta\tau(t,x).$$

DEFINITION

We say $\tau \in \mathcal{T}(\mathbb{X})$ is an **equilibrium stopping policy** if

$$\Theta \tau(t, x) = \tau(t, x), \quad (t, x) \in \mathbb{X}.$$

Denote by $\mathcal{E}(X)$ the collection of all equilibrium stopping policies.

If $\tau \in \mathcal{T}(\mathbb{X})$ is an equilibrium policy, then no incentive to deviate from τ over time. \Rightarrow This characterizes "no regret over time".

EQUILIBRIUM STOPPING POLICIES

Note that:

- Several studies in stochastic control (Ekeland & Pirvu (2008), Ekeland et al (2012), Björk & Murgoci (2014),...) used equilibrium concept to formulate time-consistency.
- It has been unclear how to extend the equilibrium idea to stopping problems (see the discussion in Xu & Zhou (2013)).
- Our definition above just does this job!

OPTIMAL TIME-CONSISTENT STOPPING

Given initial time and state $(t, x) \in \mathbb{X}$, an individual wants to maximize her current expected payoff by choosing a $\tau \in \mathcal{E}(\mathbb{X})$.

$$\sup_{\tau \in \mathcal{E}(\mathbb{X})} \mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}\tau(t,x)) g(X^{t,x}_{\mathfrak{T}\tau(t,x)}) \right].$$

LEMMA

For any
$$\tau \in \mathcal{E}(\mathbb{X})$$
, $\mathfrak{T}\tau(t,x) = \tau(t,x)$ for all $(t,x) \in \mathbb{X}$.

Thus, the optimal time-consistent stopping problem reduces to

$$\sup_{\tau \in \mathcal{E}(\mathbb{X})} \mathbb{E}_{t, \mathbf{x}} \left[\delta(t, \tau(t, \mathbf{x})) g(X_{\tau(t, \mathbf{x})}^{t, \mathbf{x}}) \right].$$

OPTIMAL TIME-CONSISTENT STOPPING

$$\sup_{\tau \in \mathcal{E}(\mathbb{X})} \mathbb{E}_{t,x} \left[\delta(t, \tau(t, x)) g(X_{\tau(t, x)}^{t, x}) \right]. \tag{8}$$

• Is the problem **well-defined**? ($\mathcal{E}(\mathbb{X})$ nonempty?) Consider $\tau_{\mathsf{tr}} \in \mathcal{T}(\mathbb{X})$ defined by

$$au_{\mathsf{tr}}(t,x) \equiv t \quad \text{ for all } (t,x) \in \mathbb{X}.$$

Then $\mathfrak{T}\tau_{\mathsf{tr}}(t,x) = \mathfrak{T}^*\tau_{\mathsf{tr}}(t,x) = t$ for all $(t,x) \in \mathbb{X}$. $\Rightarrow \tau_{\mathsf{tr}}$ is an equilibrium policy. We call τ_{tr} the **trivial** equilibrium policy.

• Is the problem **non-trivial**? ($\mathcal{E}(\mathbb{X})$ in not a singleton?) If $\mathcal{E}(\mathbb{X}) = \{\tau_{tr}\}$, the problem (8) is trivial and boring.

Question: Can we find non-trivial equilibrium policies?

PLANS TO FIND NON-TRIVIAL EQUILIBRIA

Plan A: Consider an iterative procedure as follows:

- 1. At first, the individual wants to follow $\tau_1 := \tilde{\tau}$. Then, she realizes that, at each moment t, her best stopping strategy is $\Theta \tau_1(t,x)$. She therefore switches from τ_1 to $\tau_2 := \Theta \tau_1$.
- 2. With the intention to follow τ_2 , the individual realizes that, at each moment t, her best stopping strategy is $\Theta\tau_2(t,x)$. She therefore switches from τ_2 to $\tau_3 := \Theta\tau_2$.
- 3. The individual continues this procedure until

 $\Theta \tau_n = \tau_n$ for some *n* large enough.

In short, we take

$$\tau_0 := \lim_{n \to \infty} \Theta^n \widetilde{\tau} \tag{9}$$

as a candidate equilibrium stopping policy.

- how to define the convergence in (11)?
- The limit τ_0 exist? If τ_0 exists, is it really an equilibrium policy?

PLANS TO FIND NON-TRIVIAL EQUILIBRIA

Consider the operator $\Theta_h : \mathcal{T}(\mathbb{X}) \mapsto \mathcal{T}(\mathbb{X})$ defined by

$$\Theta_{\mathsf{h}}\tau(t,x) := t \ 1_{S_{\tau}(t,x)\cup I_{\tau}(t,x)} + \mathfrak{T}^*\tau(t,x)1_{C_{\tau}(t,x)}, \quad \forall \tau \in \mathcal{T}(\mathbb{X}).$$

$$\tag{10}$$

This describes an agent with "haste": she stops as soon as "to stop" is no worse than "to continue", i.e.

$$g(x) = \mathbb{E}_{t,x} \left[\delta(t, \mathfrak{T}^* \tau(t,x)) g\left(X_{\mathfrak{T}^* \tau(t,x)} \right) \right].$$

Plan B: do the iteration in Plan A, but with Θ_h .

$$\tau_1^h := \widetilde{\tau}, \quad \tau_2^h := \Theta_h \tau_1^h, \quad \tau_3^h := \Theta_h \tau_2^h, \quad \cdots$$

In short, we take

$$\tau_0^{\mathsf{h}} := \lim_{n \to \infty} \Theta_{\mathsf{h}}^n \widetilde{\tau} \tag{11}$$

as a candidate equilibrium stopping policy.

Main Results

Assuming the discount function δ satisfies

$$\delta(t,s)\delta(s,r) \le \delta(t,r) \quad \forall \ 0 \le t \le s \le r.$$
 (12)

Then, we have

THEOREM

 $\tau_0 = \lim_n \Theta^n \widetilde{\tau}$ and $\tau_0^h = \lim_n \Theta_h^n \widetilde{\tau}$ are equilibrium policies, i.e.

$$\Theta au_0 = au_0, \quad \Theta_h au_0^h = au_0^h.$$

Question: How strong is (12)?

RELATION TO "DECREASING IMPATIENCE"

Empirical studies indicate people has "decreasin impatience", i.e.

People are more willing to wait (more patient), when time horizon is longer.

Definition

The discount function $\delta(t,s)=h(s-t)$ induces "decreasin impatience" if for any $s\geq 0$,

$$\frac{h(t+s)}{h(t)}$$
 is increasing in t .

The above condition obviously implies (12).

Conclusion: (12) already includes all discount functions with "decreasing impatience".

Consider

- $\{X_t\}_{t\geq 0}$: a one-dimensional Brownian motion
- Hyperbolic discount function

$$\delta(t,s) = \frac{1}{1+(s-t)}.$$

• payoff function as g(x) = |x|.

Want to compute explicitly

$$au_0 = \lim_{n o \infty} \Theta^n \widetilde{ au}, \qquad au_0^{\mathsf{h}} = \lim_{n o \infty} \Theta^n_{\mathsf{h}} \widetilde{ au}.$$

To solve for $\widetilde{\tau}$, the associated value function is

$$U(t,x) := \sup_{\tau \in \mathcal{T}_t} \mathbb{E}_{t,x} \left[\delta(t,\tau) g(X_{\tau}^{t,x}) \right]. \tag{13}$$

Note that $\{\delta(0,t)U(t,X_t)\}_{t\geq 0}$ need not be a supermartingale, as $\delta(0,t)\delta(t,\tau)\neq \delta(0,\tau)$.

Auxiliary value function: for any fixed $t \ge 0$, we define

$$\begin{split} V(t,s,x) &:= \sup_{\tau \in \mathcal{T}_s} \mathbb{E}_{s,x} \left[\delta(t,\tau) g(X^{s,x}_\tau) \right] \\ &= \sup_{\tau \in \mathcal{T}_s} \mathbb{E}_{s,x} \left[\frac{|X^{s,x}_\tau|}{1+(\tau-t)} \right], \quad \text{for } (s,x) \in [t,\infty) \times \mathbb{R}. \end{split}$$

We have V(t,t,x)=U(t,x) and $\{V(t,s,X_s^{t,x})\}_{s\in[t,\infty)}$ is a supermartingale. \Rightarrow the associated PDE: for $(s,x)\in[t,\infty)\times\mathbb{R}$,

$$\min \left\{ v_s(t,s,x) + \frac{1}{2} v_{xx}(t,s,x), \ v(t,s,x) - \frac{|x|}{1+(s-t)} \right\} = 0.$$

The above free-boundary PDE can be solved explicitly:

$$V(t,s,x) = \begin{cases} \frac{e^{-\frac{1}{2}}}{\sqrt{1+(s-t)}} \exp\left(\frac{x^2}{2(1+(s-t))}\right), & \quad \text{for } |x| < \sqrt{1+(s-t)}, \\ \frac{|x|}{1+(s-t)}, & \quad \text{for } |x| \geq \sqrt{1+(s-t)}, \end{cases}$$

It follows that

$$\widetilde{ au}(t,x) := \inf \left\{ s \geq t : |X_s^{t,x}| \geq \sqrt{1 + (s-t)}
ight\}.$$

The optimal stopping time $\tilde{\tau}$ depends on initial time t \Rightarrow induces **time inconsistency**.

For any $(t,x) \in \mathbb{X}$,

$$\Theta \widetilde{\tau}(t, x) = t \, \mathbf{1}_{\{|x| > x^*\}} + \tau_1^{t, x} \, \mathbf{1}_{\{|x| \le x^*\}}, \tag{14}$$

where $x^* \in (0,1)$ solves

$$\int_0^\infty e^{-s} \cosh(x^* \sqrt{2s}) \operatorname{sech}(\sqrt{2s}) ds = x^* \ (x^* \approx 0.924),$$

and

$$\tau_a^{t,x} := \inf\{s \ge t : |X_s^{t,x}| \ge a\}$$
 for all $a \ge 0$.

It is obvious that $\Theta \widetilde{\tau}(t,x) \neq \widetilde{\tau} \Rightarrow \widetilde{\tau}$ is not an equilibrium policy.

THEOREM

- (I) $\tau_0 = \tau_{tr}$.
- (II) $\tau_0^{\mathsf{h}}(t, x) = t \ \mathbf{1}_{\{|x| \ge x^*\}} + \tau_{x^*}^{t, x} \ \mathbf{1}_{\{|x| < x^*\}}.$

 $au_0^{\mathsf{h}}(t, x)$ is indeed a non-trivial equilibrium policy. Also note that

$$\mathbb{E}_{s,x}\left[rac{|X^{s,x}_{ au_0^\mathsf{h}(t,x)}|}{1+(au_0^\mathsf{h}(t,x)-t)}
ight] \geq \mathbb{E}_{s,x}\left[rac{|X^{s,x}_{ au_\mathrm{tr}}|}{1+(au_\mathrm{tr}-t)}
ight]$$