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Continuation Methods for Solving Modified
Discrete-Time Algebraic Riccati Equations

Wen-Wei Lin, Chern-Shuh Wang, and Chuan-Hsiang Han
" Abstract—1t is well known that the continuation methods have been

successfully applied to solve polynomial systems and fixed point problems,
etc. In this paper; we consider a discrete-time algebrai¢ Riccati equation

with an admissible, low rank, and symmetric pertm'baﬁnn. Our attention .

will be directed’ prlnnrilytoﬂnsmodiﬁed dlscret&timealgebmickkuu
equation and the nuinerical method for its solution based on' proceeding
along the continuation path.

L INTRODUCTION
Discrete-time algebraic Riccati equations arise in modeling
discrete-time systems in many fields of applications. They often
play an important role in control theory, e.g:, LQG problem and H*
control theory. The ordinary discrete-time algebraic Riccati equation
(DARE) is given by .

RX)=F'XF-X-FTXG:1 (G +GTXxGy)™!
xGIXF+K=0 S
where F,X,K = KT > 0 € R"*", G, € ®*™, G; €

R™*™(m < n),and G2 = GZ' > 0. Under stability and detectability
assumptions [10], DARE (1) is known to have a unique nonnegative
definite symmetric solution [10], [16]. Define G = G1G;GT . Then,
the coefficient matrices of DARE (1) can be grouped to form a

2n X 2n symplectic pencil
F o A I G
-K I| 7o FT|

It is known [16] that if the columns of (Xl) € R?™*" span the
invariant subspace of N — AL associated with its eigenvalues inside
the unit circle, then the unique positive semidefinite solution X to the
DARE (1) is given by X = X, X '. To solve DARE efficiently, so
far, there are several elegant numerical methods had been proposed
(11, [2], [6], (7], [13], [14], and [16].

In this paper, we present a method for the numerical solution of
modified discrete-time algebraic Riccati equations (MDARE)

R(X)+ P(X) =

N—ALE[

@

where P:R"*" — R"*" js differentiable, symmetric in X (i.e.,
P(XT) = P(X)T), and P(X) is of low rank for all X € R"*".
Here, we remark that assumptions on MDARE such that it possesses
a unique stabilizing solution remain an open question [3]. Examples
of perturbations P may be encountered in practice by solving the
reduced-order state-estimation problem or reduced-order dynamic-
compensation problem [3]. Suppose that the matrix F"in (1) is stable
and the reduced-order state-estimation problem is solvable. Then, the
solution can be described by n x n nonnegative-definite matrices X,
X,and Y satisfying the following system of equations

X=F'XF- FTXGl(Gg +6TXG)'GTXF

+K+(I-nXT-17), 3
X=FTrXTF+ FTXG1(G. + GTXG1)"'GTXF, (3
Y =FITYrFR +2(X) ®)
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where

7= ¢Ei%™" (unit-rank eigenprojection) )

=1

for some nonsingular ¢ such that v~ X ¥4 is diagonal with rank e,
FI = F—G1(G2+GT XG1) ' GT X F, (X)) is a suitable matrix
rational polynomial in X (see [3] for details) and E; is a matrix with
1 in the (i, ¢)th position and zeros elsewhere. We now assume that
D p(FT1) < 1, ie., all eigenvalues of FTr are in the unit circle
or I (I — 7)(FT7)% = 0 for some do > 1. Then we substitute
(4) into (3) repeatedly and get the perturbed modified discrete-time
algebraic Riccati equation (2) with

d
P(X)=Y _(I-r)(F'1)*FTXG:(G: + GT XG) ™"
k=0

x GYXF(TFYE (I - 77). )

Here d = oo for the first assumption and d = do—1 for the second
assumption. For the first case, we always take a finite sum approach in
practice by truncating the high order terms of P(X ). For the reduced-
order dynamic-compensation problem [3], it can also be treated in
the same way as above.

A standard iterative method for the solution of the system of (3)(5)
proposed by [3] iterates 7, X,Y, and X until convergence. In some
pracncalcasesﬂaematnxrwﬂlconvergefasterthanXandY
Thus, for this case, to solve MDARE (2) directly is more efficient
than to solve (3)«(5). In general, the matrix 7 in (6).is an oblique
(nonsymmetric) projection matrix (i.e., 7 = 72). Throughout this
paper we assume that (I — 7) is of low rank, then P(X) is also
of low rank.

In this paper, we construct a new continuation equation for the
solution of the MDARE. A standard approach for the continuation
method is to employ a predictor-corrector method [18] for follow-
ing the continuous curve constructed by the continuation equation
H(X,s).= 0 from s.= 0 to s = 1. Furthermore, each step of the
continuation method requires the solution of a sequence of discrete-
time Lyapunov. equations [8], [9] to obtain the solution of a modified
discrete-time Lyapunov equation of the form (see Section IN for
details)

d
ATXA- X + Y (BeXCi + (BeXC)T) +V =0
k=0 ’

®

Briefly, the rest of this paper is organized as follows. In Section II,
we construct a continuation mapping with MDARE as the desired
problem. Many of computations for the predict-correct process to
proceed along the continuation curve are presented in Section IIL
The numerical algorithm and its implements are given in Section IV.

II. CONSTRUCTING THE CONTINUATION EQUATION FOR SOLVING THE
MODIFIED DISCRETE-TIME ALGEBRAIC RICCATI EQUATION
In this section, we give a continuation equation' H(X,s) = 0
to construct a continuation curve monotone in parameter s such
that H(X,0) = Ho(X) = 0 is an easy problem and H(X,1) =
H;(X) = 0 is the desired problem MDARE, i.e.,

H(X,s)=(1-s)Ho(X)+ sH1(X). )

In general, a desired solution of MDARE is symmetric [3). If we
want to find a desired solution of MDARE, then for any fixed
s €[0,1), the continvation map H (-, s) can be a function mapping
from $”*" into-S™*", where S"X" = {X € R"*" | X = XT}.
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To ensure the existence of continuation curve H(X,s) = 0 in (9)
by applying Sard’s Theorem [15], the regularity of H(X,s) = 0
must be considered here. From (1), (3), and the Cramer’s rule, it is
obvious that the equation found at the bottom of the page is a rational
polynomial function in X. Here adj(G2 + GT XG,) is the adjoint
matrix of (G2 + GT XG1). Thus, we can-not ensure the existence of
the resulting continuation curve. To avoid this flaw, we first consider
the following defective set

Wi = {X € §™*" | det(Gs + GT XGy) = 0}.

It is observed that the set Wi is closed and has measure zero.
Now, to guarantee that the constructed continuation curve can be
parametenzed in the parameter s, we consider

Ws = {X € §"*" | det[Dx (det(G2 + GT XG1)
x (R(X)+ P(X)))] = 0}.

Here Dx denotes the differentiation of the variables X. Also, W2
is closed and measure zero. Now, let U = $™>*"\(W; U W2) be an
open set in S™*™. We can construct the desired continuation mapping
monotone in the parameter s which is defined in the domain U x [0,
1) (see [12] for details). Before the construction, we consider an
auxiliary continuation equation. Define $: U x [0,1) — S"*" by

®(X, 5) = det(G2 + G XG1)[(R(X) + P(X))

+ (s - 1)(P(Xo) — 2)]

where Z € S™*" is an arbitrary nonnegative definite matrix and

Xo € §™*" is the unique, nonnegative definite solution of the new
DARE

10)

R(X)+ Z =0. an

Since @ is defined on U x[0,1), we have Dx® = Dx(det(G2 +
GTXG)(R(X) + P(X))) is nonsingular. This implies that
®(X, s) = 0 can be parameterized in s, i.e., (X, s) = 0 represents
a continuation curve monotone in s.

Therefore, we construct the desired continuation equation as

H(X,s) = &(X,s)/det(Gz + GTXGh)
=(R(X(s))+ P(X(s))+(s—1)

x (P(Xo) - Z) = 0. 12)

Note that in (12), it is observed that the easy problem Ho(X) =
R(X)+ P(X) — (P(Xo) — Z) has a solution X, satisfying DARE
(11).

Remark 2.1: From the similar results proposed by [5], [19], we
know that by utilizing an arbitrary choice Z, the continuation curve
®(X,3) = 0 in (10) exists with probability one when & is defined
on Ux[0,1).

Remark 2.2: Although the set W; U W2 is measure zero. In prac-
tice, we may encounter ill conditioned matrices which are singular
to working precision. In such case, the continuation curve possibly
blows up as s approaches to one. In [12], however, a restarting
strategy is developed to obtain a bounded continuation curve.
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II. NUMERICAL APPROACH FOR CONTINUATION CURVE
One of the most effective ways to follow the continuation curve
is known as Euler-Newton continuation. That is, if (X;, s;) is
considered as an initial point of the continuation curve for some
s; €[0,1), where X; = X(s;), then the next point (Xi41, siy1) =
(X (si + As), 8; + As) is obtained by
i) Euler step (Predict step): Xit1,0 = Xi + X; - As;
ii) Newton step (Correct step): Xit1,5+1 = Xig1,7 + Dit1,541,
for j =0, 1,
Here X; = M and Az+1,J+1 is the j + 1th Newton correction. As
the sequence {X,+1,J} converges, we set Xi11 = lim;j oo Xiy1,j.
Repeat the process, if each Euler-Newton step is convergent, then we
obtain a desired solution X (1) as s approaches one. The remaining
question is how to compute the predict factor X and the correction
factor A; j41 at each Euler-Newton step.

A. Calculation of Predict Factor X;

Because the following calculation is independent of the subscript
of X; i, we omit the subscript “i”. We first derive the formula for X
by differentiating (12) with respect to s. This yields

(FTXG1(G: + GTXG)'GT - F)X
x (G1(G2+ G XG)'GTXF - F)

~ X+ L P(X(s)) + P(Xo) = Z = 0. (13)

To find £ P(X(s)) explicitly, we have

d
ZP(X(s) =

d d
(I-1) [Z LiXTx+ ) (LeXTy)

k=0 k=0

T] -5 a4

where

Ly = (FTT)k(FT - %FTXGl(Gz + GlTXGl)‘lGlT),
s)
Ty = Gi(G2 + GTXG) ' GY XF(+T F)F,

fork=20,1,-:-,d. (16)

Let F' = G1(G2 + GT XG1)"'GT X F — F. Combining (13) and
(14), we have

d d
FTXF-X+(I-7)|Y LeXTi+ Z(Lerk)T]
k=0 k=0

x (I—77)+ P(Xo)— Z =0. an

To solve (17), we have to extend some calculated results proposed
Richter et al. [17] to the discrete-times case. By spectrum decompo-
sition, we have I — 7 = T block.diag {0,---,0,I1x;} - T, where
I = rank(I — 7). It is easily seen that I < n. Let m = ‘t1) Now,
we consider the following definitions: Define n: S"*" — R™ such

Hy(X) = R(X) + P(X)

= [FTXF—X—(

FTXG1adj(G2 + GT XG1)GT X F +K
det(G2 + GTXG1)

i=0

. i [(1 — 1) FT7) FT XG1adj(Gz + GT XG1)GT X F(+T F)'(I — 17)
det(Gz + GTXGh)
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that 7(W) = vee(W(n -1+ 1:n,n—1+1:n)) with W € §"*",

and II:R™ — $™*" such that
Qoo
1(g) = T - blockdiag{ 0,---,0, | : slpeT
g " dm
@
g=|: | ER™
gm

As in [17] it is first necessary to solve discrete-time Lyapunov
equations

FTXOF - X0 4 v = 0 with VO

\Z i=0
= . 18
{H(ej) j=1m a8
Consequently, we construct a small order m(<&n?) linear equation
(I-My=d a9)

with col; (M) = n(XD),j =1,---,m, and d = 7(X®). Once the

solution of this linear equation is computed, a desired solution X of

(17) is found by solving a standard discrete-time Lyapunov equation
FTXFP-X+N(@y+V =0.

To solve m+ 1 Lyapunov equations in (18) by using a standard
solution method [8], it requires about (m + 16)n® flops totally.
In addition, to solve the linear system (19) it requires about %m’
flops. This shows that we can obtain X in an economical way as
%P(X(s)) is low rank with m < n.

Remark 3.1: For large sparse problems, the use of the above solu-
tion method is not feasible in our continuation algorithm, because the
triangularization of F' causes excessive computational requirements.
As the rapid numerical solution of the continuous-time Lyapunov
equation proposed by Richter et al. [18] we can use FRPI [9] iter-
ation ‘or block-diagonalization methods with paralle] implementation
techniques to solve the discrete-time Lyapunov equation (18).

B. Calculation of Correction Factor A; j+,

In this subsection, we find the j + 1th Newton correction factor
A1 so that X, j41 = Xi ;j+ A 11 at the ith step Euler-Newton
iteration. For convenience, we o_mit the subscripts, and set X =
)f.‘ = limj e Xi5, X = X, A= A.',j and A = X — X. Since

= X + A can be considered as an exact solution of (12), we have

FIX+AF —(X+A)-FI(X +A)G,
x (G2 + GT (X + A)G1)'GT(X + AF
+K+PX+A)+(s-1)(P(Xo)-2)=
Expanding the matrix (G2 + GT (X + A)G1)™!, we get
(G2 +GT (X + A)G)™?
=Gy - G:'GTAGIG; +HOT. (1)

where G2 = G, + GT X G, and H.O.T. denotes a function in higher
order (n > 2) terms of A. Substitute (21) into P(X + A), then

P(X +4) g
d
=) (I-7)F'r)*F"
k=0

x [XG1G'GTX + AG:G; G X
+XG1G3'GTA - X667 GTAG G5 1 GT X)
x F(rTF)*(I- +T) + HOT. .

(20)

22)
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Substitute (21) and (22) into (20) and omit the higher order terms of
A, then the desired correction factor A solves the following equation

d d .
FTAF-A+(I-7)- E LiAT: + Z(L-kéfk):r
k=0 k=0
- (I=-TDH+eX,8) = 23)

where FF = F — G1G;'GTXF, Ly = (FT YFTX Gy GZIGT,
and [} = (F - 1/2G, G’;lGTXF)(rTF)" for k = 0,1,-

and 6(X,s) = FTXF - X - FTXG: G;'GTXF + 2,,_0
(I = )FIrFTXGiG '\ GT X F(«TF*(I - +T) 4+ K + (s -
D)(P(Xo) - Z). Obviously, (23) is also a modified Lyapunov
equation and the method described in subsection 3.1 can be utilized
to solve for A.

IV. ALGORITHM AND NUMERICAL RESULTS

Based on the discussion of the last section, we give an algorithm
for solving low-rank, symmetric perturbed MDARE.
Algorithm 4.1: » -
Step 0) (Inpur) Given two criterion bounds eps1, eps2, a positive
number ko (the maximum iteration number) and an arbi-
trary nonnegative definite symmetric matrix Z. Set i = 0
and so = 0.
Step 1) (Find the solution of the easy problem of continuation
equation) Solve DARE (11) by using the QZ method
proposed by Pappas et al. [16].
Step 2) (Euler-Newton step) Repeat:
2.1: (Euler step)
¢ Compute predict factor X; in (17).
* Find h; > O such that 1Z X”“:_f; ”+: <
epsl. (Here || - || » denotes the l-:robenius norm.)
© oSet Xipaio=Xi+hiXs,j=0,

2.2: (Newton step) Iterate until convergence criterions
hold.

‘e Compute correction factor A;41,j41 in (23).

o Set Xiy1,541 = Xigr,j + Aig1,i41-

. I IlH(XIIiXiLiIi,;.;.a:T:i)”F < eps2, then set 5,11 =
8 + hi;

If 5i41 = 1, then accept X(1) = Xi41,j+1 to be
the solution of MDARE (2), and stop.
Else set X;11 = Xg+1,j+1, it =141, goto
Repeat.
e Set Xit1,; = Xit,jh1, i =J+1L
¥ j > ko, then find h; > 0 such that
H X";';_,)fx’ "*:: < epsl and go to ©.
¢ Goto 2.2.
Note that to determine the step size h; in Algorithm 4.1, there are
many cfficient strategies proposed for the adaptive control [11]. For
example, at ith step' Euler—_Newton iteration, we give the initial step .
size h; = 1—s,. If the quantity r; = HX*"'_‘_f;I?: is larger
than eps1, then we cut h; by half. Repeat ﬂns check-updating process
until r; < epsl holds (see [11] for details).

Three examples are given to illustrate the numerical behavior by
performing Algorithm 4.1. The first two examples are given by
Pappas et al. [16] but with some slight modifications of the coefficient
matrix F so that the first condition I) p(FT7) < 1 holds in Example
4.1 and the second condition H) (I —7)(FT )* = 0 with k = 2 holds
in Example 4.2. In the third example, the coefficient matrices are
randomly generated and the second condition ) ( — 7)(FT1)* =
0 with £ = 1 holds. All computations are done in MATLAB on a
PC-486 computer in double precision arithmetic.
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TABLE 1
i-th step | Tih Ae | iteration no. | d(X:) | Amin(Xi) |Xi"
0 0.0 0 1.88¢-15 | 2.43¢-07 | 1.0525e-15
o1 . 1.0 .2 1.18e-16 | 1.85e-03 { 1.3942¢-16
TABLE II
i-th step | T4_% kx| iteration no. | d(X:) | Amin(X:) X
0 0.0 0 1.44e-13 1.0 2.0155e-15
1 1.0 2 6.67e-15 1.0 4.0877e-16
TABLE m
i-th step | S5 ks | iteration no. | d(Xi) | Amin(Xi) M—lx i
0 0.0 0 4.08¢-11 | 2.57e-01 | 8.2842e-14
1 0.125 3 7.21e-12 | 3.40e-01 | 8.7100e-13
2 0.5625 3 8.21e-12 | 4.56e-01 | 7.3968e-13
3 1.0 2 8.95e-12 | 4.90e-01 | 1.5861e-09
620
m_
580}
%
o
£ %o
k]
g s}
5201
300 05 1
axis of parameter (s)
Fig. 1. Norm of X versus s.
Example 41: Let G = [0,0,0,1)7, G» = 1/4, G :=
G\G;'GY
05 1 0 0
B 0 01 0| .1
F=Q-14y 0019
60 0 00
1 0 00
00 00
K= 00 00
00 00
and
0 00O
o010 0of .1
T=Q@ 19 0 1 of @
0 0 01
where
1 V3
3 —2§- 0 0
N
5 Tl 0 0
Q=
0 0 ¥ 2
0 0 ¥Z =2
Here, two criterion bounds epsl and eps2 are 0.1 and 10713,

respectively. Table I shows that the computed solution of MDARE
(2) is obtained with a small residual (<10~'*) when the continuation

axis of log of normalized residuat

axis of parameter (s)

Fig. 2. Log of residual versus s.

parameter s is attained to one. The first column of Table I records
the ith Euler step of the Euler—Newton iteration. The second column
of Table I records the total length 3"} ki of all Euler steps
before the ith Euler-Newton - iteration. The third column records
the iterative number of the Newton step in the ith Euler-Newton
iteration. The fourth and fifth columns denote the symmetry d(X;) =
IX;: = XT|lF of the convergent solution X; and the algebraically
smallest eigenvalue of X;, respectively. The last column denotes the
normalized residual LE{ZillE. of X;. From Table I we see that the
numerical solution X, of hm is fairly symmetric and positive
definite.

Example 4.2: Let F = N~T. Joxs  Ooxa -NT, K = L,
Osxe  Oaxa
Gz = bk
n 1 0 0
00 1 0
Joxe = | T,
1
0 0 0 0
ro
0 -1 T
G1= . N G:= G1G2 Gl
0 1
and
Isxs Osxa
T=N- ~ -N_l,
Isxe  Osxa
00 0O0O0O
five = 00 00O0O0
=10 01000
010000

where N € R!°%° js a randomly chosen nonsingular matrix.
Table II shows the numerical results by performing Algorithm 4.1.
The numerical behavior of this example is similar to Example 4.1.
The corresponding continuation curves of both two examples seem
to be a straight line or a smooth curve with small curvature.

le4.3: Let G € R, G, € R®*1® and K =
KTe R*°*% be randomly chosen matrices with G2 posi-
tive definite, rank(G;) = 18 and rank(K) = 17. Let F =

N T Fix Fip NT and 7 = N o o N1, where
18x2 Fa2

O Iisxis
F[] € &‘,2"2’ Fl2 € nylS, Fzz € %mxls and N € R20X20 are
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randomly chosen matrices with N nonsingular. By direct calculation
we get

T szz O F]I; 02)(18
(I-7)(F'7r)=
o O]||FL Fj

o o0 -1 _
X[O I1sxls]N =0.

Here, condition II) is satisfied. The criterions are given by eps1 =0.1
for the step size control and eps2=10° for the convergence of the
Newton step, respectively. Table III lists the numerical results. In
this example we see that the Newton iteration converges with 2.7
iterations per Euler step on average. Fig. 1 gives the plot of the norms
of X (s) v.s. parameter s and denotes the norms of the convergent
solutions of Euler-Newton iterations by “+.” Fig. 2 gives the plot of
logarithm of the normalized residual v.s. parameter s.

As discussion in Section III, to solve (17) or (23) is equivalent
to solve m + 1 Lyapunov equations and a linear system with order
m = —('ill Hence, it is easily seen that the developed Algorithm
4.1 lsmore efﬁcnenttlmnthedmctmﬂhodbyuﬁhzmganenlarged
lmear system of order n®
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Hierarchical Production and Setup Scheduling
in Stochastic Manufacturing Systems

Suresh P. Sethi and Qing Zhang

Abstract—This paper is concerned with an asymptotic analysis of hier-
archical production and setup scheduling in a stochastic manufacturing
system consisting of a single failure-prone machine and facing constant
demands for a number of products. At any given time the system can
only produce one type of product, and the system requires a setup if
production is to be switched from one type of product to another. A
setup may involve setup time or setup cost or both. The objective of the
problem is to minimize the total costs of setup, production, and surplus.
The control variables are a sequence of setups and a production plan. An
asymptotic analysis with respect to increasing rates of change in machine
states gives rise to a deterministic limiting optimal control problem in
which there is a control variable associated with each of the machine
states and the production rate is obtained by weighting these controls
with the stationary probabilities of the corresponding states. It is shown
that the value function for the original problem converges to the value
function of the limiting problem. Asymptotic optimal controls for the
original problem from optimal or near-optimal controls for the limiting
problem are constructed. A simple illustrative example is provided.

I. INTRODUCTION

The recognition of the complexity of the production planning
problems in stochastic manufacturing systems has resulted in various
attempts to obtain suboptimal or near-optimal controls. Of particular
importance to us is the so-called hierarchical controls approach
based on the reduction of a given complex problem into simpler
approximate problems or subproblems and to construct a satisfactory
solution for the given problem from the solutions of the simpler
problems. Moreover, in cases of stochastic systems in which fluctua-
tion rates or frequencies of some processes are much faster than the
frequencies associated with other processes, the hierarchical approach
may provide us with solutions that are asymptotically optimal as
the frequencies of the faster processes become large. The reader is
referred to Lehoczky er al. [S], Sethi and Zhang [8], and Sethi et al.
[10] for further details.

A crucial assumption in [5], [8], and [10] has been that the
machines are completely flexible and thus do not require any setup
for switching the production from one product to another. Ideally,
the assumption amounts to the possibility of simultaneous production
of different products.

An important class of manufacturing systems consists, however,
of systems that have machines which involve setup costs and/or
setup times, when switching from production of one product to that
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