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Abstract—Monte Carlo simulations have become widely used 
in computational finance. Standard error is the basic notion to 
measure the quality of a Monte Carlo estimator, and the square 
of standard error is defined as the variance divided by the total 
number of simulations. Variance reduction methods have been 
developed as efficient algorithms by means of probabilistic 
analysis. GPU acceleration plays a crucial role of increasing the 
total number of simulations. We show that the total effect of 
combining variance reduction methods as efficient software 
algorithms with GPU acceleration as a parallel-computing 
hardware device can yield a tremendous speed up for financial 
applications such as evaluation of option prices and estimation of 
joint default probabilities. 
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I.  INTRODUCTION  
Major computational methods [17] in financial applications 

include tree (or lattice) method, numerical partial differential 
method, (fast) Fourier transform method, and Monte Carlo 
method. Unlike others being deterministic based, Monte Carlo 
method is a probabilistic-based simulation method. By virtue 
of “free from the curse of dimensionality,” Monte Carlo 
method has been widely employed for solving complex and/or 
high-dimensional problems. 

 The quality of a Monte Carlo estimator is often measured 
by standard error, which is defined by standard deviation of the 
underlying random variate divided by the square root of the 
total number of simulations. To reach a high-level accuracy for 
Monte Carlo method, variance reduction methods have been 
developed for providing efficient algorithms [15]. Control 
variate and importance sampling are perhaps mostly used 
techniques among variance reduction methods. Control variate 
represents a transformation by addition, while importance 
sampling represents a transformation by multiplication. Thus 
standard errors of Monte Carlo estimators can be dramatically 
reduced by software algorithms; namely, variance reduction. 

First manufactured by Nvidia in 1999, a graphics 
processing unit (GPU) has a highly paralleled hard-ware 
structure, which is designed for computer graphics rendering. 
A modern GPU has been designed to accelerate computations 
for scientific, engineering, and financial applications. GPU 
appeals to Monte Carlo method because massive parallelism 
can be exploited. It provides an alternative to largely increase 
the total number of simulations. Thus standard errors of Monte 

Carlo estimators can be effectively reduced by such hardware 
device-GPU. 

From the perspective of financial applications, we are 
particularly interested in solving two kinds of problems. They 
include derivatives evaluation and risk management. Both are 
essential to the modern operation of financial institutions [14] 
because they are associated with two major risks in finance. 
One is the market risk and the other is credit risk. Option 
pricing is a core in the problem of derivatives evaluation. One 
specific European-style option pricing problem under the 
stochastic volatility model [6] will be explored.  Estimating the 
probability of default is fundamental for credit risk 
management. One specific probability estimation of joint 
default under copula models [2] will be studied. 

  Regarding to those evaluation problems, i.e., the 
option pricing and the probability of joint default, by Monte 
Carlo simulations, their corresponding variance reduction 
methods are often different. The option pricing problem will be 
solved by (martingale) control variate, while the probability 
estimation of joint default will be solved by importance 
sampling.  Both algorithms have been proved to be 
asymptotically optimal [1] in the sense of “asymptotical zero 
variance.” That is, those Monte Carlo estimators associated 
with both variance reduction algorithms admit zero variance in 
the limiting situation. Given such efficient algorithms, the 
additional effect of GPU becomes an interesting object to 
explore. The goal of this paper is to examine the total effect of 
combining variance reduction with enlargement of simulation 
size by GPU for Monte Carlo estimators under these two 
financial applications. 

 Our numerical experiments demonstrate tremendous speed 
up obtained from the combination of variance reduction 
methods under GPU computing. GPU computing refers to the 
computer implementation by the programming language 
CUDA (Compute Unified Device Architecture). Section 3 
records variance reduction ratios ranging from 65 to 3844 and 
GPU speed-up ratios ranging from 18 to 249. If the total effect 
of variance reduction on GPU acceleration is measured by the 
square of standard error multiplied by the execution time. We 
shall see significant figures such as 6057 (option pricing) and 
68340 (joint default probability estimation) on the performance 
of variance reduction methods accelerated by GPU in our 
numerical experiments.  

Efficient algorithms and parallel devices provide a 
promising framework for solving complex problems. 



According to these results, one can further reach out more 
practical applications in finance. For example, martingale 
control variate accelerated by GPU, used to solve the option 
pricing problem, can be applied to solve the model calibration 
of implied volatility surface [11,13]. Importance sampling 
accelerated by GPU, used for joint default probability 
estimation problem, can be extended to the (nonlinear) 
portfolio default probability estimation problem [8].    

The organization of this paper is the following. Section 2 
introduces two customized variance reduction methods 
including martingale control variate and importance sampling. 
These are efficient algorithms proved to have asymptotical zero 
variance, and used for solving the option pricing problem and 
the joint default probability estimation problem, respectively. 
Section 3 demonstrates numerical results of GPU acceleration 
on those efficient algorithms. We conclude on Section 4.  

II. TWO VARIANCE REDUCTION METHODS: MARTINGALE 
CONTROL VARIATE AND IMPORTANCE SAMPLING 

A. Martingale Control Variate Method: Option Pricing 
In computational finacne, perhaps the most successful 

implementation of control variate is to evaluate continuous-
time arithmetic-average Asian options. Kemna and Vorst [16] 
adopted a discounted counterpart geometric-average Asian 
option payoff less its price as a control. This method works 
well for two reasons. First, the correlation between the 
arithmetic-average and the geometric-average is high. Second, 
the counterpart geometric-average Asian option price has a 
closed-form solution. Han and Lai [10] generalized this 
approach to a dynamic setting termed martingale control 
variate, which can be used to evaluate a larger class of options 
such as American option [4], some exotic options [5,9], and a 
larger class of financial models such as multi-factor stochastic 
volatility models [7]. 

We consider a European-style option pricing problem under 
the one-factor stochastic volatility model. This is a typical class 
of models that are often used for model calibration to implied 
volatility surface [11,13]. Under a risk-neutral probability 
measure P* , the option pricing problem given the payoff 
function H (x)  is defined by  

P t,St,Yt( ) = E* e−r(T−t )H ST( ) | St,Yt"# $%.            (1) 

The payoff function is termed a call payoff if 

H (x) = x −K( )+ =max x −K, 0{ } , while it is termed a 

put payoff if H (x) = K − x( )+ =max K − x, 0{ } . The 
basic Monte Carlo estimator 

1
N

e−rTH (ST
(i) )

i=1

N
∑              (2) 

provides an approximation to the option price defined in 
Equation (1). The super script (i) in Equation (2) indicates the 

i-th independent sample and N denotes the total number of 
simulations. 

 Stochastic volatility models [6] contain a class of 
continuous-time models in order to capture some stylized effect 
of volatilities in finance. The asset price dynamics are assumed 
to satisfy the following stochastic differential equations 

 dSt = rStdt +σ tStdWt
(0)*

 

 σ t = f (Yt )  

dYt =
1
ε
m−Yt( )dt + ν 2

ε
ρdWt

(0)* + 1− ρ2dWt
(1)*( ) (3) 

where St  is the underlying asset price process such as stock 
price or index price with a constant risk-free interest rate r . 
Its stochastic volatility σ t  is driven by a mean-reverting 

process Yt , which varies on the time scale ε . The vector 

Wt
(0)*,Wt

(1)*( )  consists of two independent standard 

Brownian motions. The instantaneous correlation coefficient 
ρ  satisfies | ρ |<1 . The volatility function f  is assumed to 
be smooth bounded and bounded below away from 0. In 
addition,  1/ε  is the rate of mean reversion,  m  is the long 
run mean, and ν  is the long run standard deviation. Its 
invariant distribution is N(m,ν 2 ) . 
 The martingale control variate method proposed by 
Fouque and Han [3] formulates the following unbiased 
estimator: 

1
N

e−rTH (ST
(i) )−M0

(i) (PBS )"# $%i=1

N
∑    (4) 

where PBS s,Ss;σ( )  denotes the Black-Scholes option 

pricing formula under the constant volatility σ , and the 
controlled martingale is defined by  

 

M0 (PBS ) = e−rs
∂PBS s,Ss;σ( )

∂x0

T

∫ f Ys( )SsdWs
(0)*

 (5) 

The effective volatility σ  is defined as the square root of the 
volatility function f 2 (.)  averaging with respect to the 
invariance distribution of the fast varying volatility process 
Y. [6]. 

 In this dynamical context, the martingale control 
M0 (PBS )  can be understood as the delta hedging portfolio, in 

which the delta 
∂PBS
∂x

 hedge strategy has been taken to 



remove the asset price risk. It remains the volatility risk 
unhedgeable by the delta strategy. The hedging error attributes 
to the variance of the martingale control variate estimator. The 
following theorem provides an asymptotic result for variance 
analysis. A detail account for this type of models can be found 
on [4,7,9]. The following theorem provides an asymptotic 
result for variance analysis. 

 
 Theorem 1 [3] Under the assumptions made above 
and the payoff function H being continuous piecewise smooth 
as a call (or a put), for any fixed initial state (0, x, y) , there 
exists a constant c > 0  such that for ε ≤1 	  

Var e−rTH ST( )−M0 PBS( )( ) ≤ cε  

  
This theorem guarantees the asymptotical optimality of the 

martingale control variate. It implies that when the mean-
reverting speed ε  goes to zero, this variance reduction 
algorithm induces a zero variance. 
 

B. Importance Sampling: Probability Estimation of Joint 
Default 
Importance sampling [15] is a crucial technique to estimate 

probabilities in rare event simulation. Based on the exponential 
twist for measure change, we study a high-dimensional lower 
tail probability estimation problem, which is called the joint 
default probability estimation in finance.  

Copula methods are capable of constructing various 
correlation structures for financial modeling [2]. Archimedian 
copula and elliptic copula are two major classes of copula. 
When the problem of joint default probability estimation is 
concerned, closed-form solutions exist for Archimedian copula, 
but not elliptic copula. Hence it is an essential task to provide 
efficient algorithms for estimating probabilities of joint default 
under elliptic copula including the Gaussian copula and 
Student’s t copula. 

Gaussian copula models the joint default by a random 
vector of multivariate normal. We apply the exponential 
twisting [15] to derive an importance sampling algorithm. The 
vector of exponential twisting parameters turns out to satisfy a 
linear system, which is associated with the covariance matrix 
defined in the multivariate normal. The variance of this 
stochastic algorithm is proved to be asymptotically optimal by 
means of the large deviation theory [1]. In simulation terms, an 
efficient algorithm is defined by its variance being zero 
asymptotically. See Han and Wu [12] for detailed discussion 
and its extension to Student’s t distribution, which is omitted 
here to keep the clarity and length constraint of this paper. 

A brief review of the importance sampling by exponential 
twist to estimate the probability P Z <C( ) = E Ι(Z <C)[ ]  
is as follows. Suppose that under a probability space 
Ω,F,P( ) , the multivariate Z ∈ Rd has a density f  with 

f (z)> 0  for z ∈ Rd , and its moment generating function 

denoted by MZ (µ)  exists, where µ = µ1,!,µd( )T  denotes 
a vector of parameters in the generating function. The 
exponential twist imposes a new density function defined by 

fµ (z) =
exp(µz) f (z)
MZ (µ)

     (6) 

for measure change. Under the new probability measure Pµ  
defined from the Rodan-Nykodym derivative 

dP / dPµ = exp(µZ ) /MZ (µ) , 

the lower tail probability P(Z <C)  can be expressed by 

P1 = Eµ Ι(Z <C) f (Z )
fµ (Z )

"

#
$
$

%

&
'
'

    (7) 

where Eµ  denotes the expectation with respect to the 

probability measure Pµ .  

 Let P2 (µ)  denote the second moment of the random 

variate Ι(Z <C) f (Z )
fµ (Z )

 under the new measure P2 (µ)  

shown in Equation (7). That is,   

P2 (µ) = Eµ Ι(Z <C) f 2 (Z ) / fµ
2 (Z )"# $%  

    = E Ι(Z <C) f (Z ) / fµ (Z )"# $%  

Substituting the choice of fµ (z) , defined in Equation (6), into 

P2 (µ) , we obtain 

P2 (µ) =MZ (µ)E Ι(Z <C)exp −µTZ( )#
$

%
&

≤MZ (µ)E Ι(Z <C)exp −µTC( )#
$

%
&

≤MZ (µ)exp −µTC( )

 (8) 

in which we assume all C and µ  are negative numbers for the 
first inequality to be held. Since the indicator function is 
bounded above by 1, the second inequality is satisfied. 

We intend to minimize the variance of  

Ι(Z <C) f (Z ) / fµ (Z )  

over µ ∈ Rd . This task is reduced to minimize the second 
moment P2 (µ)  because P1  is µ -independent. It is a 
challenging problem to solve for the minimizer of P2 (µ)  
particularly in high-dimensional cases. When the moment 
generating function is in exponential form, it may appear that 
minimizing the logarithm of the upper bound, last inequality in 



Equation (8), becomes tractable. Thus, it provides a candidate 
for importance sampling. According to the first order condition, 
each partial derivative must be zero to solve for µ  as follows. 
For i =1,!,d,  

1
MZ (µ

*)
∂MZ (µ

*)
∂µi

* = ci µ
* = µ1

*,!,µd
*( )

T
. 

In the case of multivariate normal, it turns out these equations 
can be solved explicitly for µ* . In fact, the optimal solution 

µ* satisfies this linear equation 

Σµ* =C . 

This is because the moment generating function of 
Z ~ N(0,Σ)  is 

MZ (µ) = exp
1
2
µTΣµ

"

#
$

%

&
' . 

In order to facilitate numerical comparisons, a pseudo 
algorithm for estimation of a lower tail probability under a 
centered multivariate normal Z is given below. 

 

Algorithm 1: Estimation of lower tail probability 
P Z <C( )  under a centered multivariate Normal Z  

1. Given the distribution Z ~ N(0,Σ)  and the lower 

threshold C < 0 , compute µ* = Σ−1C  

2. For each independent ith replication, i =1,!,m   

 (a) Generate Z (i) = Z1
(i),!,Zd

(i)( )
T

from N(C,Σ) . 

 (b) Evaluate MZ (µ
*)exp −µ*TZ (i)( )Ι(Z (i) <C) . 

3. Compute the average of samples generated from (b) in 
Step 2. 

 

Next theorem analyzes this algorithm rigorously by means 
of the large deviation theory.  

Theorem 2.[12]  Assume that the scale α  is a positive 
number, each element in the vector C ∈ Rd is negative, 
W ~ N(0, Id ) , and the lower triangular matrix A satisfies the 
Cholesky decomposition of a given covariance matrix 
AAT = Σ . We obtain the following asymptotic 
approximation: 

lim
α→∞

1
α
lnP2 µ*; αC( ) = 2 lim

α→∞

1
α
lnP1 αC( ) = −CTΣ−1C  

Note that we have scaled the default threshold from C  to 

αC so that the asymptotic analysis can be conducted. 
Moreover, from the first moment approximation 

P1 αC( ) ≈ e
−
α
2
CTΣ−1C

and the second moment 

approximation P2 µ*; αC( ) ≈ e−αCTΣ−1C , it is easy to see 

that variance of the importance sampling estimator is 
approximated zero for large scale α . 

That implies that the importance sampling scheme 

P1 αC( ) =
E
µ*
Ι(X < αC)exp 2 αCTΣ−1X +αCTΣ−1C( )$
%

&
'

 

where X := AW ~ N( αC,Σ)   under the probability 
measure P

µ*
 is asymptotically optimal to estimate the lower 

tail probability, i.e. the joint default probability. 

 

III. GPU ACCELERATION ON VARIANCE REDUCTION METHODS 
According to the aforementioned efficient variance 

reduction algorithms of martingale control and importance 
sampling, we further investigate their performance under the 
computing environment of CPU or GPU. Configuration of 
executing computers include CPU (Core i7 950, 4-core 3.06 
GHz) and GPU (NVIDIA GeForce GTX 690, 3072 CUDA 
core, 915 MHz). 

A. Martingale Control Variate on GPU 
To facilitate the computation of the option price defined in 

Equation (1) as a conditional expectation, two Monte Carlo 
estimators are used for approximations. They include the basic 
Monte Carlo (BMC in short) estimator, shown in Equation (2), 
and the martingale control variate (MCV in short) estimator, 
shown in Equation (4). We adopt the Euler scheme [18] for 
discretizing the pricing dynamics defined in Equation (3) as 
well we the martingale control M0 (PBS )  in Equation (5).  

The payoff function of a European option is 

H (x) = x −K( )+ . The chosen model parameters include the 

risk-free interest rate r = 0.05 , the volatility time scale ε = 5 , 
the long-run mean m = 2 , the long-run standard deviation 
ν = 3 , and the correlation coefficient ρ = 0.7 . Variables of 
the option contract include the strike price is K = 90  and the 
time to maturity is T =1 . Given the current time being t = 0 , 
all initial conditions of those stochastic differential equations 
include S0 =100 and Y0 = 2 . 

For executing Monte Carlo simulations, the step size of 
time discretization is set Δt = 0.01 and the total number of 
simulations is setN =10,000 in this numerical experiment. 



Table 3.1 Results of option pricing by Monte Carlo 
methods under a single-factor stochastic volatility model 

 

  GPU CPU Speed up 

BMC 

Mean 17.1324 16.8473 
 SE 0.0328 0.0305 

Time 0.162 (s) 40.47 (s) X249 

MCV 

Mean 16.8030 16.8072 
 SE 0.0037 0.0037 

Time 0.454 (s) 71.54 (s) X157 

Accuracy 
Variance 
Reduction 
Ratio 

X76 X65  

BMC stands for the basic Monte Carlo method defined 
in Equation (2). MCV stands for martingale control variate 
method defined in Equation (4). 

 
When the total effect of variance reduction on GPU 

acceleration is defined as the execution time multiplied by the 
square of standard error, we shall see that the combination of 
GPU and MCV versus the combination of CPU and BMC 
results in a total reduction of 6057 times. 

Randomized quasi Monte Carlo methods are shown to have 
the best convergence rate among Monte Carlo methods. Its 
implementation on MCV has been conducted by Han and Lai 
[9]. Due to the current limitation of generating quasi random 
sequences such as Sobol’s sequence on GPU, we comment that 
there is a potential to overwrite the total effect mentioned 
above in the future when a large scale of Sobol’s sequence in 
high dimension can be generated from CUDA.  

B. Importance Samping on GPU 
The basic Monte Carlo estimator for the joint default 

probability is 

P Z <C( ) ≈ 1
N

Ι Z (i) <C( )
i=1

N

∑ ,      (9) 

where the super script (i)  denotes the i-th independent sample. 
The setup of our numerical experiment is the following: the 
total number of simulations N = 2,000, 000 , Z is a 40 
dimensional multivariate normal with mean zero and the 
variance-covariance matrix being one’s in the diagonal and 
0.5’s off-diagonal, and each entry of the default threshold 
vector C is -2 homogeneously. The importance sampling 
estimator for the joint default probability can be implemented 
by Algorithm 1. Numerical results are illustrated in Table 3.2. 

When the total effect of variance reduction on GPU 
acceleration is defined as the execution time multiplied by the 
square of standard error multiplied, we shall see that the 
combination of GPU and IS versus the combination of CPU 
and BMC results in a total reduction of 68,340 times. As for 
Student’s t distribution being a fat-tail distribution among the 

elliptic copula, similar numerical results can be obtained but 
they are skipped here. See Han and Wu [12] for more 
discussions and their comparisons with Matlab codes mvncdf.m 
and mvtcdf.m. 

 

Table 3.2 Result of Monte Carlo Simulation under  
multivariate normal distribution (sample size = 2M, 

d=40.) 
 

  GPU CPU Speed up 

BMC 

Mean 1.50e-6 1.50e-6 
 SE 8.7e-7 8.7e-7 

Time 0.05 (s) 1.77 (s) X36 

IS 

Mean 2.00e-6 2.01e-6 
 SE 1.40e-8 1.39e-8 

Time 0.10 (s) 1.77 (s) X18 

Accuracy 
Variance 
Reduction 
Ratio 

X3861 X3918  

BMC stands for the basic Monte Carlo method defined 
in Equation (9). IS stands for importance sampling defined in 
Algorithm 1. 

IV. CONCLUSION 
The total effect of variance reduction methods and GPU 

computing is significant. Speed up rates of 6057 and 68,340 are 
documented for solving problems of option pricing by means 
of martingale control variate on GPU and joint default 
probability estimation by importance sampling on GPU, 
respectively. These efficient algorithms show a great potential 
to further investigate more practical applications such as Monte 
Carlo calibration to implied volatility surface, the portfolio 
optimization under a Value-at-Risk constraint, etc. We leave 
these as future research.  
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