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Asian Options under Multiscale Stochastic Volatility
Jean-Pierre Fouque and Chuan-Hsiang Han

ABSTRACT. We study the problem of pricing arithmetic Asian options when
the underlying is driven by stochastic volatility models with two well-separated
characteristic time scales. The inherently path-dependent feature of Asian op-
tions can be efficiently treated by applying a change of numeraire, introduced
by Vercer. In our previous work on pricing Asian options, the volatility is
modeled by a fast mean-reverting process. A singular perturbation expan-
sion is used to derive an approximation for option prices. In this paper, we
consider an additional slowly varying volatility factor so that the pricing par-
tial differential equation becomes four-dimensional. Using the singular-regular
perturbation technique introduced by Fouque-Papanicolaou-Sircar-Solna, we
show that the four-dimensional pricing partial differential equation can be ap-
proximated by solving a pair of one-dimensional partial differential equations,
which takes into account the full term structure of implied volatility.

1. Introduction

Asian options are known as path dependent options whose payoffs depend on
the average stock price and a fixed or floating strike price during a specific period
of time before maturity. The problem of pricing arithmetic Asian options under a
stochastic volatility environment has been studied by Fouque and Han [3], where
only one fast mean-reverting volatility factor was considered in their model. How-
ever, it is well documented in empirical studies that two-factor stochastic volatility
models can produce the observed kurtosis, fat-tailed return distributions and long
memory effect. For example, Alizadeh et al. [1] used ranged-based estimation to
indicate the existence of two volatility factors including one highly persistent fac-
tor and one quickly mean-reverting factor. Chernov et al. [2] used the efficient
method of moments (EMM) to calibrate multiple stochastic volatility factors and
jump components. One of their main results is that two factors are necessary for
log-linear models. A recent paper by Molina et al. [7] used Markov Chain Monte
Carlo (MCMC) methods to show the appearance of two well separated time scales
in foreign exchange data.

From the view point of derivatives evaluation, Fouque et al. [5] used a combination
of singular and regular perturbations to approximate option prices. Within this
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methodology, they observed that the introduction of a short and a long time scales
indeed provides a much better fit on the term structure of implied volatility. This
is done by comparing to their previous work [4]. In [5], the fixed-strike arithmetic
Asian call option was considered and the price approximation was carried out to
solve a pair of two-dimensional PDEs. Our goal in this paper is to show that the
capability of dimension reduction techniques presented in [3] can be extended to
multiscale stochastic volatility models.

Based on the results in Section 3, the approximated price, or so-called corrected
price, does not depend on estimates of the current level of the unobservable stock
price volatility. All the parameters we need to compute the approximated price
can be easily calibrated from the observed historical stock prices and the implied
volatility surface. Thus, this article describes a robust procedure to correct Asian
option prices by taking the observed implied volatility skew into account. Since
there is no close-form solution for Asian option prices, numerical computation of
the corrected Asian option price is certainly needed.

This paper is organized as follows. Section 2 contains the introduction of multiscale
stochastic volatility models, and a review of the Asian option pricing problem and
its asymptotics. The dimension reduction technique is applied to derive the Asian
option pricing PDEs, and their asymptotics are presented in Section 3. Calibration
of the relevant parameters from the implied volatility surface is discussed in Sec-
tion 4. Seasoned Asian options prices and Asian Put-Call parity are presented in
Section 5. Numerical illustration are presented in Section 6 and the conclusion is
in Section 7.

2. Multiscale Stochastic Volatility Models

We consider a family of stochastic volatility models (St, Yz, Z;), where S; is the
underlying price, Y; evolves as an Ornstein-Uhlenbeck (OU) process, as a prototype
of an ergodic diffusion, and (Z;) follows another diffusion process. To be specific,
under the physical probability measure P, our model can be written as

dS; = pSidt + oS dWy,
o = f(Y1,Zy),

(2.1) dY; = alm—Yy)dt + B(p1dW; + p'sdZs ),

(2.2) dZ, = 6c(Z)dt +Vbg(Zy)(p2dWy + pradZs s + phdZy ).

where (Wi, Zs, Z1,+) are independent standard Brownian motions, and the con-
stant coefficients ply and p) are defined by ply = \/1 — p? and p}, = /1 — p3 — p,,
where the instant correlations p1, p2, and pi2 satisfy | p1 |< 1 and | p3 + p2, |< 1
respectively. The stock price Sy evolves as a diffusion with a constant p in the
drift and the random process o; in the volatility. The volatility factor Y; evolves
with a long-run mean m, a rate of mean reversion « > 0, and a “volatility of the
volatility” 8. The other volatility factor Z; evolves as a general diffusion process
with a time scale ¢, where we assume that the functions ¢(z) and g(z) in equation
(2.2) are smooth and at most linearly growing at infinitely.

To incorporate two characteristic time scales, namely one short (fast) and the other
long (slow), into the stochastic volatility models, we assume that « is large and §
small. That is, the two characteristic time scales 1/« and 1/ correspond to a
fast varying mean-reverting process Y; and a slowly varying diffusion process Z;, as
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shown in (2.1) and (2.2), respectively. These time scales are meant to be relatively
fast or slow by comparing to time to maturities of contracts. In order to perform
asymptotic analysis, we introduce a small parameter 0 < ¢ << 1 such that the
rate of mean reversion defined by o = 1/¢ becomes large. To capture the volatility
clustering behavior, we define v?> = 3?/2a, the long-run variance of Y;, and we
assume that it is a fixed O(1) constant.

Under the pricing risk-neutral probability measure P*, our model becomes

(23) dSt = TStdt + f()/t, Zt)Stth*,

1 3 3
(24)dY, = (;(m -Y) - %A(n%)) dt + % (prdWy + psdZs,)
(2.5) dZ, = (&(Zt) —Vog(Z)T(Ys, Zt)) dt

+\/59(Zt) (/)2th* + ﬁl2dZ§,t + plLde,t) )

where W', Z3,, and Z7 , are independent standard Brownian motions. The small
parameter € corresponds to the fast scale and the large parameter § ! corresponds
to the slow scale. The combined market prices of volatility risk associated with Y;
and Z; are

Aly,z) = %Jrv(yﬂ) 1-p?

[(y,z) = %’Z;) + (Y, 2)p12 + &y, 2)\/ 1 = p5 — Pia-

We assume that the risk-free interest rate r is constant and that the market prices
of volatility risks v(y, z) and £(y, z) are bounded and depend only on the volatility
levels y and z. At the leading order 1/e in (2.4), that is omitting the A-term in
the drift, Y; is an OU process which is fast mean-reverting with a normal invariant
distribution N (m,v?). The volatility factor Y; fluctuates randomly around its mean
level m and the long run magnitude v of volatility remains fixed for values of e.
The other volatility factor Z fluctuates slowly on a long time-scale of order 6—!.
Furthermore, due to the presence of other sources of noise modeled by the Brownian
motions Zg and Zj, , there exists a (v, £)-dependent family of equivalent risk-neutral
measures. However, we assume that the market chooses one measure P* through
the market price of volatility risk (v, ).

2.1. Asian Option Pricing PDE and its Asymptotics. The usual way
to deal with the continously sampled arithmetic average Asian option problem is
to introduce a new process

t
(26) It:/ Ssds,
0

which represents the running sum stock process. Here we assume the stochastic
volatility model obeys (2.3, 2.4, 2.5) in addition to the differential form of (2.6), i.e.

dI, = Sydt,

with the initial condition Iy = 0. Under the risk-neutral probability measure P*
the joint process (St, Yz, Z:, It) is a Markov process. The equation (2.6) remains
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unchanged under the change of measure. Thus, we define the price of the Asian
floating-strike call option at time 0 < ¢ < T by

I +
PE"S(t, s,y,2,1)=E* {eT(Tt) (ST - ?T) |Si=8,Yi=y,Zy=2,1; = [} .

From the Feynman-Kac formula, P*°(t, s, y, z, I) solves

(2.7) L0 =0,

§ I *
PS(T N=|s—=
( » S Y5 %, ) (S T) ’

where we define the partial differential operator £5° by

1 1 1)
L0 — Lo+ —=L1+ Lo+ \/5./\/11 + oMo + \/j./\/l3,
€ NG €

and each component operator is given by

o2 )
_ 2~ _ i
(2.8) Ly = v 8y2+(m y)ay
(2.9) L1 = piV2wsf( )6—2— 2wA( )ﬁ
: 1= Vst s v 2) g,
0, y,z) 5 0P B D)
(2.10) Lo(f(y,2) = E—FTS @—FT(S%_.)—FSE
a 2
(2.11) My = —g(Z)F(y,Z)a+p29(2)f(y7f<7)83532
_ 9 | g(2)? &
(2.12) My = C(Z)&'f' SRR
82
(2.13) My = vﬁplzg(Z)m,

where the correlation parameter pio is defined by p1a = p1pa + p12y/1 — p?. The
price of the Asian option is obtained at any given current time ¢, stock price S,
volatility levels Y; and Z;, and cumulated stock price I;, by solving the linear PDE
(2.7) . However, this pricing PDE is four-dimensional in space and any numerical
PDE scheme to solve it requires significant computation efforts.

Fouque et al. derived in [5] a y-independent approximated Asian floating-strike
call option price Q(t, s, z, I) as the sum of two terms Qo (¢, s, z,I) and Ql(t, s,2,1).
The zeroth order price Qo(t, s, z, I) solves the two-dimensional PDE

(2.14) EQ(E(Z))QO = O,
with the terminal condition
I +
Qo(T,s,2,1)= (s - T) .

It corresponds to the price of the option under the Black-Scholes model with a
volatility 7(z) independent of s. The correction Q1 (¢, s, z, I) solves the same two-
dimensional PDE with a zero terminal condition but with a source term:

(2.15) 52(5(2))(21 = LsQo,
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where the operator Lg is given by
3 0°

2 ) 92 L, 02 .
(2.16) ,cs—{v5—+v5 ]+{v252—+vgsasg

7(z) | * 0o L% 9500 0s?
The z-dependent effective volatility 7(z) is defined by

o(2)? = / F(y, 2)%dT(y),

where II denotes the invariant measure of the OU-process with infinitesimal gen-
erator Lo, that is a N(m,v?) distribution. In practice 7(z)? is estimated from
historical stock returns over a period of time of order one (shorter than 6=1) so
that the z-dependence is automatically incorporated in the estimate. The small
parameters V@, Vi, V5 and V5 are calibrated from the term structure of implied
volatility as explained in Section 4.

3. Dimension Reduction: Asian Option Problems with Multiscale
Stochastic Volatility and their Asymptotics

Our goal in this section is two-fold. First, we show that the dimension reduction
technique presented in our previous work [3] can be extended to the Asian option
pricing problem when the volatility is driven by multiscale volatilty. The case of
discretely sampled average stock prices is also considered. As a result, the four-
dimensional pricing PDE (2.7) can be reduced to three-dimensional. Second, we
carry out the singular-regular perturbation technique to derive the approximation
expansion for Asian option prices. These asymptotics reduces the problem to a
pair of one-dimensional PDEs, and therefore simplifies the pair of two-dimensional
PDEs (2.14, 2.15).

3.1. Three-Dimensional Pricing PDE. Because of the path dependent na-
ture of the payoff, it is important to distinguish whether the Asian option contract
already starts. When the current time ¢ is exactly at the contract starting date 0,
the Asian option is called “fresh”. When the current time ¢ is between the contract
starting date 0 and maturity date T, it is “seasoned.” For ease of exposition, we
limit our discussion to the case Asian option is fresh. The seasoned case and the
Asian put-call parity will be considered in Section 5.

The general payoff function of arithmetic average Asian options is

T
h (/ Spd\(t) — K1Sp — K2> ,
0

where the sampling function A has finite variation. For the case of continuously
sampled Asian option, A(¢) is chosen as A(t) = %, and for the case of discretely
sampled Asian option we have A(t) = L[ 2] where || denotes the integer part.
For the pricing of Asian options, the idea of dimension reduction technique intro-
duced by Vecer [8] and later by Vecer and Xu [9] is to construct a wealth or portfo-
lio process, which can replicate the stock price average by self-financing trading in
the stock and bond when the stock is modeled by some semimartingale processes.
Fouque and Han [3] generalize their result to one factor stochastic volatility when
the characteristic time scale is fast and the sampling function A(¢) is continuous.

To include the discrete-sampled scenario within the multiscale stochastic volatility
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model, we use a time-dependent trading strategy function introduced in [9] and
given by

T
(3.1) qr = e_rt/ e dA(s).
t

In this strategy the finite-variation process ¢; is the number of units held at time ¢
of the underlying stock. Since the price of the bond at time ¢ is e"*, the quantity
(Xt — g+ St)e” "t is the number of units held in bonds. We assume this portfolio is
to be self-financing so that the variation of the wealth process can be expressed in
differential form as

dXt = qt_dSt + (Xt_ — qt— St)e_rtd(ert)
(32) = qtdet + +T(Xt, - qt,St)dt.

From Proposition 2.2 in [9] or a straight forwardly extension of [3], the payoff of
Asian contract can be replicated by X, namely

T
Xr :/ SyAN(t) — Ko,
0

if the initial wealth is chosen equal to
(33) XO = QOSO - eirTKg.

Hence the general payoff function for arithmetic average Asian options can be de-
scribed as

T
(3.4) h (/0 Spd\(t) — K1Sp — K2> = (X7 — K1S7).

When K; = 0, we have a fixed strike Asian option; when Ky = 0, we have the
floating strike Asian option. The price P%9(0,s,y,z;T, K1, K3) of an arithmetic
average Asian option with multiscale stochastic volatility, is given by

(3.5) P=°(0, 5,9, T, K1, Ka) = e " E*{h(Xr — K1S7) | So = 8, Yo =y, Zo = 2},

where (S, Yz, Zi, X¢) follow (2.3), (2.4), (2.5) and (3.2), respectively, under the
pricing risk-neutral measure P*.
By change of numeraire

(3.6) Yy =
and from Ito’s formula, the dynamics of this numeraire process is given by

(3.7) dir = (- — ) f (Y)W,
where the shifted Brownian motion W;* is defined by

~ % t
(3.8) W= - / F(Ya, Z.)ds.
0

By Girsanov Theorem, under the probability measure P* defined by
dp* S
_ efrT_T

dP* So

T T
exp (/ f(Yy, Z)dW) — %/ f(Yz, Zt)th> ,
0 0
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the process Wt* given by (3.8) becomes a standard Brownian motion. Hence, the
driving volatility processes can be expressed as

B v = |t D2 A0 2) - s 20) | a
JFV—\\//;(Plth* =+ P/S dZ?J:,t)a
(3.10)  dZ, = [5(:(Zt) ~ VS (g(Z)T(Ye, Zt) — p29(Ze) f (Y, Zt))} dt

+Vog(Z) (P2th* + p12dZg ; + P'LdZZ,t) :
We assume that the payoff function h satisfies the homogeneous property, i.e.
h(zy) = xh(y),

for each nonnegative z. Payoffs of calls and puts are typical examples. When ¢ = 0,
the Asian option price (3.5) becomes

X
SE* {eTTZ_zh <S—,11: K1> |SO =s5,Yy=vy,%p = Z}

= SEN‘*{h(wT - Kl) | 1/]0 = ’djaYO = y7ZO = 2}7

where, by using (3.3), we have

T _rK

Y ===q(0)-eT=

s s
We define the quantity of interest u*° by
(311> ua’é(o7w7ya z;3 T7 Kl’ KQ) = E*{h(d}T - Kl) | wo = ¢7YO =Y, ZO = Z}a
such that the Asian option price (3.5) can be expressed as
(3.12) P90, 5,y, 2, T, K1, Ka) = su°(0,9,y, %, T, K1, K2).
Note that from (3.7) and (3.9) the joint process (¢, Yz, Z:) is Markovian. If, for
t < T, we introduce

ugya(tall/}ayvz;Ta KviQ) = E*{h(’l/}T - Kl) | UJt = /l/}a}/t = y7Zt = Z}a

then by an application of the Feynman-Kac formula, u° solves

1 1 A N K
(3.13) (—ﬁo b Ly 4 Loy + VOMy + Mo+ \/i/\/lg,) w0,
£ Ve £

with the terminal condition u®°(T,%,y,2) = h(y) — K1). The partial differential
operators Lo, L1, Mo, and Mj are given the same as (2.8, 2.9, 2.12, 2.13), and Lo
and M are given by

Ealf () = 5+ 30— )02
My =—(g(2)T(y, 2) — p2g(2) f(y, 2)) % ¥ p2g() (v, 2) (e — ) afaz

It is remarkable that the PDE (3.13) has one less spatial dimension than (2.7).
However, the solution of this backward PDE can only be the price of the fresh
Asian option when the current time ¢ = 0. The same PDE may not be a pricing
equation for the seasoned Asian option, which is discussed in Section 5.



8 JEAN-PIERRE FOUQUE AND CHUAN-HSIANG HAN

3.2. Asymptotics. We expand the solution u? of (3.13) in powers of v/§

(314) u876(ta 1/}) Y, Z) = ug(ta 1/}) Y, Z) + \/gui(ta 1/}) Y, Z) + (SUQ(t, 1/}) Y, Z) +e
and substitute into (3.13) to obtain

1 1 N -
0 (g£0+%£1+£2)u0
VG (oo + o+ £o) s + Muug + M) + -
c 0 \/E 1 2 1 1 \/E 3o .

The leading order term u§ solves the problem

1 1 N\ .
(Eﬁo + %El + 52) ug =0,

with the terminal condition u§ = h(¢ — K1). Performing the singular perturbation
detailed in [4] we obtain the following approximation

(315) Ug ~ UO(tal/}az) +a1,0(t7¢72)

where the leading order term wg(t, %, z) solves

2
(3.16) <Ly>uy = % + %(1/1 —q-)? < f(y,2)* > %J;O =0,
w(T,¢,2) = h( — Ky),
and the correction i1 (¢, v, z) = /eu 0(t, 1, z) solves
(3.17) <Ly>t19 = Aug,
u10(T,¢,z) = 0.
The operator A is defined by
o , 97 , 0
A=Va(2)(q- — ) 507 + Vis(2)(g— — ) PR

where the z-dependent functions V', and V'3 are given by

3.18 Vv =— |- DT s <A hAACILVAES
318) Vo) =22 (-n < S0, AL > - < a2 )

= p1vy/e 99(y, )

3.19 v =—< >

319)  Vole) = P < fy.2) 7
We consider next the second uf(¢,1,y, z) in the expansion (3.14): it solves

1 1 1

3.20 Lo+ — —M 6

o (Ga+ )
with the zero terminal condition. Similarly, we look for the solution whose expan-
sion is given by

ui (tv 1/)7 Y, Z) = uO,l(tv 1/)7 Y, Z) + \/Eul,l(tv 1/)7 Y, Z) + 6“2,1(t7 1/)7 Y, Z) + e

Substituting this expansion into the PDE (3.20) and using the expansion (3.15) for
ug, it follows that wg 1, u1,1, and ug,; solve the following PDEs

Loug,1 =0,
Liug1 + Lour,1 = —Msug =0,
£2U0,1 + Liur1 + Louz1 = — M.

E1+EA2)U§=—(M1+
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We conclude that ug,; and u;,; are independent of the variable y, and ug,; solves
< Lo >upy =— < My > ug,
where the homogenized partial differential operator < My > is written as
<My > =(=(9(z) <T(y,2) > —pag(2) < f(y,2) >)

+p2g(2) < fly,2z) > (qt— — w)%) 5/8_(?7’

and & denotes the derivative with respect to z. We define Ug,1 =
Uo,1(t, 9, z) solves

N

5> Ug,1, S0 that

(3.21) < EAQ > ’11071 = BUO,
aO,l(TawaZ) = 0
The differential operator B is defined as

1 (=60 —s 0?
B:<V0—U+V1(Qt7/)) )a

roi o o0YOoo
where
— ) /
Vg = % (9(2) <T(y,2) > —pa2g(z) < f(y,2) >)T7T,
— 1) /
P o <20

To summarize we have obtained that
UE’J(t, 1/}5 Y, Z) = Uo(t, 1/)7 Z) + ﬂl,o(ta 1/}5 Z) + aO,l(tv 1/)7 Z) + 0(6 + 6 + v 55)5

where ug solves (3.16), @y o is of order O(/¢) and solves (3.17), and g 1 is of order

O(V/$) and solves (3.21). Consequently, according to (3.12), the price of a fresh
Asian option is approximated by

P876(05 5,Y, Z) = 5“0(05 1/}5 Z) + Sﬂl,o(ovwv Z) + 5110,1(05 1/}5 Z) + 0(5 + 5 + v 55)

The accuracy of this approximation is obtained in the case where the payoff function
h being smooth and bounded by a straight forward generalization of Theorem 3.6
in [5]. For the case of h corresponding to a call or a put, the order of accuracy is
O(eloglel); we refer to the discussion in [3] and skip it here.

4. Implied Volatilities and Calibration

When volatility comprises fast mean-reverting and a slowly varying diffusion
processes on time-scales respectively smaller and larger than typical maturities,
one can apply the asymptotic analysis on the pricing PDEs (2.7) and (3.13), in
order to obtain an approximated price. We find out that the quantities of in-
terest derived through the analysis depend on the same parameters than in the
approximated European option prices. Thus, in this section we describe a robust
procedure to correct Black-Scholes Asian option prices to account for the observed
implied volatility skew. The methodology is to observe both the underlying stock
prices and the European option prices, which is encapsulated in the skew surface,
such that the Asian option price under the stochastic volatility environment can be
calculated.
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4.1. Review of Vanilla European Options Asymptotics and Calibra-
tion: Multi-Scales. We give here a brief review of the main results in [5] from the
asymptotic analysis of the European options problem under multiscale stochastic
volatility model as presented in (3.9, 3.10). Let P=% be the price of a European
option which solves

£5,6P5,6 =0
P=O(T, s,y, 2) = h(s),
where we denote by £59 the partial differential operator defined by

1 1 1)
L0 = —Lo+—=L1+Lps + VM + M + \/;Mg,

Ve
and these differential operators share the same definition as listed in (2.8 - 2.13)
except for Lpg which is defined by

0 2 02 0
Lo ) = o+ TW 2 o D)

Recall the approximating results from Fouque et al. [5]. They use a singular-regular
perturbation technique to derive an explicit formula for the price approximation:

Psﬁé(tvsvyaz) ~ PO(ta S,Z) - (T - t) (AE + 86) Po(t,S,Z)7

where the partial differential operator A% and B® are given by

02 o3
e _ £ .2 €3
A° = Vs 82 + Vs's 953"
1 0 0?
[ é
B _[VaJeraa]

and the relevant parameters are defined by

41) V5 = V—f; (2/)1 < f(y,z)%?;’z) S _ < A(y7z>6¢ég;, z) >),

(42) A — ply\/_ f(y,z) (y,z)

>

RV dy
43) V@ = % <I'>57,
1)
(4.4) VP = —ipgg <f>0o7.

2

The effective volatility & defined by 7%(2) =< f2(-,z) >, is a function of the slow
factor z. The function ¢(y, z) is a solution of the Poisson equation

Lod(y, z) = f2(y,2) = 7%(2)

up to an additional function depending on the variable z only, which will not affect
the operator A. The leading order price Py(t, s, z) solves

Lps(@(2)Po(t,s,2) =0
with the terminal condition
Py(T, s,2z) = h(s).
Similar to the one-factor stochastic volatility models presented in [4], the parame-
ters Vi, Vs, VY, and V) can be calibrated from the implied volatility surface. It is
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shown in [5] that the implied volatility /5% of an European option price is approx-
imated by

log(K
I ~ G + [a° +a’ (T — t)] 705( /5) + [b° + (T — t)]
where the z-dependent parameters a®, b, a®, and b° are defined by
5 8 8 <2
=t P=-U A (r-F

(4.5) Vijg = —(b5+a5 (7‘—%2))
(4.6) VP /g = —a3,
o i = o(vre(-2)).
(4.8) Ve = —at5,

are deduced. It is shown in [5] that one factor stochastic volatility models with
either a short time scale or a long time scale do not permit a good fit of the implied
volatility surface over a range of maturities. However two factor models and the
perturbation method summarized in this section give an excellent fit across strikes
and over a wide range of maturities.

2. Asian Option Prices Asymptotics. As shown in Section 3.2, the price
approximation for a fresh Asian option is given by

P876(05 S, Y, Z) = Su£,5(07 ¢7 Y, Z) ~ s (u0(07 ¢7 Z) + al,O(Ov ¢7 Z) + ’&O,l(oa wa Z)) .
The leading term ug(t, 1, z) solves

ou (n 1 _ aQUO
(4.9) < Lo>ug= ot + 3 (w - %—)20(2)2 992

with the terminal condition uo(T,,2) = h(y) — K1). The sum of 41,0 and g1
solves the source problem

:O’

5 0%y 3
awg + V3( )(qt* - 1/’)

s Ou —5 0%
(VO 9o >+ Vila- - Wawai) :

83’MO
o3

< EAQ > ('al,O + 17,071) = V;(z)(qt, — 1/))

(4.10)

+

where the parameters (73,73,70,71) are given in Section 3.2. Comparing to
the group parameters (Vi, Vs, V@, V) as defined in (4.1) - (4.4) in Section 4.1, we
obtain the linear relation:

Vo= V5=V, Vy=V5,

Vo=V + V¢, V=V
Therefore by calibrating the term structure of implied volatility built from European
call prices, one can easily deduce the parameters needed to approximate the price
of an Asian option.
The correction for the homogenized Asian option prices (4.9) need to be solved
numerically. We observe in equation (4.10) that the influence of the fast factor
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brings in the Greeks Gamma and Delta-Gamma in the source term, and the slow
factor brings in the Vega and Delta-Vega in the source term. In Section 2.1 we
have recalled that the approximated price of an Asian option, without reducing
dimensions, solves a pair of two-dimensional PDEs. After adopting the dimension
reduction technique, we derive that it is enough to solve a pair of one-dimensional
PDEs, and therefore reducing the computational efforts significantly.

5. Seasoned Asian Option Prices and Asian Put-Call Parity

The argument for continuously-sampled seasoned Asian option prices under

multiscale stochastic volatility model is identical to the one factor case discussed in
[3], Section 3.3 . We merely provide formulas here.
Suppose we are at the current time ¢, which is between the Asian option contract
starting date 0 and the maturity date T'. Denote by F; the o — algebra generated
by the three-dimensional process (Sy, Ya, Zy,0 < u < t). Conditioning on F, the
price of the Asian call option is given by at time ¢

1T !
B* e—T(T—t) (T / Sudu — K15y — Kg) | Fi
0

+
1 T
= E*{em(TY <T/ Sydu — K1 S; — K2> | Si=s,Ys =y, Ze =2, I; = I
0

1 T “ “ +
:ZE* {67“7' <_/ StdtKlSTK2> |S05,Y0y,Z02}
T T Jo

T ~ ~
= T j(;(lsl(07 5Y,25T, Kla KQ);

where we denote by 7 = T — ¢ the time to maturity, and the updated strikes K,
and Ko are defined by: K; = %Kl and Koy = %Kg + %I.
Similarly, for Asian put options, we obtained

T N N
?P;ut(oa S, YT, Kl;KQ) =

1 /7 A N\
T {e‘” <—/ StdtKISTK2> |SOSaYOy7ZOZ}-
T T Jo

A simple computation gives

%Pceall(oa 5, Y5 T, f(lv IA{Q) =+ %P;ut(ov 5, Y5 T, Kl; KQ)

1 /(7 - -
= ZE* {e” <—/ StdtKlSTK2> |S()S,Y0y,Z0,Z}
0

T T

sl—e™ T - T °
51) = ——-—+ —-Kijs— ="K
(5.1) T , +T 18— e 2,

which is the seasoned Asian put-call parity.

6. Numerical Computation

We have seen in Section 4 that the zero order price Py is of the form Py = Syuo,
where g solves equation (4.9) with an “effective” volatility 7(z).
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To illustrate with examples, we consider a continuously-sampled arithmetic aver-
age Asian option with a fixed strike price, i.e. K; = 0. Parameters are chosen
so that the effective volatility o(z) = 0.5, the risk-free interest rate » = 0.06, the
strike price Ko = 2, time to maturity 7 = 1, stock price s € [1,2.5], and the small
parameters are chosen as Vg = 70.01,7(15 = 70.00577‘; = —0.01 and V; = 0.004.
Numerical results for the homogenized price Py(0, s, z) are shown in Figure 1.

Zero order Option Price

Stock Price

FIGURE 1. Finite difference numerical solution for the effective
volatility price Py(0, s, z) of an arithmetic average Asian call option
with parameters o(z) = 0.5, = 0.06, K1 = 0, K3 = 2, and time to
maturity 7' = 1.

Next we compare the effect of the correction st ¢(0,, 2) in (3.17), due to the fast
scale only, with the effect of the combined correction s(%1,0(0,1, z) + o1 (0,1, 2))
in (4.10), due to both fast and slow scales. In Figure 2, we plot siiq,0 on the left
and s(fi1,0 + Go1) on the right. It is observed that the magnitude of the correction
is larger when both fast and slow scales are present with this choice of parameters.
Most importantly, as commented at the end of Section 4.1, it is necessary to incor-
porate the combination of the fast and slow volatility factors in order to obtained
Asian options prices which are consistent with the observed term structure of im-
plied volatility.

7. Conclusion

We have shown that the dimension reduction technique introduced in [8] can
be applied to multiscale stochastic volatility models for a class of arithmetic aver-
age. When the volatility contains two factors with well-separated time scales, the
singular-regular perturbation analysis can be applied such that the full term struc-
ture of implied volatility can be taken into account. The approximated price of an
Asian option is characterized by two one-dimensional PDEs (4.9, 4.10 ). Compared
to the usual two two-dimensional PDEs (2.14, 2.15) derived in [4], our results re-
duce significantly the computational efforts. Furthermore, the main parameters &,
Vg, ths’ V;, and V; needed in the PDEs are estimated from the historical stock
returns and the implied volatility surface. The procedure is robust and no specific
model of stochastic volatility is actually needed.
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First order Option Price

Stock Price Stock Price

FIGURE 2. Finite difference numerical solution for the corrections
to for an arithmetic average Asian call option price with param-
eters @ = 0.5,7 = 0.06,T = 1,Vy = —0.01,V; = —0.005,V, =
—0.01,V3 = 0.004. In practice the last four parameters would
have been calibrated from the observed implied volatility surface.
The correction on the left corresponds to the effect of the volatility
fast scale and the correction on the right is due to the combination
of fast and slow volatility time scales.
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