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第一節 自我融資的投資組合Self-Financing	Portfolio



動態交易策略Dynamic	Trading	Strategy	(1/2)

• 以下考慮一個歐式選擇權的訂價問題。

• 假設一個歐式選擇權的報酬(payoff)為 h(ST) ；

• ST 是到期時的標的資產價格；

• h(x)是報酬函數， h(x) =(x −K )+是買權函數，h(x) =(K −x)+ 是 賣權函數，K是履約價。

• 一個動態交易策略 ( dynamic trading strategy)，乃是指一組隨機過程 (αt, βt)，其中 αt
指該策略在時間t所需要持有股票（標的資產）的單位數，而 βt 指需要持有的債

券（無風險資產）單位數。假設時間 t 的債券價格為 ert，則此投資組合在時

間 t 的價值為 αtSt+βtert。

• 在到期⽇日 T 的時候，假設此投資組合的價值可以複製歐式選擇權的報酬 ，也

就是說 αTST+βTerT =h(ST) 。



de−rt(αtSt + βtert) =αtd(e−rtSt)

• 此外，我們也假設這個投資組合服從了⾃我融資(self-financing)	的條件，也就是
說此投資組合價值的變動，是完全由標的資產價格變動及債券價格變動所決定。
自我融資條件在數學 上以微分形式的表⽰示如下：

d	(αtSt+	βtert)	=	αtdSt+	rβtertdt

• 備註：數學上的微分 d	(αtSt+	βtert)	當然不必然滿足自我融資條件。

• 應⽤用伊藤公式 (Itô's formula)，不難證明若交易策略 αtSt + βtert 是一個⾃自
我融資投資組合，則它折現後的價值為：

動態交易策略Dynamic	Trading	Strategy	(2/2)



第二節 Black-Scholes	偏微分方程式



Black- Scholes PDE	(1/4)
• Black-Scholes	模型是假設一個簡單的股票與現金存款賬戶(money	market	account)

所構成的經濟體系，其中的股價St服從幾何布朗運動，

dSt=	μStdt +	σStdWt，

• 起始股價是 S0	=	x。

• 存款賬戶的價值 Bt服從一常微分⽅方程式 dBt=	rBtdt，B0	=	1， 因⽽ Bt=	ert。

• 無套利訂價理論 (no	arbitrage	pricing	theory)	是基於衍生品的價值 P(t,	St)	，必須

等同於某一投資組合的價值。



αt = ∂P
∂x (t, St)

Black- Scholes PDE	(2/4)
• 在 Black-Scholes	模型的假設之下，P(t,	St)	由持有 αt	單位的股票與 βt	單位的現金

賬戶所「複製(replication)」出來：

αtSt+	βtert =	P(t,	St)											(2-1)

• 否則存在套利利機會。在自我融資的假設條件下，應⽤伊藤引理於 式 (2-1)，

可以導出： (αtμSt	+	βtrert)	dt	+	αtσStdWt (2-2)

• 其中，所有關於 P 的偏微分都是在變數 (t,St =x) 上計算，將上 式中等號兩邊

dWt 的係數相等，我們可以得到：

(2-3)

= ( ∂P
∂t

+ μSt
∂P
∂x

+ 1
2 σ2S2

t
∂2P
∂x2 ) dt + σSt

∂P
∂x

dWt



∂P
∂t (t, St) + 1

2 σ2S2
t

∂2P
∂x2 (t, St) + rSt

∂P
∂x (t, St) − rP(t, St) = 0

Black- Scholes PDE	(3/4)
• 使得透過式 (2-1)得到

βt	=	(P(t,	St)	−	αtSt)e−rt												(2-4)

• 將 (2-3)	與 (2-4)	的結果代入 (2-2)	中，再讓等號兩邊 dt 項的係數相等可以得到：



ℒBS ( ⋅ ) = ( ∂
∂t

+ 1
2 σ2x2 ∂2

∂x2 + rx
∂
∂x

− r)( ⋅ )

Black- Scholes PDE	(4/4)

• 此⽅方程式對任何股價St	>	0及0	≤	t	<	T	都成立 （按：數學上嚴謹的說法是

almost	surely)。

• 因此，以變數 x	代表 St，選擇權價值函數 P(t,	x)	是以下的 Black-Scholes	偏微分

方程式(BS	Pricing	PDE)的解

ℒBSP	(t,	x)	=	0 (2-5)

• 且期末條件 (terminal	condition)	為 P(T,	x)	=	h(x)。其中的偏微分算子：



第三節 Black- Scholes	選擇權訂價公式



Black- Scholes	Option	Pricing	Formula
• 將一個歐式買權的價格，記為 CBS(t, x) 。根據式 (2-5)，它會滿足 ℒBSCBS(t, x) = 0, CBS(T, x)

= (x − K )+，其中 T 是到期日，K是履約價。事實上可以利用微分方程中變數變換的方式，

將此 Black-Scholes pricing PDE轉換成為一個熱傳導方程式，接著利用熱核(heat kernel)

對期末條件做卷積，就可以推出下列的封閉解。在此我們雖不提供上式的推導，但會

在下一節當中以機率的方式進行推導。歐式買權存在一個封閉解函數型式如下：

CBS(t,	x;	T,	K	)	=	x	𝒩(d1)	−	K	e−r(T−t)	𝒩(d2) (3-1)

d1 =
ln x

K + (r + σ2

2 )(T − t)

σ T − t
,

d2 = d1 − σ T − t,

!(d1) = 1
2π ∫

d1

−∞
e−u 2/2du .



買賣權價平關係Put-call	parity
• 買權與賣權存在一個有趣的關係，稱為買賣權價平關係(put-call parity) 

如下：

• 此決定性關係可由偏微分⽅程式

ℒBS(CBS −PBS)(t, x) = 0  

配合期末的邊界條件 (CBS−PBS)(T,x) =x −K 解出

(CBS − PBS)(t, x) = x − Ke−r(T − t)

CBS(t, x) − PBS(t, x) = x − Ke−r(T − t)



波動率的估計

• 注意到從 Black-Scholes 公式當中，只有一個無法直接觀察的參數，也就

是波動率σ，一般在實務上有兩種方法可以從市場上估計波動率：

1. 直接法：給定一組標的物的歷史價格，我們可以用
• Log return	的最大概似法，或是
• 先計算其報酬率，然後算出標準差：該量稱之為「歷史波動率(historical	volatility)」。

本書第四章第三節有詳細的介紹。

2. 隱含法：給定選擇權市場中，關於某到期日T與某履約價K	之歐式買權（或
賣權）的成交價格，利用Black-Scholes	的評價公式反推出σ，稱作
「隱含波動率(implied	volatility)	」，通常也記做σimp(T,	K	)。



第四節 Feynman-Kac 公式：BS	PDE的機率表示式



Feynman-Kac 公式：BS	PDE	的機率表示式
Probabilistic	Representation	of	BS	PDE	(1/2)
• 前幾節所推導的歐式選擇權價值函數，是用Black-Scholes	PDE	的解來表達。這

種表達式，對缺乏理工背景的⼈士可能頗不友善。所幸的是，透過 Feynman-
Kac 公式，可以將 Black- Scholes	PDE	的解，用機率論中的「條件期望」等義地
表達出來。機率的表達式的優點：
• 符合資產訂價中「折現」的 概念；
• 具有統一架構，可以對更多不同形式的選擇權進行訂價。

• 選擇權價值函數的機率表達式，主在闡述以下的訂價原則：
• 「在風險中立的機率測度下，折現後報酬的條件期望即為選擇權的價格」。
• 這種描述選擇權價格為「折現後報酬的條件期望」，深受金融界的認可，唯一要特

別注意的是，該計算必須在「風險中立的機率測度」之下。



• 定理 4.1： (Feynman-Kac Formula)	給定隨機微分方程 d	Xt=	β(t,	Xt)dt	+	γ(t,	Xt)	dWt，且
h(y)	是報酬函數。對一固定時間T， 由條件期望所定義出來的函數

g(t,	x)	=	E{e−r(T	 −	 t)h(XT)	| Xt=	x}，

• g(t,	x)	會滿足以下的 PDE

(4-2)	

• 其中的期末邊界條件為 g(T, x) = h(x)。

• 此外，如果函數 g(t, x) 滿足了以上的偏微分方程式(4-2) ， 它也可以被表示成條件期

望的形式，如式(4-1)。

Feynman-Kac 公式：BS	PDE	的機率表示式
Probabilistic	Representation	of	BS	PDE	(2/2)

∂g
∂t

(t, x) + γ2(t, x)
2

∂2g
∂x2 (t, x) + β(t, x) ∂g

∂x
(t, x) − rg(t, x) = 0



風險中立評價法(1/2)
• 我們已經在本章第 二節中，利用無套利方法推導出歐式選擇權的價值函數，它

滿足了 Black-Scholes	訂價 PDE

• 期末條件為 P(T,	x)	=	h(x)。若套用以上的 Feynman-Kac定理， 則可以用一個條

件期望來刻劃 PDE	的函數解 P(t,	x)	，

P(t,	x)	=	E	⋆ {e−r(T−t)h(ST	)	∣ St	=	x}，

• 其中股價的動態行為滿足 Black-Scholes	模型

∂P(t, x)
∂t

+ σ2x2

2
∂2P(t, x)

∂x2 + rx
∂P(t, x)

∂x
− rP(t, x) = 0

dSt =r St dt +σ St d Wt ⋆ (4-3)



• 為了強調機率（測度）的獨特性，符號上使用了星號⋆來代表「風險中
立(risk neutral) 」的機率測度。金融上來說，風險中立意指股價的成長
率會與無風險利利率一致。

• 由式（4-3）可立刻看出，此時 Black-Scholes 模型是定義在一個風險中
立的機率測度之下。

風險中立評價法(2/2)



推導 Black-Scholes	買權公式

CBS(t,	x)	=	E⋆ {e−r(T−t)	(ST	−	K)
+	
∣ St	=	x}

• 其中股價服從了 ，

• 則可將上式寫成積分的形式

• 這是利用了指數函數是遞增的性質，以及

• 也就是 ，透過計算即可得到結果。

ST = Ste(r−σ2/2)(T−t)+ σ T − tZ Z ∼ "(0,1)

CBS(t, x) = ∫
∞

z*
e−r(T−t) (xe(r−σ2/2)(T−t)+ σ T −tz −K) 1

2π
e−z2/2dz

K = xe(r−σ2/2)(T−t)+ σ T − tz*

z* = ln(K /x) − (r − σ2 /2)(T − t)
σ T − t



第五節 希臘字母與風險管理



希臘字母Greek	Letters

• 為了對選擇權等風險性資產進⾏有效的風險控管，市場上非常重視敏感度分析

(sensitivity analysis)；也就是選擇權價值函數對於各樣的變數（例如時間t，標的

物價格x）與各樣的參數（例如無風險利利率 r，波動率 σ）的導數，並將這些

偏微分統稱 為「希臘字母(Greek letters)」。

• 譬如說，∂Ｐ/ ∂t 叫做 (Theta)，∂Ｐ/ ∂x 叫做 (Delta) ，∂2Ｐ/ ∂x2 叫做 (Gamma) ，

∂Ｐ/ ∂r 叫做 (Rho) ，∂Ｐ/ ∂σ 叫做 (Vega)，其中有趣的是，Vega 非屬原來真正

的希臘字母，但由於在金融實務中常用，也就被納入金融工程中所謂的「希臘

字母」。



Black-Scholes	公式中的希臘字母
• 以買權的價值函數為例，對賣權而言，其希臘字母僅需再參考式 (3-2) 修正後

即可。

Θ ( Theta )  =   ∂P
∂t

  =   − xσ
2 T − t

%′�(d1) − Kre− r(T− t)%(d2)
Δ ( Delta )  =   ∂P

∂x
= #(d1)

Γ ( Gamma )  =   ∂2P
∂x2 =  

#′�(d1)
xσ T − t

ρ ( Rho )  =   ∂P
∂r

= (T − t)Ke− r(T− t)$(d2)
V ( Vega )  = ∂P

∂σ
= x T − t $′�(d1)



對密度函數的微分算Greek	letters
• 一般歐式選擇權的希臘字母：

Δ = e−rT

S0σT
E⋆ [Φ (ST) W ⋆

T ]

V = e−rT

σT
E⋆ [Φ (ST) (W ⋆2

T − σT W ⋆
T − T)]

Γ = e−rT

S2
0 σ T

E⋆ Φ (ST) ( W ⋆2
T

σT
− W ⋆

T − 1
σ )



風險管理的應用
• 一投資⼈欲投資某股票價格 S，以及它的買權價格 C ，賣權價格P，且部位分

別是 αS 、αC 、αP。此投資組合的總價值就是：

• 則此投資組合的：

W = αS ×S + αC ×C + αP ×P 。

delta 記做

gamma 記做

vega 記做

ΔW = αS + αC × ∂C
∂S

+ αP × ∂P
∂S

ΓW = αC × ∂2C
∂S2 + αP × ∂2P

∂S2

vW = αC × ∂C
∂σ

+ αP × ∂P
∂σ



第六節 遠期與期貨Forward and Futures



遠期Forward
• 遠期契約Forward	Contract
• 規範了交易雙方在不須支付任何費用之下，可以用一個事前約定好了的價格 K，在

未來的某一個時間點 T，來買或賣某個資產。本書的第一章中有深入地介紹。

• 對遠期契約的買方來說，該契約的報酬函數為 ST −ForS (t,T)。由於進入或持有該

契約不須支付任何代價，因此訂價方程式成立：

• 其中 Dt,T = e−r(T−t) 是從時間 t 到 T 的折現因子，當無風險利率 是常數 r。由資產在

風險中立測度下 martingale 的性質

• 以及債券 B(t, T ) = e−r(T−t) 的定義，可得 ForS(t, T) = St /B(t, T)。

E⋆ [Dt,T (ST − ForS(t, T )) ∣ St] = 0

E⋆ [D0,T ST ∣ St] = D0,t St



• 期貨（Futures）

• 遠期契約提供了買賣雙方互換價格（或稱作市場風險(market	 risk)）的機會，它通常
在店頭市場 (over	the	counter,	OTC)		中交易。

• 此類契約的立意雖好，但無法規避買賣雙方在履約之前潛在的信用風險 (credit	risk)。
市場就發展出集中交易所 (ex-change)以嚴格限定參與市場的會員投資機構，並且用
「保證金」機制 (margin	mechanism)	來減少信用風險，而這種遠期契約就稱之為期
貨。

期貨Futures(1/2)



期貨Futures(2/2)
• 期貨契約的價值定義如下

• 當無風險利率是常數時，遠期與期貨的價值會一樣， 這是由於利用折現後的標
的物價格是一個 martingale，可導出：

• 當利率是隨機的時候，上式雖不再成立，不過遠期與期貨的價差 (forward-
futures	spread)	卻能成為衡量債券與現貨相關性的指標，這是由於

• 其中的 S0 = E⋆ [D0,TST ∣ S0] ，是用到了本章範例 4.2 的一個推廣結果：折現後股
價，在風險中立機率測度下，是一個 martingale。

Fu tS(t, T ) = E⋆ [ST |St]

Fu tS (t, T ) = erT E⋆ [e−rTST |St] = St

B(t, T )

ForS (0,T ) − Fu tS (0,T ) = S0
E⋆ [D0,T]

− E⋆ [ST]
= 1

E⋆ [D0,T] (E⋆ [D0,T ST] − E⋆ [D0,T] E⋆ [ST])
= 1

E⋆ [D0,T]
Cov (D0,T, ST)

S0 = E⋆ [D0,TST ∣ S0]


