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Abstract

This paper proposes a fast, efficient and robust way to compute
the prices of compound options such as the popular call-on-call options
within the context of multiscale stochastic volatility models. Recent
empirical studies indicate the existence of at least two characteristic
time scales for volatility factors including one highly persistent fac-
tor and one quickly mean-reverting factor. Here we introduce one
relatively slow time scale and another relatively fast time scale, with
respect to typical time to maturities, into our multiscale stochastic
volatility models. Using a combination of singular and regular per-
turbations techniques we approximate the price of a compound option
by the price under constant volatility of the corresponding option cor-
rected in order to take in account the effects of stochastic volatility. We
provide formulas for these corrections which involve universal parame-
ters calibrated to the term structure of implied volatility. Our method
is not model sensitive, and the calibration and computational efforts
are drastically reduced compared with solving fully specified models.
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1 Introduction

A compound option, or an option on option, gives the holder the right, but
not the obligation to buy (long) or sell (short) the underlying option. For
market participants, compound options are known to be very sensitive to
the volatility changes. For instance Brenner et al [2] introduced an instru-
ment, option on straddle, to hedge volatility risk since at-the-money forward
straddle is a traded asset in the market and its value is mainly affected by
the change in volatility. Compound options are also used to evaluate Ameri-
can put options (see for instance [9]). When the volatility is constant, Geske
[8] developed a close-form solution for the price of a vanilla European call
on a European call.

In this paper, we explore the evaluation problem for compound options
within the context of stochastic volatility. In this environment, payoff func-
tions of compound options do depend on the driving volatility level. This
feature, volatility dependence in the terminal condition, is very different
from the case of European-style options, in which only underlying risky as-
sets are variables in payoff functions. It also explains the reason for the
sensitivity of compound options to volatility. Despite the complex behav-
ior of volatility under the pricing measure and the fact that volatility is
not directly observed from the market, evaluating compound options by nu-
merical partial differential equation (PDE) methods can be problematic, at
least very time consuming. For instance in the case of two-factor stochastic
volatility models, one has to specify the full stochastic volatility model, then
solve two iterative three-dimensional PDEs in order to obtain the price of
an option-on-option. The first PDE gives the underlying option price and
the second PDE gives the compound option price.

Recent empirical studies document that two-factor stochastic volatil-
ity models with well-separate characteristic time scales can produce stylized
facts like the observed kurtosis, fat-tailed return distribution and long mem-
ory effect. See [1], [4] and [12] for detailed discussions. Hence we consider
two-factor stochastic volatility models characterized by one relatively slow
time scale and another relatively fast time scale with respect to typical time
to maturities. This setting of models allow us to use a combination of singu-
lar and regular perturbation methods, first proposed by Fouque et al [6, 7],
to derive price approximations to compound options. This technique pro-
vides a simple parametrization of the observed implied volatilities in terms
of Greeks. In Section 3, we derive an approximated payoff function for a
call-on-call based on the expansion of a price approximation to the under-
lying call option price. Using the close-form solution of a call-on-call [8], we
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show that only one one-dimensional PDE needs to be solved. All the param-
eters we need to compute the approximated price can be easily calibrated
the implied volatility surface without the full specification of a particular
stochastic volatility model. Thus, this article describes a fast, efficient and
robust procedure to approximate compound option prices by taking the ob-
served implied volatility skew into account. It is compared with solving two
three-dimensional PDEs in the full specified models for a call-on-call price.
The accuracy of the approximation is provided. This methodology can be
easily generalized to European call on put, put on call, put on put, and
the other structured product like options on straddle, etc [10]. As men-
tioned above, payoffs of compound options do depend on volatility level in
a stochastic volatility environment. Up to the first order price approxima-
tion obtained from our perturbation techniques, only a constant volatility
defined in (14) is actually used. Hence, compound options are weakly de-
pendent on driving volatility level which can be removed at the first order
of approximation.

This paper is organized as follows. Section 2 contains the introduction of
multiscale stochastic volatility models. Compound options and their price
approximations are presented in Section 3. Calibration of relevant parame-
ters from the term structure of implied volatility is discussed in Section 4.
Numerical illustrations are presented in Section 5. A discussion on param-
eters reduction is presented in Section 6.

2 Multiscale Stochastic Volatility Models

We consider a family of stochastic volatility models (St, Yt, Zt), where St is
the underlying price, Yt evolves as an Ornstein-Uhlenbeck (OU) process, as a
prototype of an ergodic diffusion, and (Zt) follows another diffusion process.
To be specific, under the physical probability measure P , our model can be
written as

dSt = µStdt + σtStdW
(0)
t , (1)

σt = f(Yt, Zt),

dYt = α(m− Yt)dt + ν
√

2α dW
(1)
t ,

dZt = δc(Zt)dt +
√

δ g(Zt)dW
(2)
t ,

where
(

W
(0)
t ,W

(1)
t ,W

(2)
t

)

are standard Brownian motions correlated accord-

ing to the following cross-variations:

d〈W (0),W (1)〉t = ρ1dt, (2)

3



d〈W (0),W (2)〉t = ρ2dt,

d〈W (1),W (2)〉t = ρ12dt,

with constants |ρ1| < 1, |ρ2| < 1 and |ρ12| < 1. The stock price St is
governed by a diffusion with a constant rate of return µ and the random
volatility σt. One driving volatility process Yt is mean-reverting around its
long run mean m, with a rate of mean reversion α > 0, and a “vol-vol”
ν
√

2α corresponding to a long run standard deviation ν. Here we choose to
write an OU process with long run distribution N (m, ν2) as a prototype of
more general ergodic diffusions. Another driving volatility process Zt is a
general diffusion which evolves on the time scale 1/δ. We assume that the
coefficients c and g are smooth and bounded. The volatility function f in
(1) is assumed to be bounded and bounded away from 0.

In order to incorporate two characteristic volatility time scales, namely
one short (fast) and another long (slow), into the stochastic volatility models,
we assume that the rate of mean-reversion α is large and that δ is small.
These two characteristic time scales 1/α and 1/δ are meant to be relatively
short or long by comparing with time to typical maturities of contracts. To
perform asymptotic analysis, we introduce a small parameter 0 < ε << 1
such that the rate of mean reversion defined by α = 1/ε becomes large. To
capture the volatility clustering behaviors, we assume ν to be a fixed O(1)
constant.

Under the risk-neutral probability measure P ∗, it follows from Girsanov
theorem that our model can be written as

dSt = rStdt + f(Yt, Zt)StdW
(0)∗
t , (3)

dYt =

(

1

ε
(m− Yt)−

ν
√

2√
ε

Λ1(Yt, Zt)

)

dt +
ν
√

2√
ε

dW
(1)∗
t ,

dZt =
(

δc(Zt)−
√

δg(Zt)Λ2(Yt, Zt)
)

dt +
√

δg(Zt)dW
(2)∗
t ,

where W
(0)∗
t , W

(1)∗
t , and W

(2)∗
t are standard Brownian motions with the

same covariations as in (2). The small parameter ε corresponds to the the
fast scale and large parameter δ corresponds to the slow scale. The combined
market prices of volatility risk Λ1(y, z) and Λ2(y, z) are assumed bounded
such that the joint process (St, Yt, Zt) is Markovian. The risk-free interest
rate r is assumed to be constant. Due to the presence of the combined
market price of risk, there exists a (Λ1,Λ2)-dependent family of equivalent
risk-neutral measures. However, we assume that the market chooses one
measure through (Λ1,Λ2).
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3 Price Approximation to Compound Options

In the context of multiscale stochastic volatility environment (3), we consider
a compound option to be a European option defined on another European
option. In Section 3.1 we first recall results by Fouque et al. [6] on price
approximations to the underlying European options and the accuracy result.
Then in Section 3.2 we study the pricing of compound options when payoffs
are smooth with bounded derivatives. For the case of non-smooth payoffs of
compound options such as call-on-call options, their price approximations
are derived in Section 3.3.

3.1 Underlying Option Price Approximation

The no arbitrage European option price P ε,δ under assumptions of the
stochastic volatility model (3), is defined by

P ε,δ(t, x, y;T, h) = E∗
t,x,y,z{e−r(T−t)h(ST )}, (4)

where the payoff h(x) is assumed to be smooth with bounded derivatives
and we denote by E∗

t,x,y,z{·} the conditional expectation E∗{· | St = x, Yt =
y, Zt = z} on the current time t, the stock price St = x, the driving volatil-
ity level (Yt = y, Zt = z) . Based on a combination of singular and regular
perturbation methods [6], the accuracy result of the approximation

P ε,δ(t, x, y, z;T, h) −
(

P0(t, x;T, h; σ̄(z)) + P̃1(t, x;T, h; σ̄(z))
)

= O(max{ε, δ}) (5)

can be obtained in the point-wise sense while ε and δ are small enough. The
zero order term P0 is the homogenization of 4 in y under a small expansion
in z; namely, P0 is regarded as a homogenized Black-Scholes price with the
effectively-froze constant volatility σ̄(z), which will be defined in (14). The
first order correction P̃1 is of order

√
ε or

√
δ. Notice that in the price

approximation, P0 + P̃1 there is no dependence on the fast varying volatility
level y and the slowly varying volatility level z appears in the volatility σ̄(z)
as a parameter. Using short notations, P0(t, x; σ̄(z)) and P̃1(t, x; σ̄(z)) solve
the following two PDEs with the constant volatility σ̄(z), respectively,

{

LBS(σ̄(z))P0(t, x; σ̄(z)) = 0
P0(T, x) = h(x),

(6)

{

LBS(σ̄(z))P̃1(t, x; σ̄(z)) = −
(

Aε + 2Bδ
)

P0(t, x; σ̄(z))

P̃1(T, x) = 0.
(7)
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The Black-Scholes differential operator LBS(σ̄)(z) is defined in (21), and the
other operators are defined as follows:

Aε = V ε
2 x2 ∂2

∂x2
+ V ε

3 x
∂

∂x

(

x2 ∂2

∂x2

)

, (8)

Bδ = V δ
0

∂

∂σ
+ V δ

1 x
∂

∂x

(

∂

∂σ

)

. (9)

The universal parameters are defined by

V δ
0 = −

√
δ

2
g(z)〈Λ2(y, z)〉σ̄′(z), (10)

V δ
1 =

√
δ

2
ρ2g(z)〈f(y, z)〉σ̄′(z), (11)

V ε
2 =

ν
√

ε√
2
〈Λ1(y, z)

∂φ(y, z)

∂y
〉, (12)

V ε
3 = −ν

√
ε√
2

ρ1〈f(y, z)
∂φ(y, z)

∂y
〉. (13)

Parameters V δ
0 and V δ

1 (resp. to V ε
2 and V ε

3 ) are small of order
√

δ (resp.
to
√

ε). The parameters V δ
0 and V ε

2 reflect the effect of the market prices
of volatility risk (Λ1,Λ2). The parameters V δ

1 and V ε
3 are proportional to

the correlation coefficients ρ2 and ρ1 respectively. The bracket 〈·〉 denotes
an expectation with respect to the invariant distribution, N (m, ν 2), of the
OU-process with infinitesimal generator L0 defined in (19). That is for a
bounded function l, we define

〈l(·)〉 :=
1√

2πν2

∫ ∞

−∞
l(y)e−

(y−m)2

2ν2 dy.

The z-dependent effective volatility σ̄(z) is defined by

σ̄(z)2 = 〈f(·, z)2〉. (14)

In practice σ̄(z)2 is estimated from historical stock returns over a period of
time of order one (shorter than δ−1) so that the z-dependence is automati-
cally incorporated in the estimate. The function φ(y, z) is a solution of the
Poisson equation

L0φ(y, z) = f 2(y, z)− σ̄2(z)

up to an additional function depending on the variable z only, which will
not affect the operator Aε. Note that there exists an explicit expression for
P̃1 [6]:

P̃1(t, x; σ̄(z)) = (T − t)
(

Aε + Bδ
)

P0(t, x; σ̄(z)). (15)
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3.2 Compound Options with Smooth Payoffs

Considering a two-factor stochastic volatility environment (3), the payoff for
a compound option is given as:

h1

(

P ε,δ(T1, ST1 , YT1 , ZT1 ;T2, h2)
)

, (16)

where ST1 is the value of the stock underlying the underlying option P ε,δ,
(YT1 , ZT1) is the driving volatility level at the expiry date of the compound
T1, the expiry date of the underlying option is T2, and the function h2 is the
payoff for the underlying option. Here payoffs h1(x) and h2(x) are assumed
to be smooth with bounded derivatives.
The no arbitrage price of a compound option is defined by a conditional
expectation under the pricing measure P ∗

U ε,δ(t, x, y, z;T1, T2, h1, h2)

= E∗
t,x,y,z

{

e−r(T1−t)h1

(

P ε,δ(T1, ST1 , YT1 , ZT1 ;T2, h2)
)}

. (17)

Regarding the composite function h1 ◦ P ε,δ as a new payoff, the com-
pound option defined in (17) becomes a nontraditional European option
whose payoff depend on forward volatility level (YT1 , ZT1) explicitly. Hence
compound options are inherently volatility-dependent in payoffs such that
they are sensitive to volatility changes. This feature is very different from
traditional European options whose payoffs do not depend on volatility level
at all.

From an application of the Feynman-Kac formula, the no-arbitrage com-
pound option price U ε,δ solves a three-dimensional parabolic type PDE with
a terminal condition:

Lε,δU ε,δ = 0, (18)

U ε,δ(T1, x, y, z) = h1(P
ε,δ(T1, x, y, z)).

The partial differential operator Lε,δ is defined by

Lε,δ =
1

ε
L0 +

1√
ε
L1 + L2 +

√
δM1 + δM2 +

√

δ

ε
M3

and each component operator is given by

L0 = (m− y)
∂

∂y
+ ν2 ∂2

∂y2
, (19)
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L1 =
√

2ν

(

ρ1xf(y, z)
∂2

∂x∂y
− Λ1(y, z)

∂

∂y

)

, (20)

L2(f(y, z)) =
∂

∂t
+

f2(y, z)

2
x2 ∂2

∂x2
+ r

(

x
∂

∂x
− ·
)

, (21)

M1 = −g(z)Λ2(y, z)
∂

∂z
+ ρ2g(z)f(y, z)x

∂2

∂x∂z
, (22)

M2 = c(z)
∂

∂z
+

g(z)2

2

∂2

∂z2
, (23)

M3 = ν
√

2ρ12g(z)
∂2

∂y∂z
. (24)

Based on the price approximation in (5) and assumptions on h1, a Taylor
expansion of the payoff defined in (17)

h1

(

P ε,δ(T1, ST1 , YT1 , ZT1 ;T2, h2)
)

= h1 (P0(T1, ST1 ;T2, h2; σ̄(ZT1))) (25)

+h
′

1 (P0(T1, ST1 ;T2, h2; σ̄(ZT1))) P̃1(T1, ST1 ;T2, h2; σ̄(ZT1)) +O(max{ε, δ})

is obtained. From this payoff expansion, it is readily observed that the first
two terms are not dependent on the fast varying volatility level YT1 but
only on slowly varying level ZT1 . This fact characterizes the long memory
property of compound options because that ZT1 varies little from its starting
point Zt = z while assuming the large time scale 1/δ >> T1 − t. Therefore,
up to the accuracy of orders ε and δ, the compound option price can be
approximated by two conditional expectations

U ε,δ(t, x, y, z;T1, T2, h1, h2) (26)

≈ E∗
t,x,y,z

{

e−r(T1−t)h1 (P0(T1, ST1 ;T2, h2; σ̄(ZT1)))
}

+E∗
t,x,y,z

{

e−r(T1−t)h
′

1 (P0(T1, ST1 ;T2, h2; σ̄(ZT1))) P̃1(T1, ST1 ;T2, h2; σ̄(ZT1))
}

.

Our goal here is to further lay out asymptotics for this compound option
price approximation. As a matter of fact, the presence of slowly varying
component ZT1 in payoffs h1 ◦ P0 and h′1(P0)P̃1, does not affect the singu-
lar and regular perturbation analysis shown in [6]. Indeed it is obtained
straightforwardly in [5] that the leading order term in the expansion (26)

E∗
t,x,y,z

{

e−r(T1−t)h1 (P0(T1, ST1 ;T2, h2; σ̄(ZT1)))
}

(27)

has the following expansion

U0(t, x;T1, T2, h1, h2; σ̄(z)) + Ũ1(t, x;T1, T2, h1, h2; σ̄(z)) +O(max{ε, δ}),
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where the first term U0 solves the Black-Scholes PDE with the effective
volatility σ̄(z) and a terminal condition

LBS(σ̄(z))U0(t, x;T1, T2, h1, h2; σ̄(z)) = 0 (28)

U0(T1, x;T1, T2, h1, h2; σ̄(z)) = h1 (P0(T1, x;T2, h2; σ̄(z))) .

It is worthy to observe that U0 depends on z through the volatility σ̄(z);
namely, σ̄(z) is only a parameter in the problem that defines U0. The second
term Ũ1 solves the same PDE with a source

LBS(σ̄(z))Ũ1(t, x; σ̄(z)) = −
(

Aε + 2Bδ
)

U0(t, x; σ̄(z)),

but its terminal condition is zero. Based on the formula (15),

Ũ1(t, x;T1, T2, h1, h2; σ̄(z)) = (T1 − t)
(

Aε + Bδ
)

U0

is obtained.
Next we derive an approximation to the second conditional expectation

in the expansion (26)

E∗
t,x,y,z

{

e−r(T1−t)h
′

1 (P0(T1, ST1 ;T2, h2; σ̄(ZT1))) P̃1(T1, ST1 ;T2, h2; σ̄(ZT1))
}

.(29)

Since h′1(P0)P̃1 is of order
√

ε or
√

δ and we are only interested in the ap-
proximation up to O(

√
ε,
√

δ), it is enough to take the homogenization of
(29) in y under a small expansion in z. As a consequence, the conditional ex-
pectation (29) is approximated by only its homogenization Ũ2, which solves

LBS(σ̄(z))Ũ2(t, x;T1, T2, h1, h2; σ̄(z)) = 0

Ũ2(T1, x;T1, T2, h1, h2; σ̄(z)) = h′1 (P0(T1, x; σ̄(z))) P̃1(T1, x; σ̄(z))

Because h1 and h2 are smooth with bounded derivatives and P̃1 is of order√
ε or

√
δ, it is easy to generalize the accuracy result in (5) to claim that

the approximation Ũ2 is valid within an error O(max{ε, δ}). We therefore
conclude the following theorem.

Theorem 3.1 When the payoffs h1 and h2 are smooth and have bounded

derivatives, for fixed (t, x, y, z) and t < T1 < T2, there exists a constant

C > 0 such that
∣

∣

∣U ε,δ(t, x, y, z;T1, T2, h1, h2)−
(

U0 + Ũ1 + Ũ2

)

(t, x;T1, T2, h1, h2; σ̄(z))
∣

∣

∣

≤ C max{ε, δ,
√

εδ}
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To summarize, we derive the price approximation for a compound option

U ε,δ(t, x, y, z;T1, T2, h1, h2) ≈ Û(t, x;T1, T2, h1, h2; σ̄(z)),

where we define
Û = U0 +

(

Ũ1 + Ũ2

)

.

The homogenized compound option price U0 solves the one-dimensional
Black-Scholes PDE with a constant volatility σ̄(z)

LBS(σ̄(z))U0(t, x;T1, T2, h1, h2; σ̄(z)) = 0
U0(T1, x;T1, T2, h1, h2; σ̄(z)) = h1 (P0(T1, x;T2, h2; σ̄(z)))

(30)

the first correction Ũ1 has an explicit solution

Ũ1(t, x;T1, T2, h1, h2; σ̄(z)) = (T1 − t)
(

Aε + Bδ
)

U0(t, x; σ̄(z)) (31)

and the second correction solves another one-dimensional Black-Scoles PDE
with nontrivial terminal condition

LBS(σ̄(z))Ũ2(t, x;T1, T2, h1, h2; σ̄(z)) = 0

Ũ2(T1, x;T1, T2, h1, h2; σ̄(z)) = h′1 (P0(T1, x; σ̄(z))) P̃1(T1, x;T2, h2; σ̄(z))

= (T2 − T1)h
′
1 (P0(T1, x; σ̄(z)))

(

Aε + Bδ
)

P0(T1, x; σ̄(z))

(32)

From this summary of computational procedure, we conclude that under
the stochastic volatility model (3), compound options are weakly dependent
on the driving volatility level. In contrast to European options, payoffs for
compound options shown in (25) indeed depend on the driving volatility level
(YT1 , ZT1). However, the perturbation analysis through a Taylor expansion
on the payoff reveals that the first order approximations shown in (30,31,32)
to a compound option price merely depend on the constant σ̄(z) at the level
of volatility. The reason is that volatility changes are embedded into the
underlying European option price changes. Hence up to the first order price
approximation the reduction from a random volatility to a constant volatility
explains the weak dependence of compound options on volatility changes. In
fact, there are strongly volatility-dependent derivatives traded in the market
whose payoffs are directly defined by a running sum of realized volatility or
variance [3]. We refer to [10, 11] for deriving price approximations based
on perturbation analysis, in which additional effects such as local times and
boundary layers needed to be taken in to account.
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3.3 Compound Options with Non-Smooth Payoffs: Call-on-

Call

We investigate a typical European style compound option: call-on-call,
which specifies payoff functions in (17) as

h1(x) = (x−K1)
+

and
h2(x) = (x−K2)

+.

Both call payoffs h1 and h2 are not smooth at the strikes x = K1 and x = K2

respectively. To emphasize these call payoffs we substitute the notations h1

and h2 by K1 and K2 below. For example, the call-on-call option prices with
strike prices K1 and K2 at expiry dates T1 and T2 respectively, is denoted
by

U ε,δ(t, x, y, z;T1, T2,K1,K2)

= E∗
t,x,y,z

{

e−r(T1−t)
(

P ε,δ(T1, ST1 , YT1 , ZT1 ;T2,K2)−K1

)+
}

. (33)

where the underlying call option prices is denoted by

P ε,δ(T1, x, y, z;T2,K2) = E∗
T1,x,y,z{e−r(T2−T1)(ST2 −K2)

+}, (34)

It is shown in [6] that the expansion accuracy for the underlying European
call option is given as

P ε,δ(T1, x, y, z;T2,K2)−
(

P0(T1, x;T2,K2; σ̄(z)) + P̃1(T1, x;T2,K2; σ̄(z))
)

= O(max{ε| log ε|,
√

εδ, δ}) (35)

in the point-wise sense.
For the call-on-call option, it is observed that a Taylor expansion shown

in (25) does not hold because the kink of h1 at K1. To resolve this, we
regularize the piecewise smooth payoff h1 by the price of a European call
option with time to maturity ∆, i.e.

h1(x) = (x−K)+ ≈ h∆
1 (x, z) := P (T1 −∆, x;T1,K1; σ̄(z)),

where h∆
1 (x, z) is a smooth function with bounded derivatives in x given any

z. Consequently, the regularized compound option price is defined as

U ε,δ
∆ (t, x, y, z;T1, T2,K1,K2) = U ε,δ(t, x, y, z;T1, T2, h

∆
1 ,K2)

= E∗
t,x,y,z

{

e−r(T1−t)h∆
1 (P0(T1, ST1 ;T2,K2; σ̄(ZT1))

+P̃1(T1, ST1 ;T2,K2; σ̄(ZT1)) +O(ε| log ε|+ δ +
√

εδ)
)}

,
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where the second equality is from (35). Using a Taylor expansion in h∆
1 at

P0 and P̃1 being of order
√

ε, the regularized price becomes

U ε,δ
∆ (t, x, y, z;T1, T2;K1,K2) = E∗

t,x,y,z{e−r(T1−t)h∆
1 (P0(T1, ST1 ; σ̄(ZT1)))}

+E∗
t,x,y,z

{

e−r(T1−t)
(

(h∆
1 )′(P0(T1, ST1 ; σ̄(ZT1))

)

P̃1(T1, ST1 ; σ̄(ZT1))
}

+O(ε| log ε|+ δ +
√

εδ)

Since payoffs h∆
1 ◦ P0 and

(

h∆
1

)′
(P0) P̃1 in this expansion are smooth with

bounded derivatives, as presented in Section 3.2, the first two conditional
expectations in the price expansion can be further approximated by ∆-
dependent functions, say U∆

0 + Ũ∆
1 , and Ũ∆

2 respectively within an error of
O(max{ε, δ}).

Intuitively, as ∆ goes to zero, we expect that U ∆
0 , Ũ∆

1 , and Ũ∆
2 will

converge pointwisely to U0, Ũ1, and Ũ2 respectively, where these U ′s are
defined in (36), (37), and (38). The proof of the accuracy result for the price
approximation, U0 + Ũ1 + Ũ2, to a call-on-call option price, U ε,δ defined in
(33), requires to control bounds for the following terms

|U ε,δ −
(

U0 + Ũ1 + Ũ2

)

| ≤ |U ε,δ − U ε,δ
∆ |+ |U ε,δ

∆ −
(

U∆
0 + Ũ∆

1 + Ũ∆
2

)

|

+|U0 − U∆
0 |+ |Ũ1 + Ũ2 −

(

Ũ∆
1 + Ũ∆

2

)

|.

The details of deriving these bounds reply on expressions of Greeks of a call-
on-call, successively derivatives-in-x of a call on call, and suitable estimates
on the growth at infinity. To limit discussions here we simply outline some
results in [5] where a general piecewise smooth payoffs will be discussed. The

first term |U ε,δ − U ε,δ
∆ | is of O(∆) and we will choose ∆ = ε. The second

term is of O(max{ε, δ}) by following Theorem 3.1. The third term |U0−U∆
0 |

is of O(∆). The last term is of order O(ε| log ε| + δ +
√

εδ). Consequently
the following accuracy result for a call-on-call option price can be obtained:

Theorem 3.2 When the payoffs h1 and h2 are typical calls of a compound

option with the strikes K1 and K2 respectively, for fixed (t, x, y, z) and t <
T1 < T2, there exists a constant C > 0 such that

∣

∣

∣U ε,δ(t, x, y, z;T1, T2,K1,K2)−
(

U0 + Ũ1 + Ũ2

)

(t, x;T1, T2,K1,K2; σ̄(z))
∣

∣

∣

≤ C max{ε | log ε |, δ,
√

εδ}

We summarize computational procedures for the price approximation of
a call-on-call option. Based on the result of Geske [8], U0(t, x; σ̄(z)) has a

12



close-form solution

U0(t, x;T1, T2,K1,K2; σ̄(z)) = xN2(g + σ̄(z)
√

τ1, k + σ̄
√

τ2; ρ)
−K1e

−rτ2N2(g, k; ρ) −K2e
−rτ1N1(g)

(36)

Parameters are defined as

τ1 = T1 − t,

τ2 = T2 − t,

g(x̄, z) =
log(x/x̄) + (r − σ̄(z)2/2) τ1

σ̄(z)
√

τ1
,

k(z) =
log(x/K1) + (r − σ̄(z)2/2) τ2

σ̄(z)
√

τ2

ρ =

√

τ1

τ2
.

The critical point x̄ is the value of x solved uniquely from the following
nonlinear algebraic equation

xN1(k + σ̄(z)
√

τ2)−K2e
−rτ2N1(k) −K1 = 0.

We denote the univariate cumulative normal integral by N1(·) and the bi-
variate cumulative integral by

N2(a, b; ρ) :=
1

2π

∫ a

−∞

∫ b

−∞
e
−w2−2ρwz+z2

2(1−ρ2) dwdz,

where a and b are arbitrary real numbers and ρ is the correlation.
The first correction Ũ1 has an explicit form

Ũ1(t, x;T1, T2,K1,K2; σ̄(z))
= (T1 − t)(Aε + Bδ)U0(t, x;T1, T2,K1,K2; σ̄(z))

(37)

The second correction Ũ2 solves the Black-Scholes PDE with a terminal
condition

LBS(σ̄(z))Ũ2(t, x;T1, T2,K1,K2; σ̄(z)) = 0

Ũ2(T1, x; σ̄(z)) =
(T2 − T1)I{P0(T1 ,x;T2,K2;σ̄(z))≥K1}(Aε + Bδ)P0(T1, x;T2,K2; σ̄(z))

(38)

13



For ease of discussion on calibration in Section 4, the second correction Ũ2 is
decomposed into four different pieces by linearity of the Black-Scholes PDE
in (38):

Ũ2(T1, x, z) = (T2 − T1)
(

V δ
0 R0 + V δ

1 R1 + V ε
2 R2 + V ε

3 R3

)

, (39)

where Ri(t, x, z) solves the same Black-Scholes PDE but with different ter-
minal conditions defined by

Ri(T1, x; σ̄(z)) = I{P0≥K1}V
δ
i

∂1+i

∂xi∂σ
P0,

Rj(T1, x; σ̄(z)) = I{P0≥K1}V
ε
j x4−j ∂

∂x

(

x2j−4 ∂j−1

∂xj−1

)

P0,

where i ∈ {0, 1} and j ∈ {2, 3}.

4 Implied Volatility and Calibration

When volatility consists of a fast mean-reverting and a slowly varying diffu-
sion processes, we have performed a combination of singular and regular per-
turbation techniques to approximate the compound option price (17) (resp.
to (33)) under the stochastic volatility model by the price of a compound
option (30) (resp. to (36)) under constant volatility σ̄(z) and its correc-
tions (31, 32) (resp. to (37,38)). The main parameters of interests σ̄(z),
V δ

0 , V δ
1 , V ε

2 , and V ε
3 used to calculate the compound option price approxi-

mation can be estimated from historical data and the underlying European
option prices, which is encapsulated in the implied volatility surface. That
is, σ̄(z) is estimated from the historical underlying risky asset prices and
(

V δ
0 , V δ

1 , V ε
2 , V ε

3

)

are calibrated to the term structure of implied volatility.

This procedure is robust and described in Section 4.1. Moreover in Section
4.2 we define the implied compound volatility and discuss the calibration
issue from compound option prices.

4.1 Calibration of Vanilla European Options Asymptotics

Recall [6] that the implied volatility I ε,δ of a European option price can be
approximated by

Iε,δ ≈ σ̄(z) + bε + aε log(K/x)

T − t
+ aδ log(K/x) + bδ(T − t), (40)

14



where z-dependent parameters aε, bε, aδ, and bδ are defined by

aε =
V ε
3

σ̄(z)3 , bε =
V ε
2

σ̄(z) −
V ε
3

σ̄(z)3

(

r − σ̄(z)2

2

)

,

aδ =
V δ
1

σ̄(z)2
, bδ = V δ

0 −
V δ
1

σ̄(z)2

(

r − σ̄(z)2

2

)

.

Therefore,

V δ
0 = bδ +

aδ

σ̄(z)

(

r − σ̄(z)2

2

)

, (41)

V δ
1 = aδσ̄(z), (42)

V ε
2 = σ̄(z)

(

bε + aε

(

r − σ̄2(z)

2

))

, (43)

V ε
3 = aεσ̄3, (44)

are deduced. The relation (40) provides a regression procedure to esti-
mate the group of parameters. In practice, σ̄(z) is first estimated from
high frequency historical data over a period of time less than 1/δ. Then
(

aε, bε, aδ, bδ
)

are calibrated to the observed term structure of implied volatil-

ity by using (40) so that V δ
0 , V δ

1 , V ε
2 , and V ε

3 are obtained.

4.2 Implied Compound Volatility and Calibration

The implied compound volatility Iε,δ
cc of a call-on-call option is defined to

satisfy

U0(t, x;T1, T2,K1,K2; I
ε,δ
c ) = U obs, (45)

where U0 is defined in (36) and U obs denotes an observed call-on-call op-
tion price given (t, x;T1, T2,K1,K2). The compound implied volatility is
assumed to have the following expansion in ε and δ:

Iε,δ
cc = I0 +

√
εI1 +

√
δI2 + · · · . (46)

From Theorem 3.2 the observed true price of a call-on-call can be approxi-
mated by

Uobs ≈ U0 + Ũ1 + Ũ2.

Calibration procedure are done by successive comparison with expansions
on both sides in (45). Up to the first order expansion, we get

U0(t, x; I0) +
(√

εI1 +
√

δI2

) ∂U0

∂σ
(t, x; I0) = U0(t, x; σ̄(z)) +

(

Ũ1 + Ũ2

)

(t, x; σ̄(z)).

15



Equating the leading order term U0(t, x; I0) = U0(t, x; σ̄(z)),

I0 = σ̄(z) (47)

are deduced because that Vega,

∂U0

∂σ
=

N2(h + σ̄
√

τ1, k + σ̄
√

τ2; ρ)

N1(k + σ̄
√

τ2)
K1e

−rτ2N ′
1(k)

√
τ2

is positive. Next the first order term gives

√
εI1 +

√
δI2 =

(

Ũ1 + Ũ2

)

(t, x; σ̄(z))

[

∂U0

∂σ
(t, x; σ̄(z))

]−1

,

where (47) is used. Substituting this result with the expression (37, 39) and
(47) into (46), a regression procedure to calibrate V δ

0 , V δ
1 , V ε

2 and V ε
3 is

obtained by fitting

Iε,δ
c − σ̄(z) = (48)
{

(T1 − t)

[

V δ
0

∂

∂σ
+ V δ

1 x
∂2

∂x∂σ
+ V ε

2 x2 ∂2

∂x2
+ V ε

3 x
∂

∂x

(

x2 ∂2

∂x2

)]

U0

+(T2 − T1)
[

V δ
0 R0 + V δ

1 R1 + V ε
2 R2 + V ε

3 R3

]}

[

∂U0

∂σ
(t, x;T,K; σ̄(z))

]−1

in the least square sense. Explicit formulas of derivatives on the homoge-
nized compound option price U0 can be found in [10] and we skip them here.
Remark: We should have lumped together coefficients of these small pa-

rameters
(

V δ
0 , V δ

1 , V ε
2 , V ε

3

)

in the expression (48). The main reason we

present (48) in such a way is to distinguish different roles
(

V δ
0 , V δ

1 , V ε
2 , V ε

3

)

play according to different time to maturities they are associated with. For

example, the second set of
(

V δ
0 , V δ

1 , V ε
2 , V ε

3

)

related to T2 − T1 contain in-

formation of “forward volatility” of the underlying option defined between
time T1 and T2, because the terminal condition in (38) is given by the so-
lution solved from the forward time T2 to T1. While modeling volatility by
one stochastic model between time t and T1 and another stochastic model
between T1 and T2, each set of

(

V δ
0 , V δ

1 , V ε
2 , V ε

3

)

has different values ac-

cording to the time region they stay. In practice, the first set parameters
(

V δ
0 , V δ

1 , V ε
2 , V ε

3

)

is calibrated to the term structure of implied volatility by

(40), then the second set parameters is calibrated to the implied compound
volatility surface by (48).
For simplicity of discussion in this paper we confine the stochastic volatility
model to be always the same from the current time t to the later maturity
T2.

16



5 Numerical Computation

Numerical PDE computation for compound option prices under the two-
factor stochastic volatility model (3) requires to solve two iterative three-
dimensional parabolic type PDEs within an unbounded domain. The first
PDE solves for the underlying option price P ε,δ at the expiry date T1. It
is the same PDE as in (18) with the call function with a strike price K1 as
the terminal condition. The second PDE (18) solves the compound option
price. The difficulty of this approach is not just that solving these three-
dimensional PDEs are time consuming, but also whether the specification
of the full model is validated or not. As presented in Section 3, we alterna-
tively provide an approximated price of compound options. It allows us to
take advantage of the close-form solution of homogenized compound options
(36) with the constant volatility σ̄(z) such that we only need to solve a one-

dimensional PDE (38). The group of universal parameters
(

V δ
0 , V δ

1 , V ε
2 , V ε

3

)

used to compute price corrections (37, 38) are calibrated to the term struc-
ture of implied volatility or the implied compound volatility as discussed in
the last section.

We choose a call-on-call option as an example and calculate its price
approximation (36, 37, 38). Parameters are chosen as: the effective volatility
σ̄(z) = 0.2, the risk-free interest rate r=0.06, the call-on-call option strike
K1 = 3, the underlying call option strike K2 = 25. The current time t is
0, the expiry of the call-on-call is T1 = 0.5, the expiry of the underlying
call option is T2 = 1.5. The group parameters are chosen as typical values
fitted from implied volatility of S&P 500 [6]: V δ

0 = 0.045, V δ
1 = 0.0025,

V ε
2 = 0.0047, V ε

3 = 0.000154. In the top plot of Figure 1, the solid line
presents the homogenized price of a call-on-call, i.e. the solution of (36),
and the dashed line presents the approximated price of a call-on-call, i.e.
the sum of solutions in (36,37, 38). The bottom plot shows contributions
of the first correction (37) in solid line and the second correction (38) in
dashed line respectively. It is observed that the relative magnitude of these
corrections to the homogenized call-on-call can be relatively significant. For
instance, around the stock price S = 27 the relative magnitude can be as
much as 30%.

6 Parameter Reduction

We have described in Section 4 how to estimate the effective volatility σ̄(z)

from the historical stock prices and how the group parameters
(

V δ
0 , V δ

1 , V ε
2 , V ε

3

)
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Figure 1: Finite difference numerical solutions of the first order price approx-
imations to a call-on-call option (top plot) and solutions for the corrections
to the homogenized call-on-call price (bottom plot).

18



are calibrated to the implied volatility surface. These parameters are essen-
tial to compute price approximations to compound options. It is observed,
for instance in (7), that the effective volatility σ̄2(z)/2 and V ε

2 are coeffi-
cients of second order derivatives in x. Fouque et al. [7] define a corrected
volatility σ?:

σ? :=
√

σ̄2(z) + 2V ε
2 (z).

and derive modified price approximations, P ?
0 + P̃ ?

1 , for European options
at the corrected volatility σ?. The zero order term P ?

0 solves
{

LBS(σ?)P ?
0 (t, x) = 0

P ?
0 (T, x) = h(x),

and the second order term P̃ ?
1 solves

{

LBS(σ?)P̃ ?
1 (t, x) = −

(

Aε
? + 2Bδ

)

P ?
0 (t, x)

P̃ ?
1 (T, x) = 0.

Since V ε
2 is absorbed to σ̄(z), the original differential operator Aε in (6) is

thus reduced to

Aε
? := V ε

3 x
∂

∂x

(

x2 ∂2

∂x2

)

.

Similarly to the explicit solution of P̃1, we use the homogeneous property in
x-derivatives and obtain

P̃ ?
1 (t, x;σ?) = (T − t)

(

Aε
? + Bδ

)

P ?
0 (t, x;σ?).

As a matter of fact that the difference or the error, denoted by E, between
these two price approximations, P0 + P̃1 and P ?

0 + P̃ ?
1 , is of O (max{ε, δ})

when the payoff h is smooth with bounded derivatives. By operating the
Black-Scholes partial differential operator (21) at the homogenized volatility
σ̄(z) to the error E, we observe that the source term is indeed of O (ε + δ).
Therefore, we deduce the desired error estimation. Combining this result
with (5), we obtain

P ε,δ(t, x, y, z;T, h) −
(

P ?
0 (t, x;T, h;σ?) + P̃ ?

1 (t, x;T, h;σ?)
)

= O(max{ε, δ}). (49)

Moreover, using the modified price approximation P ?
0 + P̃ ?

1 , the approxima-
tion of the implied volatility skew

I? ≈ b0 + b1(T − t) + {m0 + m1(T − t)} log(K/x)

T − t
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can be used as a regression [7] to estimate the new group parameters
(

σ?, V δ
0 , V δ

1 , V ε
3

)

,

where

σ? = b0 + m0

(

r − b20
2

)

, V δ
0 = b1 + m1

(

r − b20
2

)

,

V δ
1 = m1b

2
0, V ε

3 = m0b
3
0.

Note that all parameters including σ? can be calibrated to the term structure
of implied volatility. As a consequence, the compound option price formula
we derive in (30), (31) and (32) can be modified such that the zero order
term U?

0 solves

LBS(σ?)U?
0 (t, x;T1, T2, h1, h2;σ

?) = 0
U?

0 (T1, x;T1, T2, h1, h2;σ
?) = h1 (P ?

0 (T1, x;T2, h2;σ
?))

the first correction Ũ?
1 has an explicit solution

Ũ?
1 (t, x;T1, T2, h1, h2;σ

?) = (T1 − t)
(

Aε
? + Bδ

)

U?
0 (t, x;σ?)

and the second correction Ũ?
2 solves the other one-dimensional Black-Scoles

PDE with nontrivial terminal condition

LBS(σ?)Ũ?
2 (t, x;T1, T2, h1, h2;σ

?) = 0

Ũ?
2 (T1, x;T1, T2, h1, h2;σ

?) = h′1 (P ?
0 (T1, x;σ?)) P̃ ?

1 (T1, x;T2, h2;σ
?)

= (T2 − T1)h
′
1 (P ?

0 (T1, x;σ?))
(

Aε
? + Bδ

)

P ?
0 (T1, x;σ?)

These modifications of compound option price approximations require less

efforts on calibration (from
(

σ̄(z), V δ
0 , V δ

1 , V ε
2 , V ε

3

)

to
(

σ?, V δ
0 , V δ

1 , V ε
3

)

) as

well as numerical PDE computation (from Aε to Aε
?).

When payoffs h1 and h2 are smooth with bounded derivatives, these modified
price approximations of compound options, U ?

0 +Ũ?
1 +Ũ?

2 , still keep the same
accuracy as shown in Theorem 3.1 such as

∣

∣

∣U ε,δ(t, x, y, z;T1, T2, h1, h2)−
(

U?
0 + Ũ?

1 + Ũ?
2

)

(t, x;T1, T2, h1, h2;σ
?)
∣

∣

∣

≤ C max{ε, δ,
√

εδ} (50)

The following statement explains the accuracy result. Applying a Taylor
expansion on the payoff (16) and using the modified price approximation
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(49), an analog accuracy result like (25) can be obtained:

h1

(

P ε,δ(T1, ST1 , YT1 , ZT1 ;T2, h2)
)

= h1 (P ?
0 (T1, ST1 ;T2, h2;σ

?))

+h
′

1 (P ?
0 (T1, ST1 ;T2, h2;σ

?)) P̃ ?
1 (T1, ST1 ;T2, h2;σ

?) +O(max{ε, δ}).

Then we can straightforwardly generalize the argument in Section 3.2 to
obtain the desired accuracy result (50).

7 Conclusion

We present an asymptotic analysis to derive price approximations to com-
pound options under the two-factor stochastic volatility model (3). For
instance, the first-order price approximation to a call-on-call option requires
to apply Geske’s formula (36), calculate explicit derivatives (37), and solve a
one-dimensional PDE (38). These reduce significantly computational efforts
in comparison with solving two iterative three-dimensional PDEs under the
full specification of the stochastic volatility model. Accuracy results are
provided. Moreover, the group parameters needed in our computational
procedure are calibrated to the term structure of implied volatility.

A compound option defined as an option on another option are naturally
sensitive to the forward changes in volatility, which is embedded in the
underlying option. With our perturbation techniques, we explain that up to
the first order price approximation compound options are weakly dependent
on forward volatility in the sense that the dependence on volatility level in
the payoff of a compound option can be replaced by a constant volatility.

Acknowledgments: C.-H. Han would like to thank Yeol Cheol Seong for
important discussions and prospectives on the problem studied here.
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