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Abstract	

 
 Recent literature has highlighted joint movements between the credit default swap 
(CDS for short) spread and its corresponding option price. Some dynamically 
consistent frameworks have been proposed for the joint evaluation and estimation of 
stock options and their CDS spreads in order to integrate both market information. 
 This paper extends previous studies and provides a new methodology for joint 
evaluation of stock option prices, CDS spreads and bond prices based on three separate 
calibration methods. They include (1) a two-step Monte Carlo procedure for calibration 
to the term structure of implied volatilities, (2) an approximated default intensity rate 
under the reduced form model for the credit risk calibration, and (3) a closed-form of 
zero coupon bond price for the interest rate risk calibration. Various innovative 
combinations of these three calibration methods are proposed to allow a genuine robust 
and efficient estimation for the joint dynamics of multiple risk factors. Our 
investigation discloses the importance of cross-market information to fit the implied 
volatility surfaces by means of a joint dynamic model which includes market risk, 
credit risk and the interest risk.  
 
Keywords: instantaneous volatility, implied volatility surface, default intensity, 
interest rate, model calibration, Monte Carlo method, martingale control variate, 
vulnerable option 
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1	Introduction	
 With the process of economic globalization, financial derivatives markets such as  
the stock option market, credit derivative market, and the bond market have 
experienced an explosive growth in decades. Recent studies have shown that risks 
associated with these markets are intertwined. It raises a great attention to construct 
joint dynamics that contains equity risk, credit risk, interest rate risk, and so on in order 
to evaluate or hedge options under an incomplete market.  
 The relationship between CDS and equity markets have been well documented in 
the literature. Bystrom (2005) studied the relationship between the iTraxx CDS index 
market and the stock market. They found that the CDS spread increases (decreases) 
with increasing (decreasing) stock price volatilities. Berndt (2007) found significant 
information flow from the CDS and equity options markets to the equity market. Due to 
the relation between the credit market and equity market, Carr and Wu (2010) 
investigated a dynamically consistent framework that evaluates and estimates the stock 
options and CDS written on the same company. They also allowed both the common 
movements and independent variations between the equity market and credit market. 
For high dimensional credit derivatives, Collin-Dufresne et al. (2010) proposed a 
model fitting the time series of tranche spreads. Due to the information of the default 
time and the specification of idiosyncratic dynamics, they found that it is important to 
calibrate the model to match the entire term structure of CDX spread. They proposed a 
structural model which could jointly price long-dated S&P 500 options and tranche 
spreads on the five-year CDX index. 

A number of studies investigate multiple effects of equity risk, credit risk, and 
interest rate risk. Norden (2004) analyzed the relationships between CDS, bond and 
equity markets. They found weekly and daily equity returns were negatively correlated 
with CDS and bond spread changes. Norden (2009) further discovered that CDS market 
was significantly more sensitive to the equity market than the bond market, and the 
sensitivity arose when credit quality drops. 

Our goal is to develop a genuine approach to deal with multiple risks. We start 
from a joint dynamics to incorporate equity risk and credit risk based on the recent 
work of Carr and Wu (2010). Their work modeled the default intensity by the Cox 
process and assumed once the default occurs, the stock price went to zero. Before the 
default, the stock price followed the jump-diffusion process with stochastic volatility. 
The  default intensity and the return variance rate were set to follow a bivariate 
diffusion with dynamic interactions that matched the stock option implied volatilities 
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and CDS spreads. Note that the performance of the model calibration proposed by Carr 
and Wu (2010) was not stable3.  

A simplified yet robust calibration procedure is investigated in this paper. We 
estimate instantaneous volatilities of the equity price using the Fourier transform 
method (Malliavin and Mancino (2009), Han (2015)), and estimate the default intensity 
by an approximation. Efficient computation for option prices in European and 
American styles is crucial for solving the optimization problem of model calibration. A 
variance reduction method of Monte Carlo simulation, i.e., martingale control variate 
(Fouque and Han (2007, 2008)) is employed to enhance a fast convergence. Han and 
Kuo (2017) developed this approach for model calibration to implied volatility surfaces 
only for multifactor volatility models. This paper continues to derive a methodology 
that can jointly evaluate the credit spread, the stock option, and the bond price. Through 
our empirical studies, it confirms empirically that the proposed method is able to 
effectively reduce the complexity and error of model calibration.  

The rest of the paper is organized as follows. We review calibration of three 
single risk factors in Section 2. Based on Carr and Wu (2010), the joint calibration of 
market risk and credit risk is considered and the framework of our approach is 
proposed in Section 3.	 In Section 4, we investigate the calibration of multiple risk 
factors. A brief summary and financial implication is provided in Section 5. We 
conclude in Section 6. 
  

                                                
 
 

3 That is, the estimated parameter β is close to zero and contradicts the result proposed by Zhang et al. 
(2009) 
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2	Calibration	of	Single	Risk	

Dynamics	
A calibration problem refers to solving for optimal model parameters given a set of 
traded market data. In this section, market information such as implied volatility 
surface, treasury and/or corporate bond yields, and CDS spread are utilized. They are 
primarily associated with equity risk, interest rate risk, and credit risk, respectively. 
Each financial model will be calibrated according to a single market information. The 
joint calibration according to multiple market risks will be studied in the next two 
sections. 
For the calibration problem of an implied volatility surface, the two-stage Monte 
Carlo calibration method proposed by Han and Kuo (2017) is employed. This method 
consists of two technical parts: Fourier Transform method (Malliavin and Mancino 
(2009), Han (2015)) for estimating volatility to reduce parameter dimensions, and 
martingale control variate method (Fouque and Han (2007, 2008), Han and Lai (2010)) 
for variance reduction to evaluate option prices.  
For the calibration of a corporate bond yield or the U.S. treasury yield, we employee 
the bootstrapping method to construct a zero-coupon bond yield given the Vasicek 
process as the underlying risk-free interest rate model. As for the calibration of a CDS 
spread, we first approximate spreads as default intensity processes, then the maximum 
likelihood method is applied to estimate an exponential OU (Ornstein–Uhlenbeck) 
model.  
 

2.1	Calibration	of	Implied	Volatility	Surface	
 Han and Kuo (2017) proposed a genuine methodology, termed two-stage Monte 
Carlo calibration method, under a variety of volatility models. We will apply this 
method to retrieve the information content of market risk by using a class of one-factor 
stochastic volatility models in this paper. A brief introduction to this two-stage 
calibration method is below and more empirical results with comparison to other 
methods can be found in the next two sections when joint calibration problems are 
discussed.  
Stage 1 (Fourier Transform Method (Malliavin & Mancino (2009), Han (2015)))- 
Estimate stochastic volatility model parameters under the historical probability 
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measure. This step consists of  

i. Estimate the spot volatility time series by the Fourier transform method. 

ii. Estimate stochastic volatility model parameters using the maximum 

likelihood method. 

Stage 2 (Martingale Control Variate Method (Fouque & Han (2007))) - Estimate 
stochastic volatility model parameters under a risk-neutral probability measure. This 
step aims to estimate some other separated model parameters from option prices. 
 
Note that the problem of model calibration to an implied volatility surface can be very 
technical. Stage two may require a tremendous effort on high performance computing 
(Han and Lin (2014)). Complex volatility models such as two-factor Heston model 
(Christoffersen et al. (2009)), hybrid model and three-factor models (Han and Kuo 
(2017)), etc. are considered to obtain fast computation with minimum errors of model 
calibration. In this paper we employ only a basic one-factor stochastic volatility model 
but focus on incremental effects gained from multiple risks such as credit risk and 
interest rate risk. 

2.2	Calibration	of	Bond	Yield	
A yield is a value to describe a zero coupon bond in the bond market. The definition 
of bond yield is 

 𝑦𝑖𝑒𝑙𝑑 𝑇 = −
ln𝐵 0, 𝑇

𝑇 	, (2. 1) 

and equation (2. 1) is the same as a continuously compounded interest rate of the zero 
coupon bond. Thus, the zero-coupon bond price 𝐵 0, 𝑇  with maturity 𝑇 can be 
rewritten as 

 𝐵 0, 𝑇 = exp −𝑦𝑖𝑒𝑙𝑑 𝑇 ×𝑇 . (2. 2) 

A term structure, which is formed by the yield rates and maturities, is called a yield 
curve. In order to capture the variation of yields, a “short rate” model is in use here to 
describe bond prices,  
 

𝐵 𝑡, 𝑇 = 𝐸∗ 𝑒𝑥𝑝	(−	 𝑟<
=

>
𝑑𝑢)|	ℱ>	 .	 

(2. 3) 

Obviously, this is a stochastic model to simulate the behavior of the observed market 
data, i.e., bond 𝑦𝑖𝑒𝑙𝑑(𝑇) stated above. The notation ℱ> stands for a natural filtration 
associated with the driving Brownian motion 𝑊>

∗  below under the risk-neutral 
probability measure 𝑃∗ . If a short-term interest rate 𝑟>  is governed by the 
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mean-reverting process below, the bond price admits a closed-form solution. 
The Vasicek ( Ornstein-Uhlenbeck) process is presented by 

 𝑑𝑟> = 𝛼 𝑚 − 𝑟> 𝑑𝑡 + 𝛽𝑑𝑊>
∗	. (2. 4) 

Since this process is Makovian, 𝐵 𝑡, 𝑇  can be further simplified as a function of 
time and short-term spot rate, denoted by 𝑃 𝑡, 𝑟>	 . Given this stochastic model above, 
it is known that the bond price function is of an affine structure: 

 𝑃 𝑡, 𝑟	 = 𝐴 𝑇 − 𝑡 𝑒𝑥𝑝 −𝐶 𝑇 − 𝑡 	𝑟	 , (2. 5) 

where A and C represent solutions of some ordinary differential equations. See Shreve 
(2004) for details. The same result can also be obtained by applying the discount 

factor 𝐷> = 	𝑒𝑥𝑝	(−	 𝑟<
>
L 𝑑𝑢) to the bond price such that the martingale property of 

𝐷>𝐵 𝑡, 𝑇  becomes a vehicle to derive the same result as of equation (2-5) :  

	 𝐴 𝜏 = 𝑒𝑥𝑝 − 𝑅 ∗ 𝜏 − 𝑅
1 − 𝑒PQR

𝛼 +
𝛽S

4𝛼U (1 − 𝑒
PQR)S 	

𝐶 𝜏 = 	
1 − 𝑒PQR

𝛼 	

𝑅 = 𝑚 − 𝛽
S

2𝛼S .	

 

 

(2. 6)	

Consequently, the zero coupon bond price with Vasicek model is given as below, 

𝑃 𝑡, 𝑟>|𝑇, 𝑟, 𝛼, 𝛽,𝑚  

= 𝑒𝑥𝑝 − 𝑅 𝑇 − 𝑡 − 𝑅 − 𝑟>
1 − 𝑒PQ =P>

𝛼 +
𝛽S

4𝛼U (1 − 𝑒
PQR)S . 

(2. 7) 

 The calibration problem of a bond yield is now formulated as an optimization 
problem defined by 
 

𝑚𝑖𝑛
Q,X,Y

1
𝑀 𝑃> − 𝑃 𝑡, 𝑟>|𝑇, 𝑟, 𝛼, 𝛽,𝑚

S	,
[

>\]

 
 

 (2. 8) 

where 𝑃> is an observed bond yield from the finacial market.  
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Figure 2.1 The calibration result of U.S treasury yield curve on 2009/01/03 

 
The Table 2.1 and Figure 2.1 describe the parameter estimation and fitting error of 
U.S. treasury yield curve, respectively. 
 
Table 2.1 Model parameter estimation and fitting error ( MSE ) of U.S treasury yield 

Date 𝛼 𝛽 m Mean Square Error 

1/2/09 0.16388 0.006059 0.049268 8.13E-07 
1/5/09 0.140681 0.004196 0.056612 8.13E-07 
1/6/09 0.133579 0.006804 0.05771 9.11E-07 
1/7/09 0.142484 0.004855 0.056315 9.56E-07 
1/8/09 0.122745 4.13E-05 0.059196 1.28E-06 
1/9/09 0.110318 3.55E-05 0.062264 1.25E-06 
1/12/09 0.108405 9.90E-06 0.060788 1.32E-06 
1/13/09 0.101333 0.000848 0.062515 1.17E-06 
1/14/09 0.097825 1.84E-05 0.06098 1.22E-06 
1/15/09 0.103512 0.001551 0.059306 9.24E-07 
1/16/09 0.12934 0.005139 0.054483 9.62E-07 
1/20/09 0.118646 0.00306 0.059037 9.67E-07 
1/21/09 0.132136 0.005906 0.059953 8.07E-07 
1/22/09 0.127467 0.007579 0.064133 8.15E-07 
1/23/09 0.12982 0.005393 0.063174 8.21E-07 
1/26/09 0.127643 1.30E-05 0.063834 1.06E-06 
1/27/09 0.124685 -3.11E-05 0.061617 9.67E-07 
1/28/09 0.126497 0.000113 0.06402 8.33E-07 
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Due to the fact that coporate bonds are often with coupons, it is necessary to apply a 
bootstraping method to convert those bond prices to the zero-coupon bond price.  
  

2.3	Calibration	of	CDS	Spread	
 In the literature of credit risk modeling (Leland (1994)), the reduced form model, 
also called the intensity model, treats default as an exogenous jump process. This kind 
of models is particularly suited to model credit spreads and is easy to calibrate CDS 
data.  
 The default intensity is the probability of default per year conditional on no earlier 
default. A good approximation of the risk-neutral default intensity 𝜆> per year is 

 𝜆> ≈
𝐶>

1 − 𝑅	, 
(2. 12) 

where 𝐶>		denotes the CDS spread and R denotes the recovery rate. We have applied 
the Vasicek model to describe movements of interest rates for bond price evaluation. 
The same model can also be adapted here by an exponential function in order to avoid 
the natural negative property of the Vasicek model for modeling default intensity. 
This model specifies that the instantaneous default intensity follows the stochastic 
differential equation as follows, 

 𝑒`a ≈
𝐶>

1 − 𝑅	, 
   (2. 13) 

 𝑑ℎ> = 𝛼 𝑚 − ℎ> 𝑑𝑡 + 𝛽𝑑𝑍>	, (2. 14)  

where 𝑍> is a Wiener process and 𝛼 denotes the mean-reversion speed, 𝛽	denotes the 
volatility of volatility, and m means the long-run mean. By the Euler discretization 
(Shreve (2004)), 𝑑ℎ> can be rewritten as equation (2.15) 

 ℎ>d] = 𝛼𝑚∆𝑡 + 1 − 𝛼∆𝑡 ℎ> + 𝛽 ∆𝑡		𝜀>			, 	𝜀>~𝑁(0,1) (2. 15) 

The Maximum likelihood estimation (MLE) is applied to estimate model parameters 
𝛼,𝑚, 𝛽 in equation (2. 14). The data used in our experiment is the credit default swap 
spreads of IBM for one year. Table 2.2 records the results of parameter estimation for 
one year IBM CDS under the default intensity approximation.  
 

1/29/09 0.144915 0.007917 0.064475 7.10E-07 
1/30/09 0.142541 0.009479 0.065595 6.86E-07 
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Table 2.2 Estimated parameters of IBM CDS between 2009/01/02 and 2009/01/27 

Date 𝛼 𝛽 m  Date 𝛼 𝛽 m 
2009/01/02 0.52357  1.47435  -3.46252   2009/01/15 0.91338  1.46588  -4.78015  

2009/01/05 0.53000  1.47434  -3.48999   2009/01/16 0.91415  1.46587  -4.77372  

2009/01/06 0.60854  1.47087  -3.71706   2009/01/20 0.85175  1.46698  -4.62080  

2009/01/07 0.52743  1.46814  -3.46044   2009/01/21 0.81481  1.46737  -4.51729  

2009/01/08 0.58120  1.46848  -3.74387   2009/01/22 0.73614  1.46885  -4.27549  

2009/01/09 0.67900  1.46368  -3.97002   2009/01/23 0.62551  1.47142  -3.84344  

2009/01/12 0.66251  1.46091  -4.09061   2009/01/26 0.54253  1.47271  -3.40711  

2009/01/13 0.69012  1.46099  -4.18420   2009/01/27 0.55440  1.47271  -3.46380  

2009/01/14 0.84328  1.46495  -4.62751       

 
 

3	Joint	Calibration	of	Market	Risk	

and	Credit	Risk	
 Some empirical results suggested that the stock market and CDS market are 
correlated. Zhang (2009) found that the volatility of the equity could predict 48% of the 
variation of CDS spread. Carr and Wu (2010) documented evidences that the variance 
of an equity return was positively related to its credit spread of the same company. 
Hence, they postulated the following linear equation: 

 𝜆> = 𝛽ijkk𝜐> + 𝑧>	, (3. 1) 

where 𝜆>  denoted the default intensity, 𝛽ijkk  was the correlation of the default 
intensity 𝜆>  and variance 𝜐> , and 𝑧>  was a stochastic process to capture the 
independent shock.  
 However, the estimated parameter	𝛽ijkk in equation (3.1) contradicts with other 
empirical results. This motivates us to propose an alternative to extend the study by 
Carr and Wu (2010) so that a genuine methodology to solve for calibration problems 
under multiple market risks becomes possible. To achieve this goal, we first consider 
a parameter estimation problem by (1) applying the Fourier transform method 
(Malliavin and Mancino (2009), Han (2015)) for estimating the volatility of the equity 
price, and (2) applying an approximation method for estimating the default intensity. 



9 
 

Then we further consider a vulnerable option evaluation problem by an efficient 
Monte Carlo simulation with martingale control variate method (Fouque and Han 
(2007,2008)).  
 
 

3.1	Correlation	between	Stock	Market	and	

Credit	Market	 	
 The market data used in our experiment is one year IBM CDS spread and stock 
price from 2007/01/02 to 2008/12/31 from Thomson Reuters. Motivated by Zhang et al. 
(2009), we consider the correlation between stock volatility and default intensity as a 
different approach from Carr and Wu (2010). Table 3.1 displays the result of the 
correlation between variance/volatility of IBM’s stock prices and default intensities. 
When considering the default risk, this section will be divided into two cases: Case 1 
is the correlation of variance and default intensity and Case 2 is the correlation of 
volatility and default intensity. 
 
Table 3.1 Correlation between stock variance/volatility and default intensity of IBM 

 
 
 

3.2	 Joint	 Dynamics:	 Evaluation	 and	

Estimation	
 We provide a methodology that allows both the volatility and default intensity are 
stochastic, and model their joint dynamics under the risk-neutral probability. No 
interest rate is considered. A two-step Monte Carlo procedure is employed for 
calibration to the implied volatility surfaces. Approximated default intensity approach 
under the reduced form model is employed for credit risk calibration. Combinations of 
these calibration methods allow a robust and efficient estimation for the joint dynamics 
of risk factors from the equity market and the credit market. 
  Recall the Vasicek model in the previous section, the value of the vulnerable call 
option at time t can be written as 

IBM 1year CDS 

Case 1 -0.18314 
Case 2 -0.1494 
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 𝐶 𝑡, 𝑆> = 𝐸∗ 𝑒𝑥𝑝 − (
=

>
𝑟o + 𝜆o)𝑑𝑠 ∗ 𝐻 𝑆= |𝐹> 	. (3. 2) 

Given the interest rate r(t) being deterministic assumption, the call option price is 

 𝐶 𝑡, 𝑆> = 𝐵 𝑡, 𝑇 𝐸∗ 𝑒𝑥𝑝 − 𝜆o
=

>
𝑑𝑠 ∗ 𝐻 𝑆= |𝐹> 	. (3. 3) 

Based on equation (3.1), we have 

𝐶 𝑡, 𝑆> = 𝐵 𝑡, 𝑇 𝐸∗ 𝑒𝑥𝑝 − 𝑧o
=

>
𝑑𝑠 |𝐹> 𝐸∗ 𝑒𝑥𝑝 −𝛽ijkk 𝜐o

=

>
𝑑𝑠

∗ 𝐻 𝑆= |𝐹>  

 

 

= 𝐵 𝑡, 𝑇 ∗ 𝑒𝑥𝑝
𝜎tS(𝑇 − 𝑡)U

6 𝐸∗ 𝑒𝑥𝑝 −𝛽𝑐𝑜𝑟𝑟 𝜐𝑠
𝑇

𝑡
𝑑𝑠 ∗ 𝐻 𝑆𝑇 |𝐹𝑡  (3. 4) 

where 𝐵 𝑡, 𝑇  denotes the discount factor and 𝐻 𝑆=  is the payoff function at T. 
  
 Two models for the linear relationship between the default intensity and stock 
variance/volatility are considered below. Case 1 follows Carr and Wu (2010) by 
taking stock variance into account: 

 𝜆> = 𝛽ijkk𝜐> + 𝑧>	, 

𝑧>	~𝑁(0, 𝜎xS𝑡), 

 

(3. 5) 

We propose to take stock volatility into account by investigating the second case 
defined by 

 𝜆> = 𝛽ijkk𝜎> + 𝑧>	, 

𝑧>	~𝑁(0, 𝜎xS𝑡), 

 

(3. 6) 

where 𝜆> denotes the default intensity, 𝛽ijkk is the correlation of the default intensity 
𝜆> and variance 𝜐>, or 𝛽ijkk is the correlation of the default intensity and volatility 
𝜎> , 𝑧> is a stochastic process to capture the independent factor.  

We use the OLS regression method to estimate	𝛽ijkk	and 𝜎x. The market data 
used in this regression is IBM Company CDS spread and stock price from Thomson 
Reuters. The data period is from January 1, 2007 to December 31, 2008. Table 3.2 
shows the result of regression. 

 
Table 3.2 The results of regression for Case 1 and Case 2 

 𝛽ijkk 𝜎x adjusted R2 
Variance ( Case 1 ) 0.011812 0.006118 0.11465 
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Volatility ( Case 2 ) 0.014621 0.004773 0.46036 
 
 Note that the estimated parameters of case 1 and case 2 have little differences, 
but the adjusted RS are different obviously. It is observed from this dataset that case 
2 performs better than case 1. 
 Based on some parameters estimated by Fourier transform method under the 
historical probability measure, we construct an objective function of the option price 
estimator with the rest unknown parameters. By using MATLAB function 
“fminsearch.m", we can solve for the following equation 

 
𝑚𝑖𝑛
z

1
𝑛 𝐼𝑚𝑝𝑉𝑜𝑙Xj}~� 𝛩 − 𝐼𝑚𝑝𝑉𝑜𝑙X�k�~> S

�

�\]

 
(3. 7) 

Where Θ denotes the parameter set, 𝐼𝑚𝑝𝑉𝑜𝑙Xj}~� Θ  denotes the implied volatility 
calculated from the model, and 𝐼𝑚𝑝𝑉𝑜𝑙X�k�~>  denotes the implied volatility 
observed from the real data on market. 
 The market data used in our experiment are IBM stock price and IBM call option 
which are truncated with the moneyness from 0.9 to 1.1, and in order to make sure the 
results are consistent, the period we chose both are from 2009/01/02 to 2009/01/27. 
To reduce the complexity, the option is assumed no dividend payout. Table 3.3 
presents the results of parameters (𝛼, 𝛽,𝑚) estimation under historical probability 
measure  
 

Table 3. 3 Parameters (𝛼, 𝛽,𝑚) under historical probability measure 
Date 𝛼 𝛽 m  Date 𝛼 𝛽 m 

2009/01/02 10.640 2.202 -1.518  2009/01/15 11.581 2.276 -1.509 

2009/01/05 10.734 2.177 -1.514  2009/01/16 10.869 2.231 -1.507 

2009/01/06 11.483 2.233 -1.514  2009/01/20 10.180 2.178 -1.510 

2009/01/07 11.327 2.211 -1.509  2009/01/21 11.326 2.312 -1.514 

2009/01/08 11.010 2.190 -1.510  2009/01/22 11.611 2.294 -1.507 

2009/01/09 11.252 2.224 -1.507  2009/01/23 10.400 2.140 -1.499 

2009/01/12 11.384 2.278 -1.511  2009/01/26 10.993 2.211 -1.501 

2009/01/13 11.212 2.269 -1.510  2009/01/27    

2009/01/14 10.979 2.208 -1.506      

 
 
 According to the Two-Step Monte Carlo approach, the rest unknown model 
parameters are estimated under a risk-neutral probability measure. Table 3.4 describes 
the results of the parameters estimation under risk-neutral probability measure with 
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different time to maturities on 2009/01/02 and 2009/01/05. Consequently, we show 
the result of implied volatility surface fitting in Figure 3. 1. 
 
Table 3. 4 Parameters (𝑚∗, 𝜌∗) estimated under risk-neutral probability measure on     
  2009/01/02 and 2009/01/05 

Time to 
Maturity 
(years) 

2009/01/02 

𝑚∗ 𝜌∗  Time to 
Maturity 
(years) 

2009/01/05 

𝑚∗ 𝜌∗ 

0.041667 -2.11374 -0.97511  0.033333 -1.78038 -0.98743 

0.138889 -1.97593 -0.95114  0.130556 -1.8378 -0.99591 

0.294444 -1.99972 -0.74166  0.286111 -1.8592 -0.93879 

0.547222 -2.04297 -0.93639  0.538889 -2 -0.7175 

1.052778 -2.06252 -0.73294  1.044444 -2.02514 -0.71292 

2.083333 -2.08125 -0.74703  2.075 -2.12594 -0.65819 

  
 
 
 
 
 
 
 

 (a) Time to maturity = 0.04167 years     (b) Time to maturity = 0.13889 years 
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 (c) Time to maturity = 0.2945 years      (d) Time to maturity = 0.5473 years 
 

 

 (e) Time to maturity = 1.0528 years     (f) Time to maturity = 2.0834 years 
  Figure 3.1 The implied volatility fitting results of IBM stock option on 2009/01/02;     
  the six figures represent six different time to maturity 
 
Final results of the mean square error of calibration are showed in Table 3.5 
We observe that these parameters are stable and that means that the parameters are not 
volatile when the market changes slightly. Besides, the mean square error of the 
calibration result is relatively small. 
 
 
Table 3. 5 Total mean square error of implied volatility surface from 2009/01/02 to 
2009/01/27  

Date Total MSE 

2009/01/02 1.82E-05 

2009/01/05 1.26E-05 

2009/01/06 1.60E-05 

2009/01/07 4.53E-05 

2009/01/08 8.57E-05 
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2009/01/09 5.12E-05 

2009/01/12 3.35E-04 

2009/01/13 9.65E-05 

2009/01/14 7.94E-06 

2009/01/15 5.98E-06 

2009/01/16 8.43E-06 

2009/01/20 2.22E-05 

2009/01/21 3.70E-05 

2009/01/22 1.03E-05 

2009/01/23 8.44E-06 

2009/01/26 1.60E-05 
2009/01/27 2.02E-05 

  
To observe the effect of default risk in option price, we compare the calibration result 
of default-free option with the result of vulnerable option. We discuss the calibration 
result for the two following cases. 
 
Case 1: Correlation between Variance and Default Intensity 
 For call options, we assume there is a correlation between variance and default 
intensity as seen in section 3.1. The data we employed in our experiment is IBM call 
option from 2009/01/02 to 2009/01/27. The outcome of the comparison is described 
in Table 3.7 and the ratio of the improvement is in Figure 3.4. We observe that the 
calibration result considering credit risk is much better than the default-free model. 
 
 
Table 3. 7 The comparison of fitting result between default-free option and vulnerable 
option considering the correlation between variance and default intensity. 

Date Default-free Option Vulnerable Option 

2009/01/02 1.82E-05 5.67E-06 (68.92%) 
2009/01/05 1.26E-05 1.74E-05 (-37.94%) 
2009/01/06 1.60E-05 1.13E-05 (29.52%) 
2009/01/07 4.53E-05 5.01E-05 (-10.54%) 
2009/01/08 8.57E-05 7.89E-05 (7.87%) 
2009/01/09 5.12E-05 4.56E-05 (10.78%) 
2009/01/12 3.35E-04 3.25E-04 (3.01%) 
2009/01/13 9.65E-05 9.57E-05 (0.90%) 
2009/01/14 7.94E-06 5.26E-06 (33.73%) 
2009/01/15 5.98E-06 5.32E-06 (11.07%) 
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2009/01/16 8.43E-06 4.07E-06 (51.77%) 
2009/01/20 2.22E-05 7.74E-06 (65.04%) 
2009/01/21 3.70E-05 1.65E-05 (55.28%) 
2009/01/22 1.03E-05 7.37E-06 (28.35%) 
2009/01/23 8.44E-06 4.60E-06 (45.50%) 
2009/01/26 1.60E-05 4.62E-06 (71.07%) 
2009/01/27 2.02E-05 5.56E-06 (73.89%) 

 
 

 
Figure 3. 4 The improvement of fitting result compared to default-free option 

 
 
Case 2: Correlation between Volatility and Default Intensity 
 For call options, the outcome of the comparison is presented in Table 3.8 and the 
ratio of the improvement is in Figure 3.5. The data we employed in our experiment is 
IBM call option from 2009/01/02 to 2009/01/27. We can observe that the calibration 
result considering credit risk is much better than the default-free model. 
 
 
Table 3. 8 The fitting result of default-free option and vulnerable option in Case 2. 

Date Default-free Option Vulnerable Option 

2009/01/02 1.82E-05 6.48E-06 (64.46%) 
2009/01/05 1.26E-05 1.17E-05 (7.28%) 
2009/01/06 1.60E-05 1.35E-05 (15.39%) 
2009/01/07 4.53E-05 4.77E-05 (-5.36%) 
2009/01/08 8.57E-05 7.57E-05 (11.60%) 
2009/01/09 5.12E-05 4.63E-05 (9.55%) 
2009/01/12 3.35E-04 3.14E-04 (6.44%) 
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2009/01/13 9.65E-05 9.35E-05 (3.11%) 
2009/01/14 7.94E-06 5.84E-06 (26.39%) 
2009/01/15 5.98E-06 2.83E-06 (52.65%) 
2009/01/16 8.43E-06 2.12E-06 (74.85%) 
2009/01/20 2.22E-05 6.58E-06 (70.30%) 
2009/01/21 3.70E-05 1.63E-05 (55.81%) 
2009/01/22 1.03E-05 5.17E-06 (49.68%) 
2009/01/23 8.44E-06 2.78E-06 (67.07%) 
2009/01/26 1.60E-05 4.74E-06 (70.36%) 
2009/01/27 2.02E-05 7.91E-06 (62.83%) 

 
 
  

 

Figure 3. 5 The improvement of fitting result compared to default-free option 
 
 Empirical results reveal that Case 2 fits better to implied volatility surfaces. We 
find that instead of using the approach Carr and Wu (2010), the correlation between 
volatility and default intensity is more adopted for fitting implied volatility surfaces. 
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4	Joint	Calibration	of	Multiple	

Risks	
The aim of this section is to extend risk models studied in the previous section. 

Several joint calibration problems among multiple risks are considered. For example, 
the combination of market risk and interest rate risk, the combination of market risk, 
interest rate risk and credit risk, and the combination of market risk and corporate 
bond risk for put options. It can be seen that our proposed methodology can be 
applied to those joint calibration problems in a robust and efficient way so that the 
cross-market information can be revealed in Section 5. 
 

4.1	Market	Risk	and	Interest	Rate	Risk	
 In this section, we propose a new method to incorporate the interest rate risk to 
our approach but exclude the credit risk. The interest rate process 𝑟> is allowed to be 
stochastic and the joint model is specified as follows, 

 
}�a
�a
= 𝑟𝑑𝑡 + 𝜎>𝑑𝑊]>

,
  

 	𝜎> 	= 𝑒
�a
� ,  

 𝑑𝑦> = 𝛼 𝑚 − 𝑦> 𝑑𝑡 + 𝛽𝑑𝑊S> ,  

 𝑑𝑟> = 𝛼k 𝑚k − 𝑟> 𝑑𝑡 + 𝛽k𝑑𝑊U>	  

 𝑊]	,𝑊S > = 𝜌𝑡 ,  

where 𝑆> is the asset price at time t, 𝜎> denotes the volatility process, 𝑦> denotes the 
driving volatility process, 𝑊]> , 𝑊S> and 𝑊U> are standard Brownian motions, 𝛼 and 
𝛼k  denote mean-reversion speeds, 𝛽 and 𝛽k  denote volatilities of volatility, and m 
and 𝑚k denote long-run means. We assume the correlation of 𝑊]> and 𝑊S>	 is 𝜌𝑡.  
 The comparison for call option with interest rate risk and without interest rate 
risk illustrates in Table 4.1 and the ratio of improvement is in Figure 4.1. The data we 
employed in our experiment is also IBM call option from 2009/01/02 to 2009/01/27, 3 
months U.S. treasury yield, and all maturity treasury yields. It is readily observed that 
the calibration result with interest risk is better than that without the interest rate risk. 
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Table 4.1 The comparison of fitting result between option without interest rate risk    
  and option with interest rate risk 

Date Option without 
interest rate risk 

Option with three 
months treasury 

Option with all 
treasuries 

2009/01/02 1.82E-05 1.22E-05 (33.06%) 7.61E-06 (58.29%) 
2009/01/05 1.26E-05 1.14E-05 (9.68%) 1.30E-05 (-2.97%) 
2009/01/06 1.60E-05 1.68E-05 (-5.10%) 1.22E-05 (23.72%) 
2009/01/07 4.53E-05 5.17E-05 (-14.19%) 4.90E-05 (-8.14%) 
2009/01/08 8.57E-05 8.15E-05 (4.86%) 8.04E-05 (6.13%) 
2009/01/09 5.12E-05 5.38E-05 (-5.24%) 4.40E-05 (14.02%) 
2009/01/12 3.35E-04 3.16E-04 (5.72%) 3.33E-04 (0.56%) 
2009/01/13 9.65E-05 9.79E-05 (-1.46%) 9.06E-05 (6.17%) 
2009/01/14 7.94E-06 7.51E-06 (5.39%) 3.85E-06 (51.49%) 
2009/01/15 5.98E-06 5.11E-06 (14.47%) 2.89E-06 (51.61%) 
2009/01/16 8.43E-06 5.13E-06 (39.19%) 3.66E-06 (56.60%) 
2009/01/20 2.22E-05 5.04E-06 (77.24%) 9.16E-06 (58.66%) 
2009/01/21 3.70E-05 2.66E-05 (27.98%) 1.77E-05 (52.19%) 
2009/01/22 1.03E-05 7.22E-06 (29.81%) 5.30E-06 (48.49%) 
2009/01/23 8.44E-06 4.99E-06 (40.96%) 2.45E-06 (71.01%) 
2009/01/26 1.60E-05 6.35E-06 (60.28%) 5.05E-06 (68.41%) 
2009/01/27 2.02E-05 6.13E-06 (71.22%) 4.26E-06 (79.98%) 
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Figure 4.1 The improvement of fitting result compared to option without considering 
interest rate risk 

4.2	 Market	 Risk,	 Credit	 Risk	 and	 Interest	

Rate	Risk	
 Based on the empirical results in section 3.3, we observe that both the default 
risk and interest rate risk are significant to reduce errors for fitting the implied 
volatility surfaces. To an extend, we incorporate an additional credit risk. The newly 
proposed model that considers market risk, interest rate risk, and credit risk is 
specified as follows.  

 
}�a
�a
= 𝑟>𝑑𝑡 + 𝜎>𝑑𝑊]>

,
  

 	𝜎> 	= 𝑒
�a
� ,  

 𝑑𝑦> = 𝛼 𝑚 − 𝑦> 𝑑𝑡 + 𝛽𝑑𝑊S> ,  

 𝑑𝑟> = 𝛼k 𝑚k − 𝑟> 𝑑𝑡 + 𝛽k𝑑𝑊U>	  

 𝑑ℎ> = 𝛼 𝑚 − ℎ> 𝑑𝑡 + 𝛽𝑑𝑊�> ,  

 𝑒`a ≈ �a
]P�

 ,  

 𝑊]	,𝑊S > = 𝜌𝑡.   

Most symbols are the same as before while 𝐶> denotes the credit spread, 𝑊�> is a 
standard Brownian motion independent to others, 𝛼,	𝛽,𝑚 denote the mean-reverting 
speed, volatility of volatility, and long-run mean, respectively. We will see that this 
joint dynamics is capable of retrieving all risks under the same framework and it 
produces the minimum modelling errors. 
 
As seen in section 3.2, the correlation structure for market risk (variance or volatility) 
and credit risk (default intensity) was discussed. We will be using the “default-free 
option without interest rate risk,” that is market risk, only as a benchmark. 
 
Case 1: Correlation between Variance and Default Intensity 
 Based on Carr and Wu (2010), we consider the correlation between variance and 



20 
 

default intensity. The outcome of the comparison is recorded in Table 4.1 and the 
ratio of improvement is demonstrated in Figure 4.2. The data set includes IBM call 
option price from 2009/01/02 to 2009/01/27, U.S treasury yield for 3 months and all 
maturities, and CDS spreads during the same time period. 
 
Table 4.2 The comparison of fitting result compared to default-free Option without 
interest rate risk  

Date Default- free 
Option without 
interest rate risk 

Vulnerable Option with 
3- month treasury 

Vulnerable Option with 
Treasury yield for all 
maturities 

2009/01/02 1.82E-05 1.14E-05 (37.51%) 3.74E-06 (79.49%) 
2009/01/05 1.26E-05 1.20E-05 (4.44%) 1.18E-05 (6.34%) 
2009/01/06 1.60E-05 1.37E-05 (14.33%) 1.25E-05 (21.76%) 
2009/01/07 4.53E-05 5.41E-05 (-19.40%) 4.54E-05 (-0.29%) 
2009/01/08 8.57E-05 8.07E-05 (5.77%) 7.90E-05 (7.78%) 
2009/01/09 5.12E-05 4.67E-05 (8.67%) 5.05E-05 (1.23%) 
2009/01/12 3.35E-04 3.27E-04 (2.45%) 3.21E-04 (4.18%) 
2009/01/13 9.65E-05 9.25E-05 (4.14%) 9.48E-05 (1.74%) 
2009/01/14 7.94E-06 9.12E-06 (-14.93%) 6.31E-06 (20.55%) 
2009/01/15 5.98E-06 5.16E-06 (13.64%) 3.15E-06 (47.31%) 
2009/01/16 8.43E-06 3.35E-06 (60.24%) 2.47E-06 (70.77%) 
2009/01/20 2.22E-05 7.10E-06 (67.95%) 5.58E-06 (74.81%) 
2009/01/21 3.70E-05 2.69E-05 (27.19%) 2.05E-05 (44.59%) 
2009/01/22 1.03E-05 7.46E-06 (27.48%) 5.13E-06 (50.14%) 
2009/01/23 8.44E-06 7.59E-06 (10.17%) 2.69E-06 (68.14%) 
2009/01/26 1.60E-05 6.46E-06 (59.60%) 3.87E-06 (75.79%) 
2009/01/27 2.02E-05 7.04E-06 (66.95%) 7.04E-06 (66.93%) 
 
 



21 
 

 
Figure 4.2 The improvement of fitting result compared to default-free option without 
interest rate risk 
 
Case 2: Correlation between Volatility and Default Intensity 
 Considering the correlation between volatility and default intensity, the outcome 
of the comparison for call options is given in Table 4.3 and the ratio of improvement 
is illustrated in Figure 4.3. The data we employed is the same as in Case 1. 
 
Table 4.3 The comparison of fitting result compared to default-free option without 
interest rate risk 

Date Default-free 
Option without 
interest rate risk 

Vulnerable Option with 
3- month treasury 

Vulnerable Option with 
Treasury yield for all 
maturities 

2009/01/02 1.82E-05 7.85E-06 (56.98%) 4.40E-06 (75.90%) 
2009/01/05 1.26E-05 1.19E-05 (5.07%) 1.02E-05 (18.98%) 
2009/01/06 1.60E-05 1.13E-05 (29.20%) 1.16E-05 (27.45%) 
2009/01/07 4.53E-05 4.64E-05 (-2.42%) 4.72E-05 (-4.28%) 
2009/01/08 8.57E-05 7.42E-05 (13.44%) 7.81E-05 (8.87%) 
2009/01/09 5.12E-05 5.40E-05 (-5.65%) 4.79E-05 (6.44%) 
2009/01/12 3.35E-04 3.39E-04 (-1.18%) 3.31E-04 (1.14%) 
2009/01/13 9.65E-05 9.10E-05 (5.68%) 9.26E-05 (4.07%) 
2009/01/14 7.94E-06 9.87E-06 (-24.33%) 3.47E-06 (56.28%) 
2009/01/15 5.98E-06 4.56E-06 (23.70%) 2.27E-06 (61.95%) 
2009/01/16 8.43E-06 3.67E-06 (56.47%) 2.32E-06 (72.48%) 
2009/01/20 2.22E-05 6.32E-06 (71.47%) 3.95E-06 (82.16%) 
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2009/01/21 3.70E-05 2.04E-05 (44.91%) 1.64E-05 (55.63%) 
2009/01/22 1.03E-05 2.99E-06 (70.90%) 4.75E-06 (53.79%) 
2009/01/23 8.44E-06 4.10E-06 (51.47%) 2.10E-06 (75.14%) 
2009/01/26 1.60E-05 5.14E-06 (67.84%) 4.32E-06 (72.93%) 
2009/01/27 2.02E-05 6.32E-06 (70.31%) 5.31E-06 (75.06%) 
 
 

 

Figure 4.3 The improvement of fitting result compared to default-free option without 
interest rate risk 
 
We can observe that in both cases, the calibration result with the interest risk is better 
than that without the interest rate risk. Therefore, we conclude that the model with 
interest rate risk and default risk is more suitable for fitting the implied volatility 
surface.  
 

4.3	 Case	 of	 Put	 Option:	 Joint	 Calibration	 to	

Stock	 Option	 Prices	 and	 Corporate	 Bond	

Yields	
 We extend the pricing model to American put options. Its price with multiple 
risks including market risk, credit risk, and interest rate risk, can be given by 

 𝑃 𝑡, 𝑆𝑡 = 𝑠𝑢𝑝
𝑡≤𝜏≤𝑇

𝐸	∗ 𝑒𝑥𝑝 − (
𝜏

𝑡
𝑟𝑠 + 𝜆𝑠 𝑑𝑠×(𝐾− 𝑆𝜏)

+|𝐹𝑡 	, (4.1) 

One key problem in pricing American-style options is the decision of optimal 
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stopping (or executing) time. The basic Monte Carlo simulation method is often used 
for pricing vanilla options; however, deciding the optimal stopping time leads to a 
problem of simulations on simulations. That costs tremendous computing loading. To 
resolve this, we incorporate the least squares method (Longstaff and Schwartz (2001)) 
that approximates a lower bound of American put option price, and the duality 
approach (Rogers (2002)) that constructs an upper bound of the option price. Then, 
the martingale control method (Fouque and Han (2008)) is employed to enhance the 
accuracy of lower and upper bound prices so that a theoretical price of the American 
put options is defined as the average of these two bound prices. We design such a 
scheme for model calibration to implied volatility surface in the context of put options 
in American style such as IBM put options. The calibration result of the IBM put 
options illustrates in Table 4.4.  
 
Table 4.4 The comparison of fitting result between no default risk put option and 
vulnerable put option of IBM 

Date Default-free Option Vulnerable Option 

2009/01/02 2.16257E-05 0.000126572 (-485.28%) 
2009/01/05 2.41115E-05 0.01005205 (-41589.78%) 
2009/01/06 1.28297E-05 5.06165E-05 (-41589.78%) 
2009/01/07 0.0001735 0.006641747 (-3728.09%) 
2009/01/08 6.75783E-05 6.45998E-05 (4.41%) 
2009/01/09 4.12474E-05 0.00010857 (-163.22%) 
2009/01/12 0.000182168 0.000330275 (-81.30%) 
2009/01/13 0.000167379 0.016699456 (-9877.03%) 
2009/01/14 0.02783 0.02143 (23.00%) 
2009/01/15 5.4E-06 3.4E-05 (-529.63%) 
2009/01/16 0.00075 5.3E-04 (29.33%) 
2009/01/20 1.67664E-05 5.48288E-06 (67.30%) 
2009/01/21 4.8975E-05 1.98379E-06 (95.95%) 
2009/01/22 9.9924E-06 1.14315E-06 (88.56%) 
2009/01/23 7.7345E-06 5.52401E-06 (28.58%) 
2009/01/26 1.10578E-05 9.64401E-06 (12.79%) 
2009/01/27 8.77815E-05 3.00506E-05 (65.77%) 

  
 
Although the literature denoted the CDS can reflect the default risk in the market 
immediately, the joint calibration result of put option and CDS spread does not 
perform well. Therefore, to investigate the risk factor of put options, we involve the 
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corporate bond yield as the combination of default risk and interest rate risk and use 
the method in section 2 to calibrate the corporate bond yield. A joint calibration 
method for American put option and corporate bond yield is, 

 
}�a
�a
= 𝑟>𝑑𝑡 + 𝜎>𝑑𝑊]>

,
  

 	𝜎> = 𝑒
�a
S 	,  

 𝑑𝑦> = 𝛼 𝑚 − 𝑦> 𝑑𝑡 + 𝛽𝑑𝑊S> ,  

 𝑑𝐹> = 𝛼� 𝑚� − 𝑟> 𝑑𝑡 + 𝛽k𝑑𝑊U>	  

 𝑊]	,𝑊S > = 𝜌𝑡 ,  

where 𝑆> is the asset price at time t,	𝜆> is the default intensity at time t, 𝐹> is the 
corporate bond yield without coupon at time t, 𝑊]>  , 𝑊S>  are standard Brownian 
motions, 𝛼, 𝛼�  denote the mean-reversion speed, 𝛽	 ,𝛽k  denote the volatility of 
volatility, and m, 𝑚� are the long-run mean. We assume the correlation of 𝑊]> and 
𝑊S>	 is 𝜌𝑡. The joint calibration results of the IBM put option and IBM bond yield 
are given in Table 4.5.  
 
Table 4.5 The comparison of fitting result between no default risk put option and put 
option with default risk and interest rate risk 
 

Date Default-free Option Option with corporate bond yield 

2009/01/02 2.16257E-05 2.57E-05 (-18.64%) 
2009/01/05 2.41115E-05 1.60E-05 (33.76%) 
2009/01/06 1.28297E-05 1.22E-05 (5.15%) 

2009/01/07 0.0001735 1.13E-04 (34.74%) 
2009/01/08 6.75783E-05 4.01E-05 (40.72%) 
2009/01/09 4.12474E-05 1.02E-04 (-148.00%) 

2009/01/12 0.000182168 1.46E-04 (20.08%) 
2009/01/13 0.000167379 1.88E-04 (-12.95%) 
2009/01/14 0.02783 2.62E-02 (5.78%) 
2009/01/15 5.4E-06 1.61E-06 (70.10%) 
2009/01/16 0.00075 3.62E-04 (51.61%) 
2009/01/20 1.67664E-05 5.97E-06 (64.40%) 
2009/01/21 4.8975E-05 5.24E-06 (89.31%) 
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2009/01/22 9.9924E-06 2.71E-06 (72.93%) 
2009/01/23 7.7345E-06 1.74E-06 (77.55%) 
2009/01/26 1.10578E-05 4.84E-06 (56.25%) 
2009/01/27 8.77815E-05 1.96E-06 (81.76%) 

 
 

 
 
Figure 4.4 The improvement of fitting result compared to default-free Option  
without interest rate risk 
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5	Financial	Implication:	Option	

prices	contain	cross-market	

information	
 In this section, we consider whether the cross-market information can provide 
better calibration result in fitting implied volatility surface and make a complete 
comparison between each extended model and the simplest baseline model, that 
considers only the market risk without any default risk and any interest rate risk. 
 By taking the average of the improvement of mean square error in section 3.2, 
4.1 and 4.2, we acquire the following tables. Table 5.1 below is meant to describe the 
improvement considering only the credit risk for IBM call option and Table 5.2 
explains the improvement considering only the interest rate risk for IBM call option 
 
Table 5.1 The improvement and the significance of mean difference considering only 
the credit risk for IBM call options 

 
Table 5.2 The improvement and the significance of mean difference considering only 
the interest rate risk for IBM call option 

 
From Table 5.1, we observe the approach that assuming the correlation of variance 
and default intensity (Case 1) does not fit the option prices as good as the method we 
proposed (Case 2). Moreover, the Table 5.2 illustrates the U.S. treasury yield for all 
maturities performs better than the 3 month treasury yield does. That is, the U.S. 
treasury yields for all maturities do contain more information than the shorter period 
interest rate. Thus, when calibrating the implied volatility surface, we can use the 
proposed methodology instead of Carr and Wu (2010) to get the better fitting results. 
 To make a complete comparison between those models we proposed, we present 
all the results in Table 5.3 and find that with interest rate risk and credit risk, Case 2 

IBM call Variance Volatility 
Improvement 29.89% 37.79% 

IBM call 3 month treasury yield All treasury yields 
Improvement 23.17% 37.43% 



27 
 

provides a larger improvement than Case 1. In addition, from Table 5.3, we can make 
a conclusion that the best model is integrating the information of considering the 
correlation of volatility and default intensity and the information of the U.S. treasury 
yield for all maturities.  
 To examine the robustness of the results, a paired-sample t test is conducted to 
evaluate whether the models proposed provide the smaller mean square error. The 
results indicate that errors for the base model is significantly greater than errors for 
the proposed models. In Table 5.3, *** represents 99% significance level, ** 
represents 95% significance level and * means 90% significance level. 
 

Table 5.3 The complete calibration result of all models in this paper 
IBM call option IBM put option 

                Credit Risk 
 
Interest Rate Risk 

Variance 
(Case 1) 

Volatility  
(Case 2) 

Corporate Bond 

29.89%*** 37.79%*** 30.86% 
3 month 23.17%*** 22.13%*** 31.4%*** 

All Treasury 37.43%*** 37.72%*** 43.76%*** 
 
Financial Implications 
 In financial literature, information contents of option prices are often discussed. 
For example, see Norden and Weber (2004), Berndt and Ostrovnaya (2007) and their 
references therein. Based on the previous comparison results, we raise the following 
financial questions and try to answer them from the perspective of model calibration. 
Note that the base pricing model contains only the market risk, i.e. the stock price risk 
and its volatility risk. 
(1) Do option prices contain the information of the default risk? 
(2) Do option prices contain the information of the interest rate risk? 
(3) Do option prices contain the information of both the default and interest rate risks?  
 Our answers to these hypothetical questions are based on the improvement 
performance of the joint model calibration. That is, when the joint model induces 
smaller mean square errors to fit the implied volatility surfaces, we say that the 
information content of option prices include those risks considered within the joint 
model. For example, from Table 5.1 we observe that significant improvements 
29.89% and 37.79% are obtained by considering additional default risk modeled by its 
correlation with the variance or volatility, respectively. These results provide a 
positive answer to Question (1) asked above. Similarly, based on improvement results 
from Tables 5.2 and 5.3, our answers to Questions (2) and (3) are both positive. We 
conclude that the joint model provides the best fit to the implied volatility surface. 
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This finding confirms that given the dataset of IBM stock prices, its CDS spreads or 
corporate bond prices, and treasury yields, stock option prices indeed contain cross 
market information, including the market risk, interest rate risk, and credit risk.  

6	Conclusion	
This paper provides a new methodology for joint model calibration of market risk, 
credit risk and interest rate risk. This methodology consists of  
(1) a two-step Monte Carlo procedure for calibration to the term structure of implied 
volatility surfaces, 
(2) a closed-form of bond yield under Vasicek model to calibrate the treasury yield 
and corporate bond yield, 
(3) an approximate default intensity approach under the reduced form model for credit 
risk calibration.  
 
Various combinations of these calibration methods allow a robust and efficient 
estimation for the joint dynamics of risk factors from the equity market, the credit 
market and the bond market. 
 The empirical performance confirms the accuracy of capturing the implied 
volatility surface by the two-stage Monte Carlo calibration method which includes 
Fourier transform method and martingale control variate. By comparing the two-step 
method with some well-known methods of describing the implied volatility such as 
time-varying LMMR, we observe that the calibration result of considering the default 
risk is more accuracy than the time-varying LMMR. 
 In addition, considering the credit risk from the company makes the model more 
complete and the joint dynamics fits more accurately to the market implied volatility. 
It implies that researchers may predict the default probability of the company from the 
option data. We leave this problem as a future research.  
 From the perspective of joint calibration, we propose a consistent model that can 
integrate three markets, rather than having separate models for each market. Based on 
improving performances demonstrated in Section 5, incorporating the information 
content from the credit market and the bond market can significantly reduce the fitting 
errors of the implied volatility surfaces. When a whole joint model is considered, our 
improvement increases up to 40%.  
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