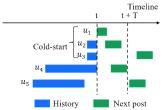
Next Cashtag Prediction on Social Trading Platform with Auxiliary Tasks


Chung-Chi Chen¹, Hen-Hsen Huang^{2,3}, Hsin-Hsi Chen^{1,3}

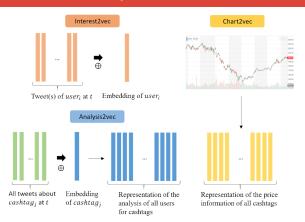
¹Department of Computer Science and Information Engineering, National Taiwan University, Taiwan ²Department of Computer Science, National Chengchi University, Taiwan ³MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan

Motivation \$AAPL support identified \$198.8 ... next move to \$215 \$TVIX making a new 52 week low. (A) (Z) (···) \$SPX 3145 is still possible, the level is the 1.618% extension within The Grand Super Cycle, Ideal Target.

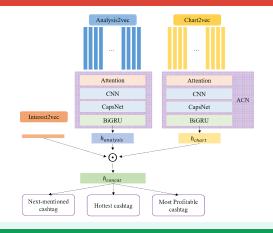
Next Cashtag Prediction

We use the post(s) of $user_i$ at time t to represent the preference of user user_i. With the help of this information, we predict the cashtags that user, will mention within next 5 days.

Auxiliary Task


Hottest cashtag prediction (A_{hot}) This task is aimed at predicting which cashtag will have the highest growth rate of being mentioned within the following T days.

Task Design


Most profitable cashtag prediction (A_{profit})

This task is aimed at predicting which cashtag will have the highest return within the following T days.

Representation

Attentive Capsule Network (ACN) & The Joint Model

Dataset

	Statistic
Number of users in the experimental set	126,369
Avg. number of cashtags mentioned per tweet	4.85
The first date in the training set	May 27, 2018
The last date in the training set	Jan. 2, 2019
Number of instances in the training set	97,740
The first date in the test set	Jan. 3, 2019
The last date in the test set	Feb. 23, 2019
Number of instances in the test set	21,538

Experimental Results & Ablation Analysis

Model	hit@2	hit@3	hit@5
Joint ACN	69.03%	74.01%	80.33%
-Attention	67.30%	71.95%	78.04%
-CapsNet	66.90%	72.05%	78.87%
$-A_{hot}$	68.96%	73.78%	80.24%
$-A_{profit}$	68.74%	73.60%	79.89%

The proportions of errors with hit@k evaluation is significantly different on our test set with 21,538 instances under McNemar's test with p < 0.05 when $k \in \{2,3\}$

Model	Precision@2	Precision@3	Precision@5	Recall@2	Recall@3	Recall@5
Joint ACN	45.50%	38.23%	30.91%	35.70%	41.44%	50.13%
-Attention	43.44%	36.40%	29.35%	33.71%	39.03%	47.19%
-CapsNet	43.62%	36.70%	30.03%	33.59%	39.09%	48.07%
$-A_{hot}$	45.42%	38.12%	30.96%	35.71%	41.17%	50.02%
$-A_{profit}$	45.19%	38.01%	30.84%	35.49%	41.06%	49.74%

Conclusion and Future Works

Experimental results show

- the effectiveness of the proposed ACN model
- the usefulness of the corresponding auxiliary tasks

The proposed task can be extended to

- user grouping
- dynamic interest prediction
- market information prediction such as price movement prediction and market

Works with Financial Textual Data

FinNum-2 Shared Task in NTCIR 2020

- The pilot dataset proposed in this paper is available now.
- More than 15,000 instances in 10,000 unique tweets will be available.
- Macro-F1 score is adopted for evaluating the experimental results.

http://finnum.nlpfin.com

Learning Numeracy for Detecting Exaggerated Information in Market http://numeracy600k.nlpfin.com

0

O