
[14:41 12/5/2010 Bioinformatics-btq158.tex] Page: 1446 1446–1452

BIOINFORMATICS ORIGINAL PAPER Vol. 26 no. 11 2010, pages 1446–1452
doi:10.1093/bioinformatics/btq158

Genetics and population analysis Advance Access publication April 12, 2010

Multi-objective tag SNPs selection using evolutionary algorithms
Chuan-Kang Ting∗ , Wei-Ting Lin and Yao-Ting Huang∗
Department of Computer Science and Information Engineering, National Chung Cheng University,
Chia-Yi 621, Taiwan
Associate Editor: Jeffrey Barrett

ABSTRACT

Motivation: Integrated analysis of single nucleotide polymorphisms
(SNPs) and structure variations showed that the extent of linkage
disequilibrium is common across different types of genetic variants.
A subset of SNPs (called tag SNPs) is sufficient for capturing
alleles of bi-allelic and even multi-allelic variants. However, accuracy
and power of tag SNPs are affected by several factors, including
genotyping failure, errors and tagging bias of certain alleles. In
addition, different sets of tag SNPs should be selected for fulfilling
requirements of various genotyping platforms and projects.
Results: This study formulates the problem of selecting tag SNPs
into a four-objective optimization problem that minimizes the total
amount of tag SNPs, maximizes tolerance for missing data, enlarges
and balances detection power of each allele class. To resolve
this problem, we propose evolutionary algorithms incorporated with
greedy initialization to find non-dominated solutions considering all
objectives simultaneously. This method provides users with great
flexibility to extract different sets of tag SNPs for different platforms
and scenarios (e.g. up to 100 tags and 10% missing rate). Compared
to conventional methods, our method explores larger search space
and requires shorter convergence time. Experimental results revealed
strong and weak conflicts among these objectives. In particular, a
small number of additional tag SNPs can provide sufficient tolerance
and balanced power given the low missing and error rates of today’s
genotyping platforms.
Availability: The software is freely available at Bioinformatics online
and http://cilab.cs.ccu.edu.tw/service_dl.html
Contact: ckting@cs.ccu.edu.tw; ythuang@cs.ccu.edu.tw
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1 INTRODUCTION
Genetic differences between two individuals range from single
nucleotide polymorphisms (SNPs) to large structure variations
(e.g. deletions and duplications). Based on analysis of linkage
disequilibrium (LD) among SNPs, the entire human genome
is shown to be composed of high-LD blocks interspersed by
recombination hotspots (Altshuler et al., 2005; Hinds et al., 2005).
A small subset of SNPs (termed tag SNPs) is capable of capturing
haplotype information in a high-LD block (Carlson et al., 2004;
Chang et al., 2006). Recently, large structure variations have been
discovered by array comparative genomic hybridization (aCGH)

∗To whom correspondence should be addressed.

or massively parallel sequencing platforms. Integrated analysis of
SNPs and structure variations showed that the extent of LD is not
limited to SNPs. For example, a number of copy number variations
(CNVs) are found to exhibit high LD with flanking SNPs, implying
the copy number of each individual is now inferable by tag SNPs
(McCarroll et al., 2008; Redon et al., 2006). In an analysis of an
inversion polymorphism at 8p23, the orientation of each haplotype
can be predicted by 13 tag SNPs (Deng et al., 2008). These results
suggest that a single SNP genotyping platform and well-chosen tag
SNPs are sufficient for capturing alleles of structure variations.

Owing to the limited capacity of a genotyping platform, the
number of tag SNPs is often minimized to increase genome-wide
coverage, which is ordinarily done by capturing extent of LD (e.g.
r2 and D′) or haplotype diversity (Carlson et al., 2004; Zhang et al.,
2004). However, alleles of tag SNPs may be missed or miscalled
due to defective quality of signals during genotyping (Zhao et al.,
2002). These missing data and genotyping errors greatly reduce the
accuracy of tag SNPs, because alleles of tagged variations may be
wrongly inferred (Huang et al., 2005; Liu et al., 2006). Recently,
variants of these methods have also been developed for tagging
multi-allelic variations (e.g. CNV) (McCarroll et al., 2008; Redon
et al., 2006). Nevertheless, the power of tag SNPs is further affected
by tagging bias toward certain alleles. Some alleles may be well
distinguished by many tag SNPs, whereas others are distinguished
by only a few tags. Thus, subsequent association studies using the
tag SNPs will fail to provide unbiased detection power for each
allele.

These issues can be formulated into different objectives in tag
SNPs selection. A small number of tag SNPs, on the one hand, is
always desired given the limited capacity of a genotyping platform
(Carlson et al., 2004). On the other hand, the number of tag SNPs
has to be increased in order to tolerate the influence of missing
data and genotyping errors (Huang et al., 2005). Additionally, the
distance and diversity among haplotype backgrounds of different
allele classes should be considered for providing sufficient and
unbiased power in distinguishing each allele. However, some of
these objectives are intrinsically conflict, e.g. genotyping cost and
tolerance. Existing methods for tag SNPs selection fail to take
multiple objectives into account. Moreover, different sets of tag
SNPs are required to accommodate various platforms and scenarios
(e.g. maximum 100 tags and tolerance for 10% missing data). Thus,
a method that can simultaneously address these issues and generate
multiple non-dominated solutions satisfying distinct constraints of
each objective is highly demanded.

This study formulates the tag SNP selection problem into a four-
objective optimization problem that minimizes the total amount
of tag SNPs, maximizes tolerance for missing SNPs, enlarges
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and balances detection power of each allele class. To resolve
this multi-objective optimization problem, we incorporate a greedy
initialization into two well-established multi-objective evolutionary
algorithms, viz. the non-dominated sorting genetic algorithm-II
(NSGA-II; Deb et al., 2002) and the multiple single objective
Pareto sampling (MSOPS; Hughes, 2003, 2007). The proposed
algorithms can simultaneously find different sets of tag SNPs
considering all objectives, which allow users to extract different
solutions for accommodating various genotyping platforms. The
proposed method is shown to explore larger search space and reduce
convergence time compared to conventional methods. Experimental
results revealed strong and weak conflicts among these objectives.
Given the low missing and error rates of today’s genotyping
platforms, a small number of additional tag SNPs is able to provide
sufficient tolerance and balance detection power of each allele.

The rest of this paper is organized as follows: Section 2 formulates
the multi-objective tag SNPs selection problem. Section 3 sheds light
on the proposed methods. Section 4 summarizes the experimental
results and Section 5 discusses these results. Finally, conclusions are
drawn in Section 6.

2 PROBLEM FORMULATION
This section formulates the multi-objective tag SNPs selection
problem. A set of tag SNPs is defined as a set of SNPs that can
distinguish any two allele classes. The following gives a formal
definition of tag SNPs.

DEFINITION. (Tag SNPs): Given a set of N SNPs {S1,...,SN } and M
allele classes {P1,...,PM }. Let Pi,k denote the k-th element of allele
class Pi. A set of tag SNPs ST is a subset of S that can distinguish
any two allele classes. That is, for any two allele classes Pi and Pj,

there exists at least one tag SNP Sk ∈ST such that Pi,k �=Pj,k .

The multi-objective tag SNPs selection problem is to select a
set of tag SNPs that minimizes the total amount of selected SNPs,
maximizes their robustness against missing data, maximizes the
pairwise distance among allele classes, and minimizes the variance
of these pairwise distances. These four objectives are formally
defined below.

2.1 Compactness
The first objective aims to achieve the greatest compactness by
minimizing the total number of tag SNPs; formally,

min‖ST‖,
where ‖ST‖ denotes the cardinality of set ST.

2.2 Tolerance
This objective is to maximize the tolerance of selected tag SNPs
for missing data. Let Dij(ST) denote the set of tag SNPs in
ST that can distinguish allele classes Pi and Pj . The minimum
cardinality of Dij(ST) among all pairs of alleles gives the number,
i.e. min(‖Dij(ST)‖)−1, of missing SNPs that the set ST of tag SNPs
can tolerate (Huang et al., 2005).

The second objective is then defined by

max

(
min
i,j

‖Dij(S
T)‖

)
.

2.3 Dissimilarity
The present study attempts to generate dissimilar haplotype
backgrounds for distinct allele classes. The similarity of haplotype
backgrounds is measured by the Hamming distance at the selected
tag SNPs. Let KT be the index set of ST, i.e.

ST =
⋃

k∈KT

Sk .

For two allele classes Pi and Pj , their Hamming distance is
defined by

H(Pi,Pj)=
∑

k∈KT

|Pi,k −Pj,k |.

The third objective is to achieve the maximum average Hamming
distance over all pairs of allele classes, i.e.

maxH̄

with

H̄ = 1(M
2
) ∑

0≤i<j≤M

H(Pi,Pj) .

2.4 Balance
In addition to dissimilarity, this study attempts to balance the
detection power of tag SNPs for each allele class. This phenomenon
can be captured by minimizing the variance of Hamming distances
between all pairs of haplotype background defined by one tagging
solution. Consequently, the resulting tag SNPs is unbiased to
distinguishing alleles with sufficient sampling.

The objective is defined by

minVar(H)

with

Var(H)= 1(M
2
) ∑

0≤i<j≤M

(H(Pi,Pj)−H̄)2 .

3 THE PROPOSED METHOD
The tag SNPs selection problem of satisfying a single objective is
known to be NP-hard (Huang et al., 2005). The increase of objectives
makes tag SNPs selection even more intractable. To address this
multi-objective optimization problem, this work presents a novel
greedy initialization and integrates it into multi-objective genetic
algorithms (GAs) based on NSGA-II (Deb et al., 2002) and MSOPS
(Hughes, 2003, 2007), respectively. GA has dealt successfully
with various optimization problems. The basic idea of GA is
mimicking the process of natural evolution—selection, reproduction
and mutation—to manipulate candidate solutions (Holland, 1975).
Based on the principle ‘survival of the fittest’, GA is expected to
evolve candidate solutions toward the optima.

The algorithm NSGA-II is known for its effectiveness in dealing
with optimization problems with two or three objectives. However,
as the number of objectives increases, the utility of Pareto-ranking
methods, like NSGA-II, deteriorates due to the augmented likelihood
of non-dominance (Hughes, 2005; Ishibuchi et al., 2008b; Kukkonen
and Lampinen, 2007; Purshouse and Fleming, 2003; Wagner et al.,
2007). Hughes (2003, 2007) developed MSOPS to resolve this issue
by assessing solutions with multiple ranks. In this article, we propose

1447

 at N
ational T

aiw
an U

niv. H
ospital on N

ovem
ber 1, 2010

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[14:41 12/5/2010 Bioinformatics-btq158.tex] Page: 1448 1446–1452

C.-K.Ting et al.

a greedy initialization to deal with the issue at NSGA-II and to
improve the performance of MSOPS.

The components and operators of the proposed multi-objective
GAs are described in the following subsections.

3.1 Representation and fitness function
A candidate solution, viz. a set of selected tag SNPs, is encoded
into a chromosome c= (c1,...,cN ), where gene ck ∈{0,1} denotes
whether SNP Sk is selected (value 1) or not (value 0).

The multi-objective tag SNPs selection problem considers
compactness, tolerance, dissimilarity and balance. Given multiple
objectives, this study adopts the notion of dominance for fitness
evaluation. A chromosome a is said to dominate chromosome b if
a is better than b in one objective and not worse than b in all other
objectives. In this case, a is assigned a superior rank. If neither a
nor b are dominated, the two chromosomes are said to non-dominate
each other and are given the same rank. The Pareto front represents
the set of solutions that are not dominated by any solutions.

This paper presents multi-objective evolutionary algorithms based
on NSGA-II and MSOPS to address the tag SNPs selection problem.
The NSGA-II algorithm determines whether a chromosome survives
or dies according to two-level evaluation, namely, dominance rank
and crowding distance. The former ranks chromosomes based on
the dominance relation. For non-dominated chromosomes, NSGA-II
further determines their ranks according to the distance (i.e.
crowding distance) of the chromosome from its neighbors.

The MSOPS algorithm uses multiple target vectors to collect
solutions. The target vectors divide the objective space as even
as possible. Each chromosome is evaluated based on its closest
vector. MSOPS gathers good chromosomes in each small space
and accordingly approximates the Pareto front. This study utilizes
the weighted min–max function in Hughes (2003) and ranks
chromosomes using the scores from the aggregate function.

3.2 Initialization
The evolutionary process in GA begins with initialization of
a set (population) of chromosomes. The initialization ordinarily
generates chromosomes at random. Additionally, an ideal GA for
multi-objective optimization problems should not require prior
information about the Pareto front. However, in solving the four-
objective tag SNPs selection problem, we found that conventional
multi-objective GAs result in candidate solutions gathering around
the center of objective space, caused by the easiness of being
non-dominated for more than three objectives. An initialization
based on greedy heuristic is, therefore, proposed to address this
issue.

For the greedy initialization, this study defines the
distinguishability of an SNP Sk as the number of allele pairs
that can be distinguished by this SNP (see Fig. 1). For instance,
distinguishability of S1 is 15 in that this SNP can distinguish
15 pairs of alleles. Notably, the tag SNP selection problem can be
solved by reduction to a variant of set cover problem (Huang et al.,
2005), which requires each element must be covered by a specified
number of sets (termed coverage). For each specified coverage,
a chromosome is constructed by the greedy initialization, which
iteratively selects SNPs for maximum distinguishability until all
elements are covered with the required coverage. Finally, the initial
population is composed of chromosomes with respect to different

Fig. 1. An instance of calculating SNPs distinguishability.

coverage. This approach can achieve an initial population with
diverse chromosomes promoting exploration of solution space.

3.3 Genetic operators
GA selects chromosomes as parents from the population and
then performs crossover and mutation operations to generate their
offspring. This study adopts the binary tournament selection in
view of its accepted good performance. The binary tournament
selection chooses the better of two random chromosomes as a
parent. Performing this selection twice yields a pair of parents for
reproduction, i.e. crossover and mutation.

The crossover operation exchanges and recombines the genetic
information of parents, while the mutation operation slightly
changes the composition of offspring. In this study, we apply
the widely used uniform crossover (Syswerda, 1989) and bit-flip
mutation for the proposed GA. The uniform crossover determines
each offspring gene from either parent at random. The bit-flip
mutation flips (i.e. 0→1,1→0) genes with a predefined probability
called mutation rate pm. That is, each gene has a probability of pm
to be flipped. By using crossover and mutation, candidate solutions
can be recombined and changed.

After generating a set of offspring, GA applies the principal of
‘survival of the fittest’. Restated, only the fittest chromosomes are
selected to survive into the next generation. This article makes use
of the above-stated strategies of NSGA-II and MSOPS for survival
selection concerning multiple objectives.

4 EXPERIMENTAL RESULTS
The present study conducts a series of experiments to evaluate
the proposed methods on the multi-objective tag SNPs selection
problem. All experiments use the data of population haplotypes from
Hinds et al. (2005), where the haplotypes are partitioned into blocks
with limited diversity by (Halperin and Eskin, 2004). Each haplotype
pattern in a block with >1000 SNPs is simulated as a haplotype
background of one allele class. This study uses a block of 1032 SNPs
in the experiments. Incidentally, genotype data can be processed by
reconstructing their haplotypes through phasing programs such as
PHASE (Scheet and Stephens, 2006; Stephens and Donnelly, 2003).

Table 1 summarizes the parameter setting for the adopted
multi-objective evolutionary algorithms based on NSGA-II and
MSOPS. The MSOPS uses 200 vectors dividing the objective space.
To demonstrate the experimental results for four objectives, the
solutions obtained are projected onto six 2D plains (see Figs 2
and 3), of which each axis represents one objective and arrows
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indicate the optimization directions. Additionally, each figure plots
the regression line of power model y=axb +c to indicate the
distribution of solutions found by our algorithm.

Figure 2 illustrates the experimental results of original NSGA-II
and MSOPS. The solutions obtained from NSGA-II gather around
the center; on the other hand, those from MSOPS spread over the
objective space. Specifically, NSGA-II fails to identify solutions
with fewer than 150 tag SNPs, whereas MSOPS can discover
solutions that require as few tag SNPs as about 20 (see Fig. 2a
and e). Similar trends also exist in other objectives. This is because
four objectives cause solutions easy to be non-dominated and then
hinder NSGA-II from exploring the objective space. This outcome
implies that the distribution of the initial population significantly
influences subsequent offspring in NSGA-II.

Next, we examine the effect of greedy initialization on NSGA-II
and MSOPS. Figure 3 shows that greedy initialization can lead to
broader distribution of solutions than that in Figure 2. Notably, the
broadness (or diversity) of solutions is of paramount importance for
multi-objective optimization problems in that it directly affects the

Table 1. Parameter setting for the multi-objective evolutionary algorithms
used in experiments

Parameter Value

Representation Binary string
Population size 200
Initialization Random/greedy
Selection Binary tournament selection
Crossover Uniform crossover with pc =0.7
Mutation Bit-flip mutation with pm =1/l
Termination 500 generations

flexibility for users to choose and adopt the solutions. In addition,
owing to its preference for SNPs with high distinguishability,
greedy initialization tends to increase the difference between
haplotypes and drives solutions toward the optima for the third
objective. These outcomes validate the advantages of the proposed
greedy initialization in improving NSGA-II and MSOPS on the
multi-objective tag SNPs selection problem.

Comparing improvement level, greedy initialization has a more
significant influence on NSGA-II than on MSOPS. This effect
indicates that a well-constructed initial population can direct
subsequent exploration over the objective space and then overcome
the issue of NSGA-II for more than three objectives. As for MSOPS,
greedy initialization can also lead to better distribution of solutions.
In addition, we found that some non-dominated solutions may be
discarded by MSOPS since these solutions are out of their closest
subspace and assigned lower ranks. To address this issue, this
work maintains an archive for MSOPS to store the non-dominated
solutions obtained.

5 DISCUSSION

5.1 General relation between objectives
This subsection discusses our major findings about the conflicts
between the four objectives from experimental results.

5.1.1 Compactness and tolerance The first objective
(compactness) is in conflict with the second one (tolerance)
as expected. Experimental results show that the increase of
tolerance requires additional tag SNPs. More precisely, the growth
in the number of tag SNPs for tolerance is linear rather than
quadratic or exponential (see Fig. 3a and e). With the advance
of genotyping technologies, the number of missing SNPs in most
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Fig. 2. Experimental results of NSGA-II (a–d) and MSOPS (e–h) for the multi-objective tag SNPs selection problem. Obj1 stands for the number of tag
SNPs, Obj2 is the tolerance for missing data, Obj3 measures the average Hamming distance between alleles and Obj4 controls the variance of detection power
in each allele.
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Fig. 3. Experimental results of NSGA-II (a–d) and MSOPS (e–h) using greedy initialization for the multi-objective tag SNPs selection problem.

platforms is limited. Therefore, the consideration of tolerance
provides sufficient power for subsequent association studies at a
low cost in the additional number of tag SNPs. For the platforms
yielding high missing or error rates, however, it requires a relatively
large number of tag SNPs that is directly proportional to the number
of missing data to be tolerated.

5.1.2 Compactness and balance The first objective is in conflict
with the fourth one (balance). That is, balancing the power of
distinguishing each allele class requires more tag SNPs to be
selected. The experimental results in Figure 3d and h indicate that
increase of the number of tag SNPs greatly reduces the variance of
hamming distances between each allele class. After having sufficient
number of tag SNPs, the improvement of balancing becomes less
significant. Therefore, a small increased amount of selected tag SNPs
is able to maintain balance of detection power in each allele class.

5.1.3 Dissimilarity and balance The third objective
(dissimilarity) and the fourth objective (balance) are in conflict
(see Fig. 3c and g). A small average distance between allele classes
comes with a low variance; on the other hand, as a high average
distance is required, the variance between detection power is
augmented as well. Notably, the variance grows exponentially with
the increase of average distance.

5.1.4 Tolerance and dissimilarity The second (tolerance) and
third (dissimilarity) objectives are in conflict (see Fig. 3b and f). This
is because high tolerance genuinely requires more tag SNPs, but
the average Hamming distance does not necessarily increase with
the number of tag SNPs selected. Additionally, the non-dominated
solutions with respect to these two objectives are quite diverse.

In summary, these results showed that some of these objectives
are in weak conflict. Given that the missing and error rates of

most genotyping platforms nowadays are quite low (<5%), the
increase of tolerance and balance of detection power only require
a small additional amount of tag SNPs. In addition, the proposed
evolutionary algorithms provide a collection of candidate sets of
tag SNPs for the users to select according to their requirements.
This flexibility is helpful in selecting tag SNPs with respect to the
constraints of various genotyping projects and platforms. Restated,
the users can sort out and reduce the number of candidate sets by
fixing the values or confining the bounds for certain objectives,
e.g. the number of tag SNPs and missing rate of the platform. The
decrease in number of candidate sets can be significant, especially
when the spread of Pareto solutions is narrow.

5.2 Performance comparison
This study further adopts the performance measures proposed by
Ishibuchi et al. (2008a, b) to assess performance of the proposed
algorithms for the multi-objective tag SNPs selection problem. To
this end, the second and fourth objectives are transformed into
minimization objectives, and all objectives are normalized by the
maximum value. All algorithms were tested five times for the
average results.

5.2.1 Range (sum of the ranges of the objective values) This
measure examines the diversity of solutions, where the range value
means the difference between the highest and the lowest values of
an objective. Figure 4a validates that the greedy initialization can
improve MSOPS and, especially, NSGA-II in spreading the solution
range.

5.2.2 SumMin (sum of the minimum objective values) This
measure is for observing the convergence of solutions toward the
marginal region of the Pareto front. It sums up the minimum
values obtained for each objective. Figure 4b displays the SumMin
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Fig. 4. Performance comparison of four test algorithms in terms of (a) range of objective values, (b) sum of minimum value of each objective, (c) minimum
sum of each objective values, (d) maximum tolerance rate, (e) average tolerance rate and (f) average Hamming distance. GI: greedy initialization.

values for each algorithm. As aforementioned, greedy initialization
generates chromosomes with possible minimum objective values.
Using greedy initialization, both NSGA-II and MSOPS can then
keep evolving these chromosomes to get refined solutions, whereas
those without greedy initialization spend extra time in searching for
promising regions and the optima.

5.2.3 MinSum (minimum sum of the objective values) This
measure calculates the minimum sum of the four-objective values to
assess the intensity that an algorithm converges toward the central
region of the Pareto front. According to the experimental results
in Figure 4c, the original MSOPS gradually exploits the solutions
with minimum sum and achieves better results than NSGA-II does.
On the other hand, NSGA-II using greedy initialization holds good
solutions in the beginning but fails to further improve these solutions
because the excessive number of non-dominated solutions hinders
and deteriorates the development of the population toward the
optima. In addition to solution quality, greedy initialization enhances
MSOPS and NSGA-II in exploitation in the early phase of evolution
and then reduces time consumption on the whole.

5.2.4 Tolerance rate The tolerance rate is defined as the tolerance
divided by the number of selected tag SNPs. Its goal is to check
the ability of a test algorithm in finding the tag SNPs set with
high tolerance rate. The maximum and average tolerance rates are
considered here. Figure 4d and e demonstrate that, regardless use
of greedy initialization, MSOPS yields higher tolerance rate than
NSGA-II does. Particularly, the greedy initialization helps MSOPS
achieve high tolerance rate in the very beginning. As for NSGA-
II, the greedy initialization decreases the tolerance rate in that the

original NSGA-II tends to focus on the central region and then keeps
the tolerance rate at the cost of broadness of solutions.

5.2.5 Average Hamming distance This measure considers the
third objective only. It simply reflects how the average Hamming
distance of haplotype pairs grows in each test algorithm, for which
an increase of hamming distance in the population is desired.
According to Figure 4f, the average Hamming distance for original
NSGA-II does not increase during evolution. NSGA-II using greedy
initialization even decreases the average Hamming distance, which
is caused by its effort on extension of solution distribution. Notably,
these broad non-dominated solutions may be very poor in terms of
average Hamming distance but good for others such as tolerance
and balance. By contrast, MSOPS performs well in this measure;
the greedy initialization further benefits MSOPS in yielding a large
average Hamming distance.

6 CONCLUSIONS
This study formulates the tag SNPs selection problem as a four-
objective optimization problem concerning the number of tag
SNPs, tolerance for missing data, dissimilarity among allele classes,
and balance of detection power. To resolve this multi-objective
optimization problem, we incorporate greedy initialization with
multi-objective evolutionary algorithms based on NSGA-II and
MSOPS. The proposed greedy initialization provides promising
feasible solutions to impel the evolution of population and to reduce
the convergence time.

Experimental results indicate that MSOPS outperforms NSGA-II,
where the latter suffers from the excessive non-dominated solutions
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for a four-objective optimization problem. The proposed greedy
initialization substantially improves NSGA-II and MSOPS in terms
of solution quality and efficiency. By using the greedy initialization,
both NSGA-II and MSOPS can approach the optimal values for
all objectives. In particular, MSOPS with greedy initialization
achieves satisfactory results in several performance measures for
the multi-objective optimization problem.

In summary, the formulation of multi-objective tag SNPs selection
considers more than one aspect, which is more pertinent to real-
world applications. The multiple non-dominated solutions obtained
from the proposed evolutionary algorithms provide users with a
great flexibility in selecting different sets of tag SNPs for different
genotyping platforms and scenarios. Given the low missing and error
rates of today’s genotyping platforms, we found that a small number
of additional tag SNPs can provide sufficient tolerance and balanced
power for most genotyping projects.
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