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Abstract- We propose a new mutation operator - the
biased mutation operator (BMO) - for evolution strate-
gies, which is capable of handling problems for con-
strained fitness landscapes. The idea of our approach
is to bias the mutation ellipsoid in relation to the parent
and therefore lead the mutations into a beneficial direc-
tion self-adaptively. This helps to improve the success
rate to reproduce better offspring. Experimental results
show this bias enhances the solution quality within con-
strained search domains. The number of the additional
strategy parameters used in our approach equals to the
number of dimensions of the problem. Compared to the
correlated mutation, the BMO needs much less memory
and supersedes the computation of the rotation matrix
of the correlated mutation and the asymmetric proba-
bility density function of the directed mutation.

1 Introduction

Evolution strategies (ES) are the fourth main variant of evo-
lutionary algorithms (EA) besides genetic algorithms (GA),
evolutionary programming (EP) and genetic programming
(GP). Evolution strategies are most appropriate to numerical
optimization [21], as their operators are especially designed
for numerical fitness landscapes. The main source for vari-
ation is the mutation operator, which is based on the Gaus-
sian distribution to reproduce mutations in the vicinity of the
parent, a consequence from the maximum entropy princi-
ple for unconstrained search spaces [5]. However, there are
still drawbacks, especially in multimodal and constrained
problems. There are three main principles for the design of
mutation operators which are proposed by Beyer [4]:

* reachability,

* unbiasedness,

* scalability.

The first principle ensures that the whole search space and
strategy parameter space can be reached within a finite num-
ber of generations. The scalability condition ensures that the
mutation strength can adapt to values which guarantee im-
provements during the optimization process. The condition
of unbiasedness is appropriate to unconstrained real search
spaces. But for constrained problems evolutionary algo-
rithms with a self-adaptive step size mechanism often suffer
from a disadvantageous success probability at the boundary
of the feasible search space [14], also see section 3. This

results in premature step size reduction and fitness stagna-
tion. In this paper we introduce a new mutation operator,
the biased mutation operator (BMO), which is capable of
biasing the search into a certain direction and therefore in-
creases the success rate to reproduce better offspring. The
number of additional strategy parameters only grows lin-
early with the number of problem dimensions. Experimen-
tal results show that our approach is capable of dealing with
constrained problems.

In section 2 we will review the most important muta-
tion operators for evolution strategies: standard uncorre-
lated mutation with one and with N step sizes, correlated
mutation and directed mutation for the purpose of compar-
ison. In the next section 3 constrained problems and pre-
mature fitness stagnation is described. In section 4 we will
introduce the new biased mutation operator (BMO). In sec-
tion 5 we will show empirically that our approach is supe-
rior to standard mutation. In the last section 6 we summarize
the results and present the future work we plan to undertake.

2 Mutation operators for evolution strategies

For a comprehensive introduction to evolution strategies re-
fer to [5]. Here it is important to keep in mind that an in-
dividual consists of a vector of objective and strategy vari-
ables. In real valued search spaces the objective variables
are unencoded real values XI, ..., XN representing the as-
signment of the variables of an N-dimensional optimization
problem. The strategy variables contain additional informa-
tion which are usually important for the mutation operator.
There already exists a variety of mutation operators for evo-
lution strategies. For the basic (, + A)-ES 1 standard uncor-
related mutation was introduced by Rechenberg and Schwe-
fel as well as correlated mutation by Schwefel [20]. Many
extensions and variations were introduced within the last
years, e.g. cumulative step size adaptation by Ostermeier,
Gawelczyk and Hansen [18], covariance matrix adaption by
Hansen [8], cauchy mutation by Yauo and Liu [23] or di-
rected mutation by Hildebrand [9]. In the following subsec-
tion the most important ones are reviewed.

2.1 Uncorrelated mutation with one step size

Mutation is the main source for variation in the evolutionary
process. In real-valued search spaces mutation means the
addition or subtraction of a small variation, so that a child

1The +-notation combines the notation for both the selection schemes
plus- and comma-selection.
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Figure 1: The mutation ellipsoids of the different mutation operators in a two-dimensional search space. For the purpose of
better understanding we assume all mutations fall into the ellipsoids instead of taking the probability density functions into
account. From left to the right: (a) uncorrelated mutation with one step size, (b) uncorrelated mutation with N = 2 step
sizes, (c) correlated mutation resulting in rotation, (d) directed mutation with different skewness, and (e) biased mutation
making use of the bias coefficient vector.

evolves which has got a high similarity to its parent, but is
not identical. The simple standard mutation for evolution
strategies makes use of only na = 1 endogenous strategy
variable a, which represents the standard deviation for the
normal distribution. For the purpose of better understanding
it can be seen as the radius for the sphere in which mutations
are created. For ES in real-valued search spaces, objective
variables are mutated in the following way:

.x:=x + z (1)

with the mutation

z := oj.(i (0, 1), ...,IAN(O, 1)) (2)

where Ali (0, 1) provides a random number based on a Gaus-
sian distribution with expected value 0 and standard devia-
tion 1. The strategy variable itself is mutated with the log-
normal rule:

:= Oe((rA(0,1)) (3)

This mechanism is the key to self-adaptation of the step
sizes.

2.2 Uncorrelated mutation with N step sizes

In the basic (, + A)-ES normally a vector of n, = N step
sizes is used, which results in mutation ellipsoids:

z := (o4Ai(0, 1),...JN.AN(0O 1)) (4)

The corresponding strategy parameter vector is mutated
with the extended log-normal rule:

a :- e(TKo(Oi)) * (aie(r11(7i), . Ne( N()) (5)

The parameters To and ri have to be tuned. Comprising,
an individual a consists of the object parameter set xi with
1 < i < N, the mutation strength vector and the assigned
fitness F(x). So it can be specified by

a= (xl, ..., XN,ia . , N,F(x)) (6)

2.3 Correlated mutation

For some fitness landscapes it is more beneficial to use a
rotated mutation ellipsoid for the purpose of an improve-
ment of the success rate. Rotation of the mutation ellipsoid

is achieved by the correlated mutation proposed by Schwe-
fel [20]. For an N-dimensional problem k = N(N - 1)/2
additional strategy parameters, the angles for the rotation
of the mutation ellipsoid, are introduced. Let a again be the
vector of step sizes andM be the orthogonal rotation matrix.
The mutations are reproduced in the following way:

z := M(91A"i(0, 1), ..., YNAVN(0, 1)) (7)

For a self-adaptation process the k angles al, ...oak have to
be mutated. Schwefel [20] proposed

a& = a += 3± A(0, l) (8)

with ,B = 0.0873 corresponding to 5°.

2.4 Directed mutation

Similar to the idea of the correlated mutation, the assump-
tion of the directed mutation is that in some parts of the
landscape a success rate improvement can be achieved by
skewing the search into a certain direction. The idea of
the directed mutation proposed by Hildebrand [9] is the us-
age of an asymmetrical mutation operator. This approach
demands an asymmetry parameter set of N additional pa-
rameters c' = (cli, ...cN). These parameters determine the
mutation direction and therefore only cause linear growth
of the strategy parameters instead of quadratic growth of
the correlated mutation. The idea of skewing the mutations
into a certain direction is similar to our approach. But a
rather complex calculation of the asymmetric probability
density function is necessary, because it has to fulfill the
corresponding mathematical specifications of a probability
density function. Figure 1 visualizes the effect of the di-
rected mutation operator when mutations are skewed into
a certain direction. The highest probability to reproduce
mutations is still in the neighborhood environment of the
child. In order to decouple asymmetry from the step sizes
a normalized directed mutation operator has recently been
proposed by Berlik [3].
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3 Constrained problems and premature fitness
stagnation

3.1 The NLP Problem

Practical optimization problems, e.g. engineering problems,
are in most cases constrained. The constrained nonlinear
programming (NLP) problem is defined as follows: Find a
solution

X = (XIiX2i ... Xn),1(9)
which minimizes f(x):

f( ) -min., xEX
inequalities gi(x) < 0, i = 1, ..., k

equalities hj(x') = 0, j = 1, ...,1

(10)

(11)
(12)

A feasible solution xF satisfies all k inequality and 1 equality
constraints.

3.2 Constraint handling techniques

Various constraint handling techniques exist. For a sur-

vey of constraint handling techniques for evolutionary al-
gorithms have a look at [7] or [16]. Most methods fall
into the category of penalty functions. The idea of penalty
functions is to allow the evolutionary process to discover
the whole search space, but to penalize the infeasible part.
Static penalty functions use defined penalties [10], [15],
while dynamic penalties depend on the number of gener-

ations, e.g. see [12]. Annealing penalty functions take an

external cooling scheme into account [12], while adaptive
methods tune the penalties according to features determin-
ing the progress of the evolutionary search [1]. Constraint
handling techniques exist that do not use the penalty ap-

proach. The decoder method [16], [13] builds up a re-

lation between the constraint search space and an uncon-

strained one using a decoder function. Repair algorithms
repair infeasible solutions using heuristics like minimizing
the constraint violation [2], [7]. Multiobjective methods can

be used as constraint handling methods when treating the
constraints as separate objectives [11], [6], [22], [19]. Re-
cently, Coello introduced a technique based on a multimem-
bered evolution strategy combining a feasibility comparison
mechanism with several modifications of the standard ES
[17].

3.3 Premature fitness stagnation

Premature fitness stagnation is caused by a disadvantageous
success probability near the infeasible part of the search
space [14]. In the vicinity of the constraint boundary the
success area can be shortened by the infeasible search space.

The success area is denoted as the part of the mutation el-
lipsoid, in which infeasible solutions have got a better fit-
ness than their parent. If the step sizes are bigger than the
distance from the center of the mutation ellipsoid to the
constraint boundary the success area is shortened. Figure
2 illustrates the situation. However, for smaller step sizes
the success area is not shortened. So the process of self-
adaptivity favors individuals with smaller step sizes. The

Figure 2: Premature fitness stagnation in the vicinity of the
constraint boundary. We assume that all mutations fall into
the circles in the case of uncorrelated mutation. The marked
success area increases for smaller step sizes (right) in com-
parison to bigger ones (left).

consequence of this premature step size reduction is prema-
ture fitness stagnation before reaching the optimum. Ex-
perimentally premature fitness stagnation is shown in the
experiments of section 5.1.

Figure 3: Principle of the BMO in two dimensions: The
center of the mutation ellipsoid is shifted by the bias coeffi-
cient vector b within the bounds of the step sizes v!.

4 The Biased mutation operator (BMO)

Unlike directed mutation, the BMO does not change the
skewness, but biases the mean of Gaussian distribution to
lead the search into a more beneficial direction. This is re-

flected in the success rate of reproducing superior offspring.
For the BMO we introduce a bias coefficient vector (, which
indicates the level of bias relative to the standard deviation
a~.

(13)

For every i E 1, ...,N the bias vector b = (bl, ..., bN) is
defined by:

bi = j-% (14)

Since the absolute value of bias coefficient (i is less than
or equal to 1, the bias will be bound to the step sizes oi.

This restriction prevents the search from being biased too
far away from the parent. Figure 3 illustrates the BMO. The
BMO follows the standard way of mutation:

x' :=X±Z. (15)
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The mutation in the BMO works as follows:

z:= (ulKl(0,1) + bl, *-,UNKN(O, 1) + bN) (16)
- (uAl (O, 1) + 61 1, ..N,ONKN(O, 1) + &NTUN) (17)
- (alJ1fi/ 1, 1), .., NKN(N, 1)N) (18)

In terms of modifying the mutation strength, the aforemen-
tioned log-normal rule is applied. Furthermore, in the BMO
the bias coefficients are mutated in the following way:

(19)

The parameter -y is a new parameter introduced for the BMO
to determine the mutation strength on the bias. In section
5 recommendations will be proposed to tune this parame-
ter. The BMO biases the mean of mutation and enables the

like evolution strategies, it is not easy to find an optimum
which lies on the boundary of the feasible search space due
to premature step size reduction. This results in premature
fitness stagnation before approximating the optimum, also
see [14]. For big step sizes the constrained search space cuts
off a big area of success to reproduce better mutations than
the parent. So the step sizes reduce self-adaptively before
reaching the area of the optimum.

5.1 Experimental results

First of all we show the behavior of a (p + A)-ES with stan-
dard uncorrelated mutation operator on our four selected
constrained test problems, see the appendix A. The experi-
mental conditions are shown in table 1. We follow the rec-
ommendation for the parameters To and Tr

To =
1

and
\12N

1
Ti =

V2VrN

-4 -2 b 2

Figure 4: Comparison of standard mutation (solid), directed
mutation (dotted), and biased mutation (dashed) with bias b.

evolution strategies to reproduce offspring outside the stan-
dard mutation ellipsoid. To direct the search, the BMO en-

ables the mutation ellipsoid to move within the bounds of
the regular step sizes. Without the BMO the success rate
to reproduce better offspring is relatively low because many
mutation lie beyond the feasible search space or have got
a worse fitness, as described in section 3.3. The bias co-

efficient vector ( improves the success rate situation as the
success area increases. The BMO approach is as flexible
as correlated and directed mutation, but is less computa-
tional expensive than both methods. In comparison to corre-

lated mutation N (N-1) additional strategy parameters can

be saved. Furthermore, the rotation of the mutation ellip-
soid which demands O(N2) steps can be saved. Concern-
ing the directed mutation the computation of the random
numbers of an asymmetric probability density function is
usually more computationally expensive than the computa-
tion of Gaussian random numbers. Especially, in practise
the implementation is less complex. Figure 4 shows a com-

parison of the different probability density functions of the
three mentioned approaches.

5 The BMO on constrained numerical prob-
lems

For many optimization problems the search space is con-

strained due to a variety of practical conditions. For evolu-
tionary algorithms with a self-adaptive step size mechanism

Intermediate recombination was used for objective and
strategy variables. As constraint handling method the sim-
ple death penalty, i.e. the rejection of infeasible solutions,
was used. Table 2 shows the results from 100 runs. The
experiments show that the evolution strategies with uncor-

related standard mutation are not able to approximate any

of the optima of the constrained problems within the given
number of generations. Instead, the evolution strategies suf-
fer from fitness stagnation before reaching the optimum.

problem
2.40
2.41
gO4
g09

ES-type
(15,300)
(15,300)
(15,100)
(15,100)

0.1

0.1
0.1
0.1

generations
1000
500
200
500

runs

100
100
100
100

Table 1: Parameter settings for the experiments on the test
problems, the parameter -y is used only for the BMO.

The experimental results of our biased mutation opera-

tor (BMO) on the constrained test problems are presented
in table 3. The results show that due to the BMO approach
the ES are capable of approximating the optimum in ev-

ery run on the three problems 2.40, 2.41 and HB. Experi-
ments with different settings for the mutation strength pa-

rameter a for the mutation of the bias coefficient vector (
showed that the setting 7y = 0.1 is a reasonable recommen-
dation. The experiments on problem gO9 show no signifi-
cant improvement. Here the BMO is not capable of guid-
ing the search into a more beneficial direction to prevent
fitness stagnation. Moreover, we conduct one-tailed t-test
to examine whether or not there exists statistically signifi-
cant improvement of the BMO over uncorrelated standard
mutation in solution quality. Table 4 shows the t-test re-

sults of the three of the four experiments: The extremely
small p-values (<< 0.05) in this table show that the BMO
can improve the solution quality over standard uncorrelated
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problem optimum best mean worst std.dev
2.40 -5000.00 -4999.74 -4911.51 -4691.61 3.53
2.41 -17857.14 -17857.12 -17340.42 -15912.11 2.66
g04 -30665.539 -30665.539 -30660.15 -30631.48 0.54
g09 680.630 680.63 680.66 680.79 0.00279

Table 2: Experimental results of the evolution strategies (see table 1) with uncorrelated standard mutation and N step sizes
on the four constrained test problems.

problem optimum best mean worst std.dev
2.40 -5000.00 -5000.00 -5000.00 -5000.00 1.4 10-10
2.41 -17857.14 -17857.14 -17857.14 -17857.14 3.3 .10-12
g04 -30665.539 -30665.54 -30665.54 -30665.49 3.2 i10-4
g09 680.630 680.6310 680.67 680.78 0.001599

Table 3: Experimental results of the evolution strategies (see table 1) with the BMO on the constrained test problems.

mutation significantly. This fact validates the effectiveness
of the BMO on these problems. However, no improvement
is achieved on problem g09. Here the BMO is obviously not
capable of improving the success rate by biasing the muta-
tion self-adaptively. Further experiments showed that both
the correlated and the directed mutation are capable of ap-
proximating the optimum of the constrained problems sim-
ilar to the BMO.

100

0,01

0.0001

1e-08

50 100 150 200

generations
250 300

Figure 5: Fitness development of an (15,100)-ES with un-

correlated mutation with N steps sizes (standard) and with
the BMO (bmo) on problem g04. On the y-axis the devel-
opment of the difference between fitness and the optimum
is shown on a logarithmic scale.

5.2 Convergence Speed

Figure 5 shows the fitness development of 20 runs of a

(15,100)-ES on problem g04 with uncorrelated mutation (N
step sizes) and with the BMO. On the y-axis the difference
between the fitness in each generation and the optimum is
visualized on a logarithmic scale. As the figure shows, the
BMO converges faster than the standard approach. Over
the whole run the BMO-fitness develops faster than the fit-
ness of the standard mutation. For both approaches the fit-

problem t-value degree of p-value
freedom

2.40 250.67989 99 6.912. 10-141
2.41 1942.5564 99 6.861 . 10- 229
g04 99.814815 99 1.7996. 10-101

Table 4: The t-test verifies that the BMO is superior to stan-
dard uncorrelated mutation on three of the constrained prob-
lems.

ness does not develop logarithmically linear, but comprises
phases of slower convergence.

6 Conclusions and future work

We have introduced a new biased mutation operator (BMO)
which is based on shifting the mutation ellipsoid self-
adaptively to improve the success rate for reproducing better
offspring. The BMO approach can be as flexible as corre-
lated mutation and directed mutation, but is less computa-
tionally expensive. The adaptation process of the bias of
mutation is more efficient than the adaptation of the corre-
lated mutation angles because only N additional endoge-
nous strategy variables are necessary. In comparison to di-
rected mutation, the computational effort of calculating an
asymmetric probability density function is not necessary.

Experimental results showed that the BMO approach is
helpful to improve the ability of convergence. Further in-
vestigation is necessary to evaluate the efficiency of conver-
gence on constrained and multimodal problems as well.
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A Test problems
Problem 2.40 - Schwefel's problem 2.40 [21]

Minimize:
5

f(x) = -Exi
Cr1

Constraints:

{ j +,gJ()t- E (9 + i)xi + 50000 > 0,
i=l

forj-1,...,5
for j 6

x = (5000, 0, 0, 0, 0)T
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f(x*) = -5000

92 bis 96 active.

Problem 2.41 - Schwefel's problem 2.41 [211
Minimize:

5
F(x) =-(ixz)

Constraints like problem 2.40.
Minimum:

X =(0,0,0,0, )4
250000

f (X* ) = _ 50014

g, active forj = 1, 2, 3, 4, 6.

Problem g04 - Himmelblau's nonlinear optimization problem. Minimize:

f() = 5.3578547X34+0.8356891xlx5+37.293239x1-40792.141

Constraints:

=1()=85.334407+0.0056858x2x5+0.00026xlX4-0.0022053x3x5

92(x) = 80.51249+0.0071317x2x5+0.0029955xlx2+0.0021813x32
93(X) = 9.300961+0.0047026x3x3+0.0012547xlX3+0.0019085x3x4

0 < g (7) < 92

90 < 92(x) < 110

20 < 93(x) < 25

78 < xi < 102

33 < X2 < 45

27 < xi < 45 (i = 3,4,5)

Optimum:

x = (78.000, 33.000, 29.995, 45.000, 36.776)

f (x*) = -30665.539

Problem g09 Minimize:

f(x) = (Xl - 10)2 + 5(X2 - 12)2 + X4 + 3(x4 -11)2
+1ox5 + 7x6 + x4 4X6X7 - 1OX6 -8x7

Constraints:

2 4 2
g () = -127 + 2X1 + 3x2 + X3 + 4x4 + 5X5 < 0

92(X) = -282 + 7x1 + 3X2 + 1OX23 + X4-X5 < 0

93(X) 196 + 23x, + x2+ 6x2-8x7 < 0

94(x) = 4x, + X2 - 3x1x2 + 2X3 + 5x6 - 11X7 < 0

x* = (78.000,33.000, 29.995,-45000, 36.776)

-10 < xi < 10(i=1.7)

x* = (2.330499, 1.951372, -0,4775414, 4.365726,

-0.6244870, 1.038131, 1.594227)

f (x*) = 680.630
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