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Abstract— Multi-parent crossover allows more than two par-
ents participating in crossover. The increase of parents in
crossover intensifies exploitation or exploration or both; how-
ever, the intensification is often unbalanced and consequently
causes deterioration in performance. In this paper we propose
the use of supermajority to address the issue of lopsided
intensification on exploitation and exploration in multi-parent
crossover. The proposed crossover, called biased occurrence-
based scanning crossover (bOB), controls the tendency toward
exploitation or exploration by the threshold in supermajority.
Two adaptive strategies are developed to adjust the threshold
of bOB. Experimental results indicate that bOB can achieve
significant improvement on uniform crossover and occurrence-
based scanning crossover in both solution quality and conver-
gence speed. Precisely, the improvement in mean best fitness
ranges from 4–89% on our test problems. The preferable
results validate that bOB crossover can not only enhance the
performance but also provide an effective way to control the
exploitation and exploration in crossover.

I. INTRODUCTION

Evolutionary algorithms (EAs) have shown their effec-
tiveness in dealing with search and optimization problems.
The essence of EAs is simulating natural evolution, such as
selection, crossover, and mutation to find the near-optimal
solutions [7]. Crossover in EAs is ordinarily performed with
two parents, by analogy with sexual reproduction in nature.
However, it is not necessary to limit the number of parents
in EAs. Multi-parent crossover allows more than two parents
participating in the crossover operation. In terms of the
number of parents, multi-parent crossover can be viewed as
a generalization of traditional 2-parent crossover.

Several multi-parent crossover operators have been pro-
posed [2], [3], [10]. In general, the increase of parents brings
about a more comprehensive survey for determining the
offspring genes and leads to a stronger tendency towards ex-
ploitation or exploration or both [2], [12], [13]. An effective
EA, nevertheless, requires a balance of these two driving
forces: Strong exploitation leads to a rapid convergence
but may suffer from premature convergence, while strong
exploration helps to search more regions but pays the cost of
efficiency. Designing effective strategies to control the power
intensified by the increase of parents is therefore a key issue
in improving the performance of multi-parent crossover.

This paper presents a novel approach to address the issue
of lopsided intensification on exploitation or exploration in
multi-parent crossover. Specifically, we introduce the con-
cept of supermajority into the occurrence-based scanning
crossover (OB-Scan) [4] — a multi-parent generalization of
uniform crossover — to replace the simple majority system
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for determining offspring genes among multiple parents.
The threshold in the supermajority affects the tendency of
OB-Scan towards exploitation or exploration. Two strategies
are further developed to adaptively adjust the threshold in
response to the allele frequency. Experimental results show
the proposed approach can effectively balance exploitation
and exploration and then achieves significant improvement
on OB-Scan in terms of convergence speed and solution
quality on our benchmark problems.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work about multi-parent crossover. In
Section 3, we detail the proposed multi-parent crossover and
the derivative strategies. Section 4 presents the experimental
results and performance evaluation. Finally, conclusions are
drawn in Section 5.

II. MULTI-PARENT CROSSOVER

Multi-parent crossover breaks through the convention of
using two parents in crossover. The debut of multi-parent
crossover in evolutionary computation was as global recom-
bination in evolutionary strategies (ES) [1], [10]. Global
recombination determines each offspring gene according to
the whole population rather than only two parents. Such a
global form allows an offspring to inherit from more than
two parents.

For genetic algorithms (GAs), several multi-parent
crossovers have been proposed. Eiben et al. proposed scan-
ning crossover [4] and diagonal crossover [5], [6], which gen-
eralize uniform crossover [11] and one-point crossover [7],
respectively. Depending on the heuristics applied to it,
scanning crossover has three variations: uniform scanning
crossover (U-Scan), occurrence based scanning crossover
(OB-Scan), and fitness based scanning crossover (FB-Scan).
Experimental results show that both scanning crossover
and diagonal crossover can achieve better performance than
their 2-parent versions in several test functions. Mühlen-
bein et al. [9], [18] introduced the concept of global recom-
bination into GAs as gene pool recombination (GPR). Rather
than from two parents, GPR samples the genes for crossover
from the gene pool, which consists of several pre-selected
parents. The studies indicate that GPR and its variants are
easier to analyze and these methods can converge faster
than 2-parent recombination. Tsutsui and Jain [16] proposed
multi-cut crossover (MX) and seed crossover (SX). Multi-
cut crossover generalizes the classic two-point crossover and
was shown empirically to outperform diagonal crossover.

In addition to binary-coded GAs, Tsutsui and Ghosh [14],
[15] presented three multi-parent crossover operators for real-
coded GAs: center of mass crossover (CMX), multi-parent
feature-wise crossover (MFX), and seed crossover (SX).
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Fig. 1. Examples of 2-parent OB-Scan (left) and 4-parent OB-Scan (right)

Experimental results demonstrate that these multi-parent
crossovers can lead to better performance although the
performance is problem-dependent. Another multi-parent
crossover, simplex crossover (SPX) [17], produces offspring
on the basis of the simplex sampled from multiple parents.
Their results show that SPX performs well with three or four
parents for multimodal and epistatic problems. Moreover,
Kita et al. [8] introduced multiple parents into unimodal
normal distribution crossover (UNDX) to enhance the di-
versity of offspring. This multi-parent extension of UNDX
exhibits its improvement in search ability on highly epistatic
problems.

The theoretical work [12], [13] reveals that the increase of
parents in OB-Scan intensifies the exploitation of the search.
The one-sided intensification speeds up the convergence at
the risk of premature convergence, which is reflected in
the poor solution quality of OB-Scan using more than two
parents. The present paper is to address this issue through
supermajority.

III. THE PROPOSED APPROACH

In this paper we introduce the concept of supermajority
into OB-Scan to deal with the issue of unbalanced ex-
ploitation and exploration. A supermajority is a majority
required to exceed a specified percentage θ higher than
simple majority, e.g. θ = 60% of total votes. Through control
over the supermajority threshold θ, we are able to regulate
the tendency of OB-Scan towards exploitation or exploration.
Before describing the approaches, we give a definition of the
chromosome and the population in binary-coded GAs.

Definition 1 (Chromosome and Population):

1) a chromosome �c is encoded as a bit string, i.e. �c
def=

(c1, . . . , cl) ∈ {0, 1}l, where ci denotes a gene and l
is the chromosome length;

2) the population C is a multiset of chromosomes: C
def={

�c1, . . . ,�cm | �ci ∈ {0, 1}l
}

, where m is called the pop-
ulation size.

OB-Scan is a multi-parent generalization of uniform
crossover. Rather than random, OB-Scan determines off-
spring genes depending on the occurrence of parental genes
at that locus. Specifically, it takes the simple majority of
parental genes as the offspring gene for each locus. Note
that in this paper OB-Scan is defined to break ties by
randomly1 choosing a parental gene at that locus. Figure 1

1The original OB-Scan [4] breaks ties by directly inheriting the gene
from the first selected parent. However, random tie break conforms to the
generalization of uniform crossover.

gives examples of 2-parent OB-Scan and 4-parent OB-Scan,
where 2-parent OB-Scan corresponds to uniform crossover.

Definition 2 (OB-Scan): Given n parents �c1, . . . ,�cn ∈ C,
OB-Scan reproduces an offspring �c′ = (c′1, . . . , c′l) by, for
k = 1, . . . , l,

c′k =




0 1
n

∑n
i=1 ci,k < 1

2 ,

1 1
n

∑n
i=1 ci,k > 1

2 ,

cr,k otherwise,

where ci,k denotes the gene of parent �ci at locus k, and
r ∈ {1, . . . , n} is generated at random.

The way that OB-Scan decides offspring genes is a “simple
majority” voting in essence; that is, an allele gets elected if
more than half of the total parents hold it. The theoretical
analysis [12], [13] indicates that increasing the number of
parents in OB-Scan leads to a higher probability for the major
alleles in the population to exist in every offspring, which
will cause the population to concentrate on a certain region
and thus lose the diversity rapidly. This situation is so-called
premature convergence, a result of unbalanced exploitation
and exploration. In other words, OB-Scan using more than
two parents suffers from premature convergence because it
excessively intensifies exploitation but lessens exploration.

However, OB-Scan provides the capability for other voting
system, namely, other criterion for determining offspring
genes. In this paper we use the “supermajority” in place of
the simple majority to deal with the issues in OB-Scan. The
supermajority threshold θ represents the required level for the
candidates to be elected. In the supermajority voting system,
the winner requires a higher level (θ > 1

2 ) of support than
in simple majority voting system. The proposed approach is
called biased occurrence-based scanning crossover (bOB) in
that the threshold for supermajority biases the requirement
for alleles 0 and 1 to be selected. The formal definition of
bOB is given below.

Definition 3 (bOB): Given n parents �c1, . . . ,�cn ∈ C and
the thresholds 0 ≤ θk ≤ 1, bOB reproduces an offspring
�c′ = (c′1, . . . , c

′
l) by, for k = 1, . . . , l,

c′k =




0 1
n

∑n
i=1 ci,k < θk,

1 1
n

∑n
i=1 ci,k > θk,

cr,k otherwise,

where ci,k denotes the gene of parent �ci at locus k, and
r ∈ {1, . . . , n} is generated at random.



TABLE I

TEST FUNCTIONS (RAS, SCH, AND GRI)

Name Function Range of xi N Bits of xi l

F2e fF2e =
N−1P
i=1

h
100

`
xi+1 − x2

i

´2
+ (xi − 1)2

i
[−2.048, 2.047] 10 12 120

RAS fRAS = 10N +
NP

i=1

ˆ
x2

i − 10 cos (2πxi)
˜

[−5.12, 5.11] 10 10 100

GRI fGRI = 1 +
NP

i=1

x2
i

4000
−

NQ
i=1

cos
“

xi√
i

”
[−512, 511] 10 10 100

Remark 1: Uniform crossover and OB-Scan are special
cases of bOB: n-parent OB-Scan corresponds to n-parent
bOB with θk = 1

2 for all k ∈ {1, . . . , l}, while uniform
crossover corresponds to 2-parent OB-Scan.
By definition, bOB is a general form of uniform crossover
and OB-Scan. The additional parameter, θk, plays an im-
portant role on the decision criterion of bOB for offspring
genes. Restated, the value of θk biases bOB in favor of allele
0 or 1 at offspring locus k: The case θk > 1

2 gives rise to
a supermajoritarian requirement for allele 1 to be elected,
which encourages bOB to choose 0 as the offspring gene.
Conversely, the case θk < 1

2 brings about a supermajority
for allele 0 so that bOB tends to chooses allele 1.

In view of the above effects, we develop two strategies to
control the parameter θk adaptively. The strategies are based
on the allele frequency (or gene frequency), which represents
the relative frequency of an allele in the population for a
locus.

Definition 4 (Allele Frequency): Let C
(α)
k = {�c ∈ C |

ck = α} be the subset in which the chromosomes possess
allele α at locus k. The allele frequency is defined by

p
(α)
k

def=
|Ck(α)|
|C| ,

where | · | denotes the set cardinality.
For simplicity, we refer to the allele frequency p

(1)
k as pk

and refer to p
(0)
k as (1 − pk) since binary-coded GAs hold

only two types of allele frequency p
(1)
k and p

(0)
k with p

(0)
k =

1 − p
(1)
k for any locus k.

The proposed strategies for determination of threshold θk

are: for all k = 1, . . . , l,

STRATEGY 1: θk = pk

STRATEGY 2: θk = 1 − pk

The bOB operators using the above strategies are denoted
as bOB(n, pk) and bOB(n, 1 − pk), respectively. The two
strategies result in contrary effects on the determination of
offspring genes: bOB(n, pk) makes the major alleles in the
population more difficult to be selected as offspring genes,
while bOB(n, 1 − pk) makes them easier. That is to say,
bOB(n, pk) tends to pull the allele frequency back to the
neural frequency 0.5. This effect is expected to allow more
exploration and relieve the premature convergence caused
by the one-sided intensification on exploitation when using
more than two parents in OB-Scan. The bOB(n, 1 − pk),

TABLE II

PARAMETERS OF GAS USED IN THE EXPERIMENTS

Representation Bit string
GA model Generational GA

Population size 100
Parent selection 2-tournament

Crossover OB-Scan, bOB
Number of parents 2, . . . , 10
Crossover rate pc 1.0

Mutation Bit-flip
Mutation rate pm 1/l
Survivor selection µ + λ

Termination 500 generations
Number of runs 100 runs per experiment

on the other hand, encourages the preference for the major
alleles and pushes the allele frequency toward 0 or 1,
which will further increase the exploitation and thus cause
an faster but more likely premature convergence than OB-
Scan. Through θk we can control the tendency of crossover
toward or against choosing major alleles as offspring genes;
consequently, the exploitation and exploration in bOB can
be regulated. The effects of the proposed bOB(n, pk) and
bOB(n, 1 − pk) will be thoroughly examined in the next
section.

IV. PERFORMANCE EVALUATION

This work conducts a series of experiments to evaluate
the performance of the proposed bOB. To this end, we
compare the performance of GAs using uniform crossover,
OB-Scan, bOB(n, pk), and bOB(n, 1−pk), respectively. Note
that 2-parent OB-Scan corresponds to uniform crossover.
The effectiveness of bOB on enhancing OB-Scan will be
examined in terms of solution quality and convergence speed.

The test functions include the extended De Jong’s sec-
ond function (F2e), the Rastrigin function (RAS), and the
Griewangk function (GRI). Table I describes of these test
functions and the related parameters. Note that the problem
is to find the global minimum of these test functions. The
setting of GAs for the experiments is summarized in Table II.
Each experiment includes 100 independent runs.

A. Solution Quality

Figure 2 compares the solution quality for OB-Scan,
bOB(n, pk), and bOB(n, 1 − pk) using different number
of parents. The experimental results show that, in general,
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Fig. 2. Mean and standard error of the best fitness for GAs using OB-Scan, bOB(n, pk), and bOB(n, 1 − pk) with different number of parents on
(a) the F2e, (b) the RAS, and (c) the GRI functions

bOB(n, pk) outperforms OB-Scan while OB-Scan outper-
forms bOB(n, 1 − pk) in terms of solution quality. The
preferable results of bOB(n, pk) demonstrate its effectiveness
on overcoming the issue of excessively intensified exploita-
tion in OB-Scan. In addition, the performance of bOB(n, pk)
becomes better as the number of parents increases. On the
other hand, OB-Scan and bOB(n, 1 − pk) using more than
two parents perform worse than their 2-parent versions. The
increase of parents worsens the resultant fitness for these
two crossovers. This poor outcome reflects the problem of
unbalance of exploitation and exploration in OB-Scan and
especially in bOB(n, 1 − pk).

Table III accesses the improvement of bOB(n, pk) on uni-
form crossover, which is the OB-Scan performing best in our
experiments. The table exhibits that GAs using bOB(n, pk)
gain superiority in mean best fitness over GAs using uniform
crossover by 62–89% on the F2e, 16–38% on the RAS,
and 4–28% on the GRI functions. Moreover, we perform
a one-tailed t-test to check the statistical significance. With
confidence level α = 0.05, the p-values in Table III validate
that bOB(n, pk) using 2 to 10 parents is capable of significant

improvement on uniform crossover in mean best fitness,
except bOB(2, pk) on the GRI function. The results also
reveal that using more than two parents in bOB(n, pk)
achieves more significant improvement on uniform crossover.
The significance, nevertheless, does not get greater absolutely
with the increase of parents: In all the three test functions,
even though the p-values decreases as the number of parents
increases from 2 to 6, the tendency of p-values becomes
inconclusive for bOB(n, pk) using more than 6 parents.

B. Convergence Speed

In terms of convergence speed, we first look into the
influence of the number of parents on the convergence of
GAs using OB-Scan, bOB(n, pk), and bOB(n, 1 − pk),
respectively. Due to the similarity of results on different
problems, we present here the results on the F2e function
only. Figure 3 demonstrates that the increase of parents has
different effects on the convergence speed of GAs using
these crossovers. In OB-Scan, increasing parents gains faster
convergence in the very beginning, retards the convergence
soon, and leads to a worse solution quality in the end. Such



TABLE III

COMPARISON OF THE SOLUTION QUALITY BETWEEN UNIFORM CROSSOVER AND bOB(n, pk). THE p-VALUES REPRESENT THE t-TEST RESULTS

(SIGNIFICANT IMPROVEMENT OF bOB(n, pk) ON UNIFORM CROSSOVER IS MARKED WITH BOLDFACE)

F2e (opt: 0) RAS (opt: 0) GRI (opt: 0)
Crossover n Avg. Std. P -value Avg. Std. P -value Avg. Std. P -value
Uniform 2 20.89 16.70 4.30 2.81 0.2386 0.0962

bOB(n, pk) 2 8.01 8.26 2.34E-10 3.61 2.12 2.55E-02 0.2286 0.0822 2.15E-01
3 4.75 4.96 2.18E-15 2.91 1.69 2.52E-05 0.2105 0.0746 1.14E-02
4 4.66 6.85 8.70E-15 3.23 1.82 9.21E-04 0.1839 0.0659 4.36E-06
5 3.69 5.00 1.07E-16 2.78 1.58 3.80E-06 0.1804 0.0629 9.48E-07
6 2.76 3.28 2.06E-18 2.66 1.63 9.56E-07 0.1776 0.0623 3.14E-07
7 3.46 5.56 8.86E-17 3.03 1.74 1.04E-04 0.1811 0.0745 3.73E-06
8 2.89 3.78 4.16E-18 2.94 1.81 4.56E-05 0.1717 0.0742 1.45E-07
9 2.33 3.28 5.78E-19 3.17 1.88 5.69E-04 0.1836 0.0731 7.58E-06

10 2.73 3.48 2.14E-18 2.78 1.73 6.11E-06 0.2095 0.1043 2.13E-02
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Fig. 3. Convergence of GAs using (a) OB-Scan, (b) bOB(n, 1 − pk), and (c) bOB(n, pk) with different number of parents on the F2e function (Note
the different y-scales)

situation is a common symptom of premature convergence,
caused by over-intensified exploitation. The bOB(n, 1 −
pk) further aggravates this problem and consequently has
even worse solution quality, compared to OB-Scan and
bOB(n, pk). However, bOB(n, pk) can benefit from the
increase of parents: Figure 3(c) shows that both convergence
speed and solution quality improve with the number of
parents, ranging from 2 to 10. The preferable results confirm
the merit of using more parents in the proposed bOB(n, pk).

Next, we examine the impacts of crossover on the con-
vergence speed of GAs. Figure 4 compares the convergence
of GAs using OB-Scan, bOB(n, pk), and bOB(n, 1 − pk)
on the three test functions. Here the adopted number of
parents for each crossover is the number that leads to the
best solution quality respectively. The results in Fig. 4 show
that bOB(n, pk) outperforms both OB-Scan and bOB(n, pk)
in convergence speed as well as solution quality. Nonetheless,
GA using bOB(n, 1−pk) is inferior to that using bOB(n, pk)
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or OB-Scan. These outcomes reconfirm the effectiveness of
supermajority strategy in control of exploitation and explo-
ration in the multi-parent crossover: bOB(n, pk) is highly
capable of balancing the two forces but bOB(n, 1−pk) exac-
erbates the problems of OB-Scan in lopsided intensification
on exploitation.

V. CONCLUSION

The paper proposes the use of supermajority to deal with
the issue of exploitation and exploration in multi-parent
crossover. The proposed approach, called biased occurrence-
based scanning crossover (bOB), determines offspring genes
using the θ-majority in place of the simple majority in OB-
Scan. Through control over the threshold θ, we are able
to regulate the level of preference for major alleles in the
crossover. Two variants of bOB crossover, viz bOB(n, pk)
and bOB(n, 1 − pk), are developed on the basis of allele
frequency pk. These two crossovers determine offspring
genes according to the adaptive majority thresholds pk and
1−pk, instead of fixed 1

2 in the OB-Scan. Hence, bOB(n, pk)
makes major alleles more difficult while bOB(n, 1 − pk)
makes them easier to be chosen as offspring genes.

Experimental results demonstrate the effects of the pro-
posed crossovers on the performance of GAs. The 2-parent
bOB(n, pk) achieves significant improvement on n-parent
OB-Scan with n = 2, . . . , 10 in terms of solution quality
and convergence speed. Increasing the number of parents in
bOB(n, pk) further enhances the performance. In terms of
mean best fitness, GAs using bOB(n, pk) outperform GAs
using uniform crossover, i.e. the OB-Scan performing best
in out experiments, by 62–89% on the F2e, 16–38% on the
RAS, and 4–28% on the GRI functions. These preferable
results of bOB(n, pk) confirm the merits of supermajority
in overcoming the issue of over-intensified exploitation in
OB-Scan. The results also validate that the intensification
of exploitation and exploration by the increase of parents
in crossover can be advantageous — if they can be well
controlled, as bOB(n, pk) does. On the other hand, the
experimental results exhibit that bOB(n, 1−pk) suffers from
premature convergence seriously, which reveals its excessive
intensification on exploitation over OB-Scan.

Several directions remain for future work. First, the present
work evaluates the performance of bOB crossover with
merely three test functions. To validate the generality of



bOB’s advantages, experiments on more test functions should
be carried out systematically. Second, bOB provides an
effective way by adjusting the threshold θ to control exploita-
tion and exploration in crossover. Therefore, it establishes
a promising direction for future study on design of (multi-
parent) crossover for balance of the two driving forces and
for enhancement of the performance of GAs. Work toward
self-adaptive strategies and analysis on the influences of θ is
underway.
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